Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Lipid-based Nanoparticles (LNP) Structures used for Drug Delivery and Targeting: Clinical Trials and Patents

Author(s): Salome Amarachi Chime* and Anthony A. Attama

Volume 13, Issue 5, 2023

Published on: 05 October, 2023

Article ID: e051023221804 Pages: 12

DOI: 10.2174/0122106812246316230920095319

Price: $65

Abstract

Lipid based nanoparticle (LNP) structures commonly used for drug delivery already in clinical use are generally classified into three viz vesicular systems, emulsion based systems and lipid nanoparticles. The details of the types, basic structural characteristics in drug delivery, clinical trials, and patents have been discussed in this work. Moreover, despite the therapeutic efficacies of LNPs, there are some toxicity challenges associated with their use. These toxicities may be cytotoxicity or genotoxicity; to overcome some of these challenges, some measures could be taken during preformulation stages in order to circumvent it. These measures have been extensively discussed in this work. LNPs are used in the targeting of immune cells, which are direct participants in a variety of diseases, hence, are attractive targets for therapy. Cell specific targeting of therapeutic agent(s) helps to concentrate and localize the therapeutic effect and, hence, lowers the systemic side effects, while simultaneously increasing the management outcome. Nanotechnology and particle engineering helps distinguish each immune cell from the other to deliver therapeutic agents and ensure in vivo stability as well as sustained drug release. Surface modification of LNP is an important characteristic utilized in targeting therapeutic agents and allows the utilization of various specific properties expressed in each immune cell. These targeting strategies have been explored in this work exhaustively, and some of the companies and academic labs that develop LNP have been discussed. Also, new ways of developing novel patentable LNP have been discussed.

Graphical Abstract

[1]
Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid nanoparticles from liposomes to mrna vaccine delivery, a landscape of research diversity and advancement. ACS Nano, 2021, 15(11), 16982-17015.
[http://dx.doi.org/10.1021/acsnano.1c04996] [PMID: 34181394]
[2]
Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon, 2022, 8(5), e09394.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09394] [PMID: 35600452]
[3]
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9(4), 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[4]
Harashima, H.; Sakata, K.; Funato, K.; Kiwada, H. Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm. Res., 1994, 11(3), 402-406.
[http://dx.doi.org/10.1023/A:1018965121222] [PMID: 8008707]
[5]
Kim, E.M.; Jeong, H.J. Liposomes: Biomedical applications. Chonnam Med. J., 2021, 57(1), 27-35.
[http://dx.doi.org/10.4068/cmj.2021.57.1.27] [PMID: 33537216]
[6]
NIH. USA National Library of medicines.Assessment of Safety and Therapeutic Efficacy of Promitil in Combination With Folfox in Patients With GI Malignancies Available from: https://clinicaltrials.gov/ct2/show/NCT04729205 (Accessed 13th January, 2023).
[7]
Uchegbu, I.F.; Vyas, S.P. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int. J. Pharm., 1998, 172(1-2), 33-70.
[http://dx.doi.org/10.1016/S0378-5173(98)00169-0]
[8]
Attama, A.A.; Momoh, M.A.; Builders, P.F. Lipid nanoparticulate drug delivery systems: A revolution in dosage form design and development, recent advances in novel drug carrier systems; Sezer, A.D., Ed.; InTech, 2012.
[http://dx.doi.org/10.5772/50486]
[9]
Malhotra, M.; Jain, N.K. Niosomes as drug carriers. Indian Drugs, 1994, 31, 81-86.
[10]
Giddi, H.S.; Arunagirinathan, M.A.; Bellare, J.R. Self-assembled surfactant nano-structures important in drug delivery: A review. Indian J. Exp. Biol., 2007, 45(2), 133-159.
[PMID: 17375554]
[11]
Yeo, P.L.; Lim, C.L.; Chye, S.M.; Kiong Ling, A.P.; Koh, R.Y. Niosomes: A review of their structure, properties, methods of preparation, and medical applications. Asian Biomed., 2018, 11(4), 301-314.
[http://dx.doi.org/10.1515/abm-2018-0002]
[12]
Rajera, R.; Nagpal, K.; Singh, S.K.; Mishra, D.N. Niosomes: A controlled and novel drug delivery system. Biol. Pharm. Bull., 2011, 34(7), 945-953.
[http://dx.doi.org/10.1248/bpb.34.945] [PMID: 21719996]
[13]
Mujoriya, R.Z.; Dhamande, K.; Bodla, R.B. Niosomal drug delivery system: A review. Int J Appl Pharm., 2011, 3, 7-10.
[14]
Medda, S.; Mukhopadhyay, S.; Basu, M.K. Evaluation of the in-vivo activity and toxicity of amarogentin, an antileishmanial agent, in both liposomal and niosomal forms. J. Antimicrob. Chemother., 1999, 44(6), 791-794.
[http://dx.doi.org/10.1093/jac/44.6.791] [PMID: 10590280]
[15]
Moghassemi, S.; Hadjizadeh, A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release, 2014, 185, 22-36.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.015] [PMID: 24747765]
[16]
Arafa, M.G.; Ghalwash, D.; El-Kersh, D.M.; Elmazar, M.M. Publisher correction: Propolis-based niosomes as oromuco-adhesive films: A randomized clinical trial of a therapeutic drug delivery platform for the treatment of oral recurrent aphthous ulcers. Sci. Rep., 2020, 10(1), 2459.
[http://dx.doi.org/10.1038/s41598-020-59349-w] [PMID: 32034286]
[17]
Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R.; Chutoprapat, R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics, 2020, 12(9), 855.
[http://dx.doi.org/10.3390/pharmaceutics12090855] [PMID: 32916782]
[18]
Walve, J.R.; Bakliwal, S.R.; Rane, B.R.; Pawar, S.P. Transfersomes: A surrogated carrier for transdermal drug delivery system. Int. J. Appl. Biol. Pharm. Technol., 2011, 2, 204-213.
[19]
Sachan, R.; Parashar, T.; Soniya, S.V.; Singh, G.; Tyagi, S.; Patel, C.; Gupta, A. Drug carrier transfersomes: A novel tool for transdermal drug delivery system. Int. J. Res. Dev. Pharm. Life Sci., 2013, 2, 309-316.
[20]
Sivannarayana, P.; Rani, A.P.; Saikishore, V. VenuBabu, C.; SriRekha, V. Transfersomes: Ultra deformable vesicular carrier systems in transdermal drug delivery system. Res. J. Pharm. Dos. Forms Technol., 2012, 4, 243-255.
[21]
Bhasin, B.; Londhe, V.Y. An overview of transfersomal drug delivery. Int. J. Pharm. Sci. Res., 2018, 9, 2175-2184.
[22]
Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asi. J. Pharmac. Sci., 2015, 10(2), 81-98.
[http://dx.doi.org/10.1016/j.ajps.2014.09.004]
[23]
NHI, U.S. National Library of Medicines. Study of epicutaneously applied ketoprofen transfersome® gel with or without combination with oral celecoxib for the treatment of muscle pain induced by eccentric exercise. ClinicalTrials.gov Identifier: NCT01020279 Available from: https://classic.clinicaltrials.gov/ct2/show/NCT01020279
[24]
Akiladevi, D.; Sachinandan, B. Ethosomes a noninvasive approach for transdermal drug delivery. Int. J. Curr. Pharm. Res., 2010, 2(4), 1-4.
[25]
Sudhakar, C.K.; Upadhyay, N.; Jain, S.; Charyulu, R.N. Ethosomes as non-invasive loom for transdermal drug delivery system.Nanomedicine and Drug Delivery; 1st ed; Sebastian, M.; Ninan, N.; Haghi, A.K., Eds.; Apple Academic Press: New York, 2012, p. 1-22.
[26]
Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes: Novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J. Control. Release, 2000, 65(3), 403-418.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[27]
NHI, U.S. National Library of Medicines. Formulation and clinical evaluation of ethosomal and liposomal preparations of anthralin in psoriasis. ClinicalTrials.gov Identifier: NCT03348462. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03348462
[28]
Lee, D.R.; Park, J.S.; Bae, I.H.; Lee, Y.; Kim, B.M. Liquid crystal nanoparticle formulation as an oral drug delivery system for liver-specific distribution. Int. J. Nanomedicine, 2016, 11, 853-871.
[PMID: 27042053]
[29]
Guo, C.; Wang, J.; Cao, F.; Lee, R.J.; Zhai, G. Lyotropic liquid crystal systems in drug delivery. Drug Discov. Today, 2010, 15(23-24), 1032-1040.
[http://dx.doi.org/10.1016/j.drudis.2010.09.006] [PMID: 20934534]
[30]
Chime, S.A.; Akpa, P.A.; Attama, A.A. The utility of lipids as nanocarriers and suitable vehicle in pharmaceutical drug delivery. Curr. Nanomater., 2019, 4(3), 160-175.
[http://dx.doi.org/10.2174/2405461504666191016091827]
[31]
Varghese, R.; Salvi, S.; Sood, P.; Kulkarni, B.; Kumar, D. Cubosomes in cancer drug delivery: A review. Colloid Interface Sci. Commun., 2022, 46, 100561.
[http://dx.doi.org/10.1016/j.colcom.2021.100561]
[32]
Hirlekar, R.; Jain, S.; Patel, M.; Garse, H.; Kadam, V. Hexosomes: A novel drug delivery system. Curr. Drug Deliv., 2010, 7(1), 28-35.
[http://dx.doi.org/10.2174/156720110790396526] [PMID: 20044910]
[33]
Gill, K.K.; Kaddoumi, A.; Nazzal, S. PEG–lipid micelles as drug carriers: Physiochemical attributes, formulation principles and biological implication. J. Drug Target., 2015, 23(3), 222-231.
[http://dx.doi.org/10.3109/1061186X.2014.997735] [PMID: 25547369]
[34]
Groo, A.C.; Matougui, N.; Umerska, A.; Saulnier, P. Reverse micelle-lipid nanocapsules: A novel strategy for drug delivery of the plectasin derivate AP138 antimicrobial peptide. Int. J. Nanomedicine, 2018, 13, 7565-7574.
[http://dx.doi.org/10.2147/IJN.S180040] [PMID: 30532539]
[35]
Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm. Sin. B, 2016, 6(4), 287-296.
[http://dx.doi.org/10.1016/j.apsb.2016.02.001] [PMID: 27471669]
[36]
Pefanis, E.; Wang, J.; Rothschild, G.; Lim, J.; Kazadi, D.; Sun, J.; Federation, A.; Chao, J.; Elliott, O.; Liu, Z.P.; Economides, A.N.; Bradner, J.E.; Rabadan, R.; Basu, U. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell, 2015, 161(4), 774-789.
[http://dx.doi.org/10.1016/j.cell.2015.04.034] [PMID: 25957685]
[37]
Thakur, B.K.; Zhang, H.; Becker, A.; Matei, I.; Huang, Y.; Costa-Silva, B.; Zheng, Y.; Hoshino, A.; Brazier, H.; Xiang, J.; Williams, C.; Rodriguez-Barrueco, R.; Silva, J.M.; Zhang, W.; Hearn, S.; Elemento, O.; Paknejad, N.; Manova-Todorova, K.; Welte, K.; Bromberg, J.; Peinado, H.; Lyden, D. Double-stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Res., 2014, 24(6), 766-769.
[http://dx.doi.org/10.1038/cr.2014.44] [PMID: 24710597]
[38]
NHI, U.S. National Library of Medicines. Study Investigating the Ability of Plant Exosomes to Deliver CurcumNational Library of Medicines. Study Investigating the Ability of Plant Exosomes to Deliver Curcumin to Normal and Colon Cancer Tissue. Clinical- Trials.gov Identifier: NCT01294072. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT01294072
[39]
Chime, S.A.; Kenechukwu, F.C.; Attama, A.A. Nanoemulsions: Advances in formulation, characterization and applications in drug delivery.Application of Nanotechnology in Drug Delivery; InTech, 2014, pp. 77-126.
[http://dx.doi.org/10.5772/58673]
[40]
Elsheikh, M.A.; Elnaggar, Y.S.R.; Gohar, E.Y.; Abdallah, O.Y. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: Optimization and in vivo appraisal. Int. J. Nanomedicine, 2012, 7, 3787-3802.
[PMID: 22888234]
[41]
Lei, Y.; Qi, J.; Nie, S.; Hu, F.; Pan, W.; Lu, Y.; Wu, W. Solid self-nanoemulsifying cyclosporine A pellets prepared by fluid-bed coating: Stability and bioavailability study. J. Biomed. Nanotechnol., 2012, 8(3), 515-521.
[http://dx.doi.org/10.1166/jbn.2012.1400] [PMID: 22764422]
[42]
Jeevana Jyothi, B.; Sreelakshmi, K. Design and evaluation of self-nanoemulsifying drug delivery system of flutamide. J. Young Pharm., 2011, 3(1), 4-8.
[http://dx.doi.org/10.4103/0975-1483.76413] [PMID: 21607048]
[43]
Sun, M.; Han, J.; Guo, X.; Li, Z.; Yang, J.; Zhang, Y.; Zhang, D. Design, preparation and in vitro evaluation of paclitaxel-loaded self-nanoemulsifying drug delivery system. Asian J. Pharm. Sci, 2011, 6(1), 18-25.
[44]
Chime, A.; Onyishi, V.I. Lipid-based drug delivery systems (LDDS): Recent advances and applications of lipids in drug delivery. Afr. J. Pharm. Pharmacol., 2013, 7(48), 3034-3059.
[http://dx.doi.org/10.5897/AJPPX2013.0004]
[45]
Dilip, K.P.; Surendra, T.; Suresh, K.N.; Roohi, K. Nanostructured lipid carrier (nlc) a modern approach for topical delivery: A review. World J. Pharm. Pharm. Sci., 2003, 2(3), 921-938.
[46]
Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Siva Kumar, N.; Vekariya, R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Advances, 2020, 10(45), 26777-26791.
[http://dx.doi.org/10.1039/D0RA03491F] [PMID: 35515778]
[47]
Alclantar, N.; Williams, E.C.; Toomey, R. Adjuvant and vaccine compositions. US 2010/0226932A1, 2010.
[48]
Gail, S.; Shenoy, D.B.; Lee, R.W. Compositions for applying active substances to or through the skin. US5540934A, 2010.
[49]
Touitou, E. Formulation for delivery of insulin and preparation method thereof. WO2002064115A1, 1996.
[50]
Jeong, S.; Kwon, I.; Chung, H. Formulation for delivery of insulin and preparation method thereof. US20130034538A1, 2002.
[51]
Garti, N.; Aserin, D.L.; Amar-Yuli, I.; Tehila, M.; Liron, B. Reverse hexagonal mesophases (hii) and uses thereof. US20130034538A1, 2013.
[52]
Lebouille, G.J.; Kockelkoren, T.; Vleugels, F.; Remco, T. Micelle compositions and process for the preparation thereof. CA2791559A1, 2011.
[53]
Maurel, J. Reverse micelles based on phytosterols and acylglycerols and therapeutic uses thereof. US20090087406A1, 2009.
[54]
Lirio, Q.; Clark, D.; McKellar, A.J. Nanoemulsions. US8822385B2, 2014.
[55]
Mansoor, K.; Nazzal, S. Eutectic-based self-nanoemulsified drug delivery system. US7588786B2, 2009.
[56]
Chime, S.; Ugwu, C.E.; Ejiofor, E.U.; Onunkwo, G.C. Application of Cyperus esculentus oil in the development of sustained release diclofenac sodium-loaded nanostructured lipid carrier. J. Curr. Biomed. Res., 2022, 2(3, May-June), 145-159.
[http://dx.doi.org/10.54117/jcbr.v2i3.23]
[57]
Chime, S.A.; Onunkwo, G.C.; Attama, A.A. Evaluation of the properties of encapsulated stavudine microparticulate lipid-based drug delivery system in immunocompromised wistar rats. Curr. HIV Res., 2020, 18(4), 237-247.
[http://dx.doi.org/10.2174/1570162X18666200510010738] [PMID: 32386495]
[58]
Chaudhuri, A.; Kumar, D.N.; Shaik, R.A.; Eid, B.G.; Abdel-Naim, A.B.; Md, S.; Ahmad, A.; Agrawal, A.K. Lipid-based nanoparticles as a pivotal delivery approach in triple negative breast cancer (TNBC) therapy. Int. J. Mol. Sci., 2022, 23(17), 10068.
[http://dx.doi.org/10.3390/ijms231710068] [PMID: 36077466]
[59]
Yildirimer, L.; Thanh, N.T.K.; Loizidou, M.; Seifalian, A.M. Toxicology and clinical potential of nanoparticles. Nano Today, 2011, 6(6), 585-607.
[http://dx.doi.org/10.1016/j.nantod.2011.10.001] [PMID: 23293661]
[60]
Sato, Y.; Matsui, H.; Yamamoto, N.; Sato, R.; Munakata, T.; Kohara, M.; Harashima, H. Highly specific delivery of siRNA to hepatocytes circumvents endothelial cell-mediated lipid nanoparticle-associated toxicity leading to the safe and efficacious decrease in the hepatitis B virus. J. Control. Release, 2017, 266, 216-225.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.044] [PMID: 28986168]
[61]
Qian, Y.; Liang, X.; Yang, J.; Zhao, C.; Nie, W.; Liu, L.; Yi, T.; Jiang, Y.; Geng, J.; Zhao, X.; Wei, X. Hyaluronan reduces cationic liposome-induced toxicity and enhances the antitumor effect of targeted gene delivery in mice. ACS Appl. Mater. Interfaces, 2018, 10(38), 32006-32016.
[http://dx.doi.org/10.1021/acsami.8b12393] [PMID: 30156827]
[62]
Silva, A.; Martins-Gomes, C.; Coutinho, T.; Fangueiro, J.; Sanchez-Lopez, E.; Pashirova, T.; Andreani, T.; Souto, E. Soft cationic nanoparticles for drug delivery: Production and cytotoxicity of solid lipid nanoparticles (SLNs). Appl. Sci., 2019, 9(20), 4438.
[http://dx.doi.org/10.3390/app9204438]
[63]
Nisini, R.; Poerio, N.; Mariotti, S.; De Santis, F.; Fraziano, M. The multirole of liposomes in therapy and prevention of infectious diseases. Front. Immunol., 2018, 9, 155.
[http://dx.doi.org/10.3389/fimmu.2018.00155] [PMID: 29459867]
[64]
Lu, Y.; Sun, W.; Gu, Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J. Control. Release, 2014, 194, 1-19.
[http://dx.doi.org/10.1016/j.jconrel.2014.08.015] [PMID: 25151983]
[65]
Manjappa, A.S.; Chaudhari, K.R.; Venkataraju, M.P.; Dantuluri, P.; Nanda, B.; Sidda, C. Antibody derivatization and conjugation strategies: Application in preparation of stealth immunoliposome to target chemo-therapeutics to tumor. J. Control. Release, 2011, 150(1), 2-22.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.002]
[66]
Li, L.; ten Hagen, T.L.M.; Schipper, D.; Wijnberg, T.M.; van Rhoon, G.C.; Eggermont, A.M.M.; Lindner, L.H.; Koning, G.A. Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia. J. Control. Release, 2010, 143(2), 274-279.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.006] [PMID: 20074595]
[67]
Lee, N.K.; Kim, S.N.; Park, C.G. Immune cell targeting nanoparticles: A review. Biomater. Res., 2021, 25(1), 44.
[http://dx.doi.org/10.1186/s40824-021-00246-2] [PMID: 34930494]
[68]
Golubovskaya, V.; Wu, L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers, 2016, 8(3), 36.
[http://dx.doi.org/10.3390/cancers8030036] [PMID: 26999211]
[69]
Weigelin, B.; den Boer, A.T.; Wagena, E.; Broen, K.; Dolstra, H.; de Boer, R.J.; Figdor, C.G.; Textor, J.; Friedl, P. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nat. Commun., 2021, 12(1), 5217.
[http://dx.doi.org/10.1038/s41467-021-25282-3] [PMID: 34471116]
[70]
Lee, J.; Yun, K.S.; Choi, C.S.; Shin, S.H.; Ban, H.S.; Rhim, T.; Lee, S.K.; Lee, K.Y. T cell-specific siRNA delivery using antibody-conjugated chitosan nanoparticles. Bioconjug. Chem., 2012, 23(6), 1174-1180.
[http://dx.doi.org/10.1021/bc2006219] [PMID: 22607555]
[71]
Ramishetti, S.; Kedmi, R.; Goldsmith, M.; Leonard, F.; Sprague, A.G.; Godin, B.; Gozin, M.; Cullis, P.R.; Dykxhoorn, D.M.; Peer, D. Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano, 2015, 9(7), 6706-6716.
[http://dx.doi.org/10.1021/acsnano.5b02796] [PMID: 26042619]
[72]
Ou, W.; Thapa, R.K.; Jiang, L.; Soe, Z.C.; Gautam, M.; Chang, J.H.; Jeong, J.H.; Ku, S.K.; Choi, H.G.; Yong, C.S.; Kim, J.O. Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy. J. Control. Release, 2018, 281, 84-96.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.018] [PMID: 29777794]
[73]
Yang, Y.S.S.; Moynihan, K.D.; Bekdemir, A.; Dichwalkar, T.M.; Noh, M.M.; Watson, N.; Melo, M.; Ingram, J.; Suh, H.; Ploegh, H.; Stellacci, F.R.; Irvine, D.J. Targeting small molecule drugs to T cells with antibody-directed cell-penetrating gold nanoparticles. Biomater. Sci., 2019, 7(1), 113-124.
[http://dx.doi.org/10.1039/C8BM01208C] [PMID: 30444251]
[74]
Pinheiro, R.G.R.; Coutinho, A.J.; Pinheiro, M.; Neves, A.R. Nanoparticles for targeted brain drug delivery: What do we know? Int. J. Mol. Sci., 2021, 22(21), 11654.
[http://dx.doi.org/10.3390/ijms222111654] [PMID: 34769082]
[75]
Lindgren, M.; Hällbrink, M.; Prochiantz, A.; Langel, Ü. Cell-penetrating peptides. Trends Pharmacol. Sci., 2000, 21(3), 99-103.
[http://dx.doi.org/10.1016/S0165-6147(00)01447-4] [PMID: 10689363]
[76]
Chandrasekaran, S.; Chan, M.F.; Li, J.; King, M.R. Super natural killer cells that target metastases in the tumor draining lymph nodes. Biomaterials, 2016, 77, 66-76.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.001] [PMID: 26584347]
[77]
Sutradhar, K.B.; Amin, M.L. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotech., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/939378]
[78]
Cho, K.; Wang, X.; Nie, S.; Chen, Z.G.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14(5), 1310-1316.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[79]
Yezhelyev, M.V.; Gao, X.; Xing, Y.; Al-Hajj, A.; Nie, S.; O’Regan, R.M. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol., 2006, 7(8), 657-667.
[http://dx.doi.org/10.1016/S1470-2045(06)70793-8] [PMID: 16887483]
[80]
Sudimack, J.; Lee, R.J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev., 2000, 41(2), 147-162.
[http://dx.doi.org/10.1016/S0169-409X(99)00062-9] [PMID: 10699311]
[81]
Kim, S.H.; Jeong, J.H.; Lee, S.H.; Kim, S.W.; Park, T.G. LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI. Bioconjug. Chem., 2008, 19(11), 2156-2162.
[http://dx.doi.org/10.1021/bc800249n] [PMID: 18850733]
[82]
Dharap, S.S.; Wang, Y.; Chandna, P.; Khandare, J.J.; Qiu, B.; Gunaseelan, S.; Sinko, P.J.; Stein, S.; Farmanfarmaian, A.; Minko, T. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc. Natl. Acad. Sci., 2005, 102(36), 12962-12967.
[http://dx.doi.org/10.1073/pnas.0504274102] [PMID: 16123131]
[83]
Sudarshan, S.; Holman, D.H.; Hyer, M.L.; Voelkel-Johnson, C.; Dong, J.Y.; Norris, J.S. In vitro efficacy of Fas ligand gene therapy for the treatment of bladder cancer. Cancer Gene Ther., 2005, 12(1), 12-18.
[http://dx.doi.org/10.1038/sj.cgt.7700746] [PMID: 15514684]
[84]
Ferrara, N. VEGF as a therapeutic target in cancer. Oncology, 2005, 69(3)(3), 11-16.
[http://dx.doi.org/10.1159/000088479] [PMID: 16301831]
[85]
Baban, D.F.; Seymour, L.W. Control of tumour vascular permeability. Adv. Drug Deliv. Rev., 1998, 34(1), 109-119.
[http://dx.doi.org/10.1016/S0169-409X(98)00003-9]
[86]
Shubik, P. Vascularization of tumors: A review. J. Cancer Res. Clin. Oncol., 1982, 103(3), 211-226.
[http://dx.doi.org/10.1007/BF00409698]
[87]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update post COVID ‐19 vaccines. Bioeng. Transl. Med., 2021, 6(3), e10246.
[http://dx.doi.org/10.1002/btm2.10246] [PMID: 34514159]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy