Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Mini-Review Article

A Profound Insight into the Structure-activity Relationship of Ubiquitous Scaffold Piperazine: An Explicative Review

Author(s): Jasmine Chaudhary, Vishal Sharma, Akash Jain, Diksha Sharma, Bhawna Chopra and Ashwani K. Dhingra*

Volume 20, Issue 1, 2024

Published on: 05 October, 2023

Page: [17 - 29] Pages: 13

DOI: 10.2174/0115734064244117230923172611

Price: $65

Abstract

Despite extensive research in the field of drug discovery and development, still there is a need to develop novel molecular entities. Literature reveals a substantial heterocyclic nucleus named, piperazine, which shows an immense therapeutic voyage. For several decades, molecules having the piperazine nucleus have entered the market as a drug exhibiting biological potential. It was known to possess antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardioprotective, and anti-inflammatory activity with a specific basis for structural activity relationship. Thus, it is regarded as a key structural feature in most of the already available therapeutic drugs in the market. Reports also suggest that the extensive utilization of these currently available drugs having a piperazine nucleus shows increasing tolerance significantly day by day. In addition to this, various other factors like solubility, low bioavailability, cost-effectiveness, and imbalance between pharmacokinetics and pharmacodynamics profile limit their utilization. Focusing on that issues, various structural modification studies were performed on the piperazine moiety to develop new derivatives/analogs to overcome the problems associated with available marketed drugs. Thus, this review article aims to gain insight into the number of structural modifications at the N-1 and N-4 positions of the piperazine scaffold. This SAR approach may prove to be the best way to overcome the above-discussed drawbacks and lead to the design of drug molecules with better efficacy and affinity. Hence, there is an urgent need to focus on the structural features of this scaffold which paves further work for deeper exploration and may help medicinal chemists as well as pharmaceutical industries.

Graphical Abstract

[1]
Ostrowska, K. Coumarin-piperazine derivatives as biologically active compounds. Saudi Pharm. J., 2020, 28(2), 220-232.
[http://dx.doi.org/10.1016/j.jsps.2019.11.025] [PMID: 32042262]
[2]
James, T.; MacLellan, P.; Burslem, G.M.; Simpson, I.; Grant, J.A.; Warriner, S.; Sridharan, V.; Nelson, A. A modular lead-oriented synthesis of diverse piperazine, 1,4-diazepane and 1,5-diazocane scaffolds. Org. Biomol. Chem., 2014, 12(16), 2584-2591.
[http://dx.doi.org/10.1039/C3OB42512F] [PMID: 24614952]
[3]
Arunkumar, R.; Anburaj, D.B. Growth, nucleation kinetics and structural studies on L-valine piperazinium single crystals. Asian J. Chem., 2019, 31(9), 1966-1970.
[http://dx.doi.org/10.14233/ajchem.2019.22042]
[4]
Singh, K.; Siddiqui, H.H.; Shakya, P.; Bagga, P.; Kumar, A.; Khalid, M.; Arif, M.; Alok, S. Piperazine - a biologically active scaffold. Int. J. Pharm. Sci. Res., 2015, 6(10), 4145-4158.
[5]
Henry, D.W. A facile synthesis of piperazines from primary amines. J. Heterocycl. Chem., 1966, 3(4), 503-511.
[http://dx.doi.org/10.1002/jhet.5570030423]
[6]
Reilly, S.W.; Mach, R.H. Pd-Catalyzed synthesis of piperazine scaffolds under aerobic and solvent-free conditions. Org. Lett., 2016, 18(20), 5272-5275.
[http://dx.doi.org/10.1021/acs.orglett.6b02591] [PMID: 27736075]
[7]
Jida, M.; Ballet, S. Efficient one-pot synthesis of enantiomerically pure N -protected-α-substituted piperazines from readily available α-amino acids. New J. Chem., 2018, 42(3), 1595-1599.
[http://dx.doi.org/10.1039/C7NJ04039C]
[8]
Halimehjani, A.Z.; Badali, E. DABCO bond cleavage for the synthesis of piperazine derivatives. RSC Adv., 2019, 9(62), 36386-36409.
[http://dx.doi.org/10.1039/C9RA07870C] [PMID: 35540608]
[9]
Liu, K.G.; Robichaud, A.J. A general and convenient synthesis of N-aryl piperazines. Tetrahedron Lett., 2005, 46(46), 7921-7922.
[http://dx.doi.org/10.1016/j.tetlet.2005.09.092]
[10]
Asif, M. Piperazine and pyrazine containing molecules and their diverse pharmacological activities. Int. J. Adv. Sci. Res., 2015, 1(1), 5-11.
[http://dx.doi.org/10.7439/ijasr.v1i1.1766]
[11]
Rajashree, A.; Baseer, M.A. Exploring pharmacological significance of piperazine scaffold. World J. Pharm. Res., 2016, 5(7), 1409-1420.
[12]
Shaquiquzzaman, M.; Verma, G.; Marella, A.; Akhter, M.; Akhtar, W.; Khan, M.F.; Tasneem, S.; Alam, M.M. Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur. J. Med. Chem., 2015, 102, 487-529.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.026] [PMID: 26310894]
[13]
Mallesha, L.; Mohana, K.N. Synthesis, antimicrobial and antioxidant activities of 1-(1,4-benzodioxane-2-carbonyl)piperazine derivatives. Eur. J. Chem., 2011, 2(2), 193-199.
[http://dx.doi.org/10.5155/eurjchem.2.2.193-199.282]
[14]
Patel, R.; Park, S. An evolving role of piperazine moieties in drug design and discovery. Mini Rev. Med. Chem., 2013, 13(11), 1579-1601.
[http://dx.doi.org/10.2174/13895575113139990073] [PMID: 23895191]
[15]
Rathi, A.K.; Syed, R.; Shin, H.S.; Patel, R.V. Piperazine derivatives for therapeutic use: A patent review (2010-present). Expert Opin. Ther. Pat., 2016, 26(7), 777-797.
[http://dx.doi.org/10.1080/13543776.2016.1189902] [PMID: 27177234]
[16]
Verma, S.; Kumar, S. Review exploring biological potentials of piperazines. Med. Chem., 2017, 7(1), 1-8.
[17]
Tomar, A.; Mall, M.; Verma, M. Piperazine: The molecule of diverse pharmacological importance. Int. J. Res. Ayurveda Pharm., 2011, 2(5), 1547-1548.
[18]
Swartzwelder, C.; Miller, J.H.; Sappenfield, R.W. The effective use of piperazine for the treatment of human helminthiases. Gastroenterology, 1957, 33(1), 87-96.
[http://dx.doi.org/10.1016/S0016-5085(19)35792-0] [PMID: 13448284]
[19]
Orjales, A.; Gil-Sánchez, J.C.; Alonso-Cires, L.; Labeaga, L.; Mosquera, R.; Berisa, A.; Ucelay, M.; Innerárity, A.; Corcóstegui, R. Synthesis and histamine H1-receptor antagonist activity of 4-(diphenylmethyl)-1-piperazine derivatives with a terminal heteroaryl or cycloalkyl amide fragment. Eur. J. Med. Chem., 1996, 31(10), 813-818.
[http://dx.doi.org/10.1016/0223-5234(96)83975-4] [PMID: 22026937]
[20]
Mendoza, A.; Pérez-Silanes, S.; Quiliano, M.; Pabón, A.; Galiano, S.; González, G.; Garavito, G.; Zimic, M.; Vaisberg, A.; Aldana, I.; Monge, A.; Deharo, E. Aryl piperazine and pyrrolidine as antimalarial agents. Synthesis and investigation of structure–activity relationships. Exp. Parasitol., 2011, 128(2), 97-103.
[http://dx.doi.org/10.1016/j.exppara.2011.02.025] [PMID: 21354139]
[21]
Ibezim, E.; Duchowicz, P.R.; Ortiz, E.V.; Castro, E.A. QSAR on aryl-piperazine derivatives with activity on malaria. Chemom. Intell. Lab. Syst., 2012, 110(1), 81-88.
[http://dx.doi.org/10.1016/j.chemolab.2011.10.002]
[22]
Silva, G.N.S.; Schuck, D.C.; Cruz, L.N.; Moraes, M.S.; Nakabashi, M.; Gosmann, G.; Garcia, C.R.S.; Gnoatto, S.C.B. Investigation of antimalarial activity, cytotoxicity and action mechanism of piperazine derivatives of betulinic acid. Trop. Med. Int. Health, 2015, 20(1), 29-39.
[http://dx.doi.org/10.1111/tmi.12395] [PMID: 25308185]
[23]
Chaudhary, P.; Nimesh, S.; Yadav, V.; Verma, A.K.; Kumar, R. Synthesis, characterization and in vitro biological studies of novel cyano derivatives of N-alkyl and N-aryl piperazine. Eur. J. Med. Chem., 2007, 42(4), 471-476.
[http://dx.doi.org/10.1016/j.ejmech.2006.10.009] [PMID: 17140705]
[24]
Somashekhar, M.; Mahesh, A.R. Synthesis and antimicrobial activity of piperazine derivatives. AJPTR, 2013, 3(4), 640-645.
[25]
Patil, M.; Noonikara Poyil, A.; Joshi, S.D.; Patil, S.A.; Patil, S.A.; Bugarin, A. Design, synthesis, and molecular docking study of new piperazine derivative as potential antimicrobial agents. Bioorg. Chem., 2019, 92, 103217.
[http://dx.doi.org/10.1016/j.bioorg.2019.103217] [PMID: 31479986]
[26]
Xu, Q.; Liu, T.; Tian, R.; Li, Q.; Ma, D. Synthesis and antiemetic activity of 1,2,3,9-tetrahydro-9-methyl-3-(4-substituted-piperazin-1-ylmethyl)-4H-carbazol-4-one derivatives. Front. Chem. China, 2009, 4(1), 63-68.
[http://dx.doi.org/10.1007/s11458-009-0017-8]
[27]
Bali, A.; Bhalla, A.; Bala, S.; Kumar, R. Synthesis and computational studies on aryloxypropylpiperazine derivatives as potential atypical antipsychotic agents. Lett. Drug Des. Discov., 2012, 9(2), 218-224.
[http://dx.doi.org/10.2174/157018012799079725]
[28]
Walayat, K.; Mohsin, N.A.; Aslam, S.; Ahmad, M. An insight into the therapeutic potential of piperazine-based anticancer agents. Turk. J. Chem., 2019, 43(1), 1-23.
[http://dx.doi.org/10.3906/kim-1806-7]
[29]
Gurdal, E.; Buclulgan, E.; Durmaz, I.; Cetin-Atalay, R.; Yarim, M. Synthesis and anticancer activity evaluation of some benzothiazole-piperazine derivatives. Anticancer Agents Med. Chem., 2015, 15(3), 382-389.
[http://dx.doi.org/10.2174/1871520615666141216151101] [PMID: 25511511]
[30]
McNair, T.J.; Wibin, F.A.; Hoppe, E.T.; Schmidt, J.L.; dePeyster, F.A. Antitumor action of several new piperazine derivatives compared to certain standard anticancer agents. J. Surg. Res., 1963, 3(3), 130-136.
[http://dx.doi.org/10.1016/S0022-4804(63)80014-1] [PMID: 13932216]
[31]
Varadaraju, K.R.; Kumar, J.R.; Mallesha, L.; Muruli, A.; Mohana, K.N.S.; Mukunda, C.K.; Sharanaiah, U. Virtual screening and biological evaluation of piperazine derivatives as human acetylcholinesterase inhibitors. Int. J. Alzheimers Dis., 2013, 2013, 1-13.
[http://dx.doi.org/10.1155/2013/653962] [PMID: 24288651]
[32]
Hatnapure, G.D.; Keche, A.P.; Rodge, A.H.; Birajdar, S.S.; Tale, R.H.; Kamble, V.M. Synthesis and biological evaluation of novel piperazine derivatives of flavone as potent anti-inflammatory and antimicrobial agent. Bioorg. Med. Chem. Lett., 2012, 22(20), 6385-6390.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.071] [PMID: 22981334]
[33]
Panchal, N.B.; Captain, A.D. Synthesis and screening of some new piperazine derivatives as potential anthelmintic agents. IJPRS, 2015, 4(1), 26-37.
[34]
Sánchez-Alonso, R.M.; Raviña, E.; Santana, L.; García-Mera, G.; Sanmartín, M.; Baltar, P. Piperazine derivatives of benzimidazole as potential anthelmintics. Part 1: Synthesis and activity of methyl-5-(4-substituted piperazin-1-yl)benzimidazole-2-carbamates. Pharmazie, 1989, 44(9), 606-607.
[PMID: 2608706]
[35]
Brito, A.F.; Moreira, L.K.S.; Menegatti, R.; Costa, E.A. Piperazine derivatives with central pharmacological activity used as therapeutic tools. Fundam. Clin. Pharmacol., 2019, 33(1), 13-24.
[http://dx.doi.org/10.1111/fcp.12408] [PMID: 30151922]
[36]
Jain, A.; Chaudhary, J.; Khaira, H.; Chopra, B.; Dhingra, A. Piperazine: A promising scaffold with analgesic and anti-inflammatory potential. Drug Res., 2021, 71(2), 62-72.
[http://dx.doi.org/10.1055/a-1323-2813] [PMID: 33336346]
[37]
Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1β generation. Clin. Exp. Immunol., 2007, 147(2), 227-235.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03261.x] [PMID: 17223962]
[38]
Dhingra, A.K.; Chopra, B. Inflammation as a therapeutic target for various deadly disorders: A review. Curr. Drug Targets, 2020, 21(6), 582-588.
[http://dx.doi.org/10.2174/1389450120666191204154115] [PMID: 31801453]
[39]
Dhingra, A.; Chopra, B.; Dass, R.; Mittal, S. An update on anti-inflammatory compounds: A review. Antiinflamm. Antiallergy Agents Med. Chem., 2015, 14(2), 81-97.
[http://dx.doi.org/10.2174/1871523014666150514102027] [PMID: 25973652]
[40]
Dhingra, A.K.; Chopra, B.; Dua, J.S.; Parsad, D.N. New insight on inflammation and its management: A Review. JIPBS, 2017, 4(4), 117-126.
[41]
Dhingra, A.K.; Chopra, B.; Bonthagarala, B. Natural anti-inflammatory agents: Recent progress and future perspectives. Ann. Pharmacol. Pharm., 2018, 3(5), 1158-1168.
[42]
Hosamani, K.M.; Kumbar, S.S.; Shettar, A. Physicochemical properties, antioxidant and anti-inflammatory activities of coumarin-carbonodithioate hybrids. Asian Pac. J. Trop. Biomed., 2018, 8(4), 201-206.
[http://dx.doi.org/10.4103/2221-1691.231282]
[43]
Alatab, S.; Sepanlou, S.G.; Ikuta, K.; Vahedi, H.; Bisignano, C.; Safiri, S.; Sadeghi, A.; Nixon, M.R.; Abdoli, A.; Abolhassani, H.; Alipour, V.; Almadi, M.A.H.; Almasi-Hashiani, A.; Anushiravani, A.; Arabloo, J.; Atique, S.; Awasthi, A.; Badawi, A.; Baig, A.A.A.; Bhala, N.; Bijani, A.; Biondi, A.; Borzì, A.M.; Burke, K.E.; Carvalho, F.; Daryani, A.; Dubey, M.; Eftekhari, A.; Fernandes, E.; Fernandes, J.C.; Fischer, F.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hasanzadeh, A.; Hashemian, M.; Hay, S.I.; Hoang, C.L.; Househ, M.; Ilesanmi, O.S.; Jafari B.N.; James, S.L.; Kengne, A.P.; Malekzadeh, M.M.; Merat, S.; Meretoja, T.J.; Mestrovic, T.; Mirrakhimov, E.M.; Mirzaei, H.; Mohammad, K.A.; Mokdad, A.H.; Monasta, L.; Negoi, I.; Nguyen, T.H.; Nguyen, C.T.; Pourshams, A.; Poustchi, H.; Rabiee, M.; Rabiee, N.; Ramezanzadeh, K.; Rawaf, D.L.; Rawaf, S.; Rezaei, N.; Robinson, S.R.; Ronfani, L.; Saxena, S.; Sepehrimanesh, M.; Shaikh, M.A.; Sharafi, Z.; Sharif, M.; Siabani, S.; Sima, A.R.; Singh, J.A.; Soheili, A.; Sotoudehmanesh, R.; Suleria, H.A.R.; Tesfay, B.E.; Tran, B.; Tsoi, D.; Vacante, M.; Wondmieneh, A.B.; Zarghi, A.; Zhang, Z-J.; Dirac, M.; Malekzadeh, R.; Naghavi, M. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol., 2020, 5(1), 17-30.
[http://dx.doi.org/10.1016/S2468-1253(19)30333-4] [PMID: 31648971]
[44]
Koparde, S.; Hosamani, K.M.; Barretto, D.A.; Joshi, S.D. Microwave synthesis of coumarin-maltol hybrids as potent antitumor and anti-microbial drugs: An approach to molecular docking and DNA cleavage studies. Chem. Data Collect., 2018, 15-16(16), 41-53.
[http://dx.doi.org/10.1016/j.cdc.2018.03.004]
[45]
Koparde, S.; Hosamani, K.M.; Kulkarni, V.; Joshi, S.D. Synthesis of coumarin-piperazine derivatives as potent anti-microbial and anti-inflammatory agents, and molecular docking studies. Chem. Data Collect., 2018, 15-16(16), 197-206.
[http://dx.doi.org/10.1016/j.cdc.2018.06.001]
[46]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[47]
Mistry, B.; Patel, R.V.; Keum, Y.S.; Kim, D.H. Synthesis of N-Mannich bases of berberine linking piperazine moieties revealing anticancer and antioxidant effects. Saudi J. Biol. Sci., 2017, 24(1), 36-44.
[http://dx.doi.org/10.1016/j.sjbs.2015.09.005] [PMID: 28053569]
[48]
Kulandaivelu, U.; Shireesha, B.; Mahesh, C.; Vidyasagar, J.V.; Rao, T.R.; Jayaveera, K.N.; Saiko, P.; Graser, G.; Szekeres, T.; Jayaprakash, V. Synthesis antimicrobial and anticancer activity of N′-arylmethylidene-piperazine-1-carbothiohydrazide. Med. Chem. Res., 2013, 22(6), 2802-2808.
[http://dx.doi.org/10.1007/s00044-012-0279-4]
[49]
Batista, D.C.; Silva, D.P.B.; Florentino, I.F.; Cardoso, C.S.; Gonçalves, M.P.; Valadares, M.C.; Lião, L.M.; Sanz, G.; Vaz, B.G.; Costa, E.A.; Menegatti, R. Anti-inflammatory effect of a new piperazine derivative: (4-methylpiperazin-1-yl)(1-phenyl-1H-pyrazol-4-yl)methanone. Inflammopharmacology, 2018, 26(1), 217-226.
[http://dx.doi.org/10.1007/s10787-017-0390-8] [PMID: 28825161]
[50]
Patel, N.; Karkhanis, V.; Patel, P. Synthesis and biological evaluation of some piperazine derivatives as anti-inflammatory agents. J. Drug Deliv. Ther., 2019, 9(4-s), 353-358.
[http://dx.doi.org/10.22270/jddt.v9i4-s.3327]
[51]
Lima, L.; Barreiro, E. Bioisosterism: A useful strategy for molecular modification and drug design. Curr. Med. Chem., 2005, 12(1), 23-49.
[http://dx.doi.org/10.2174/0929867053363540] [PMID: 15638729]
[52]
Karthik, C.S.; Manukumar, H.M.; Sandeep, S.; Sudarshan, B.L.; Nagashree, S.; Mallesha, L.; Rakesh, K.P.; Sanjay, K.R.; Mallu, P.; Qin, H.L. Development of piperazine-1-carbothioamide chitosan silver nanoparticles (P1C-Tit*CAgNPs) as a promising anti-inflammatory candidate: A molecular docking validation. MedChemComm, 2018, 9(4), 713-724.
[http://dx.doi.org/10.1039/C7MD00628D] [PMID: 30108962]
[53]
Li, J.; Li, D.; Xu, Y.; Guo, Z.; Liu, X.; Yang, H.; Wu, L.; Wang, L. Design, synthesis, biological evaluation, and molecular docking of chalcone derivatives as anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2017, 27(3), 602-606.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.008] [PMID: 28011213]
[54]
Mazzotta, S.; Cebrero-Cangueiro, T.; Frattaruolo, L.; Vega-Holm, M.; Carretero-Ledesma, M.; Sánchez-Céspedes, J.; Cappello, A.R.; Aiello, F.; Pachón, J.; Vega-Pérez, J.M.; Iglesias-Guerra, F.; Pachón-Ibáñez, M.E. Exploration of piperazine-derived thioureas as antibacterial and anti-inflammatory agents. in vitro evaluation against clinical isolates of colistin-resistant Acinetobacter baumannii. Bioorg. Med. Chem. Lett., 2020, 30(18), 127411.
[http://dx.doi.org/10.1016/j.bmcl.2020.127411] [PMID: 32717617]
[55]
Li, J.; Yin, Y.; Wang, L.; Liang, P.; Li, M.; Liu, X.; Wu, L.; Yang, H. Synthesis, characterization, and anti-inflammatory activities of methyl salicylate derivatives bearing piperazine moiety. Molecules, 2016, 21(11), 1544.
[http://dx.doi.org/10.3390/molecules21111544] [PMID: 27886112]
[56]
Szczęśniak-Sięga, B.M.; Wiatrak, B.; Czyżnikowska, Ż.; Janczak, J.; Wiglusz, R.J.; Maniewska, J. Synthesis and biological evaluation as well as In silico studies of arylpiperazine-1,2-benzothiazine derivatives as novel anti-inflammatory agents. Bioorg. Chem., 2021, 106, 104476.
[http://dx.doi.org/10.1016/j.bioorg.2020.104476] [PMID: 33250206]
[57]
Liu, Z.P.; Gong, C.D.; Xie, L.Y.; Du, X.L.; Li, Y.; Qin, J. Synthesis and in vivo anti-inflammatory evaluation of piperazine derivatives containing 1,4-benzodioxan moiety. Acta Chim. Slov., 2019, 66(2), 421-426.
[http://dx.doi.org/10.17344/acsi.2018.4887] [PMID: 33855503]
[58]
Hayun, H.; Maggadani, B.P.; Kurnia, A.; Hanifah, A.; Yuliandi, M.; Fitriyani, I.; Hadrianti, S.P. Anti-inflammatory and antioxidant activity of synthesized mannich base derivatives of (2E, 6E)-2-[(4-hydroxy-3-methoxyphenyl) methylidene]-6-(phenyl methylidene) cyclohexan-1-one. Int. J. Pharm., 2019, 11(1), 246-250.
[59]
Kumar, A.C.S.; Bantal, V.; Ramesha, K.C.; Raj, C.S.A.; Mahadevaiah, K.M.; Prasad, B.S.B.; Naveen, S.; Malavalli, M. Synthesis and anti-inflammatory activity of 1-benzhydryl-piperazine urea derivatives. J. App. Chem., 2017, 2017, 282-290.
[60]
Nyobe, J.; Bikele, D.; Fodouop, M.; Mpondo, E.; Ndom, J. A new pyrrolidinyl-piperazine alkaloid derivative from Oxyanthusspeciosus DC. (Rubiaceae). TPR, 2020, 4(3), 109-116.
[61]
Redzicka, A.; Czyżnikowska, Ż.; Wiatrak, B.; Gębczak, K.; Kochel, A. Design and synthesis of n-substituted 3,4-pyrroledicarboximides as potential anti-inflammatory agents. Int. J. Mol. Sci., 2021, 22(3), 1410.
[http://dx.doi.org/10.3390/ijms22031410] [PMID: 33573356]
[62]
Lüscher Dias, T.; Schuch, V.; Beltrão-Braga, P.C.B.; Martins-de-Souza, D.; Brentani, H.P.; Franco, G.R.; Nakaya, H.I. Drug repositioning for psychiatric and neurological disorders through a network medicine approach. Transl. Psychiatry, 2020, 10(1), 141.
[http://dx.doi.org/10.1038/s41398-020-0827-5] [PMID: 32398742]
[63]
Dfarhud, D.; Malmir, M.; Khanahmadi, M. Happiness & health: The biological factors- systematic review article. Iran. J. Public Health, 2014, 43(11), 1468-1477.
[PMID: 26060713]
[64]
Pessoa-Mahana, H.; Gajardo, G.R.; Araya-Maturana, R.; Cárcamo, J.K.; Pessoa-Mahana, C.D. Synthesis of 4‐arylpiperazine derivatives of moclobemide: Potential antidepressants with a dual mode of action. Synth. Commun., 2004, 34(14), 2513-2521.
[http://dx.doi.org/10.1081/SCC-200025581]
[65]
Leopoldo, M.; Berardi, F.; Colabufo, N.A.; Contino, M.; Lacivita, E.; Perrone, R.; Tortorella, V. Studies on 1-arylpiperazine derivatives with affinity for rat 5-HT7 and 5-HT1A receptors. J. Pharm. Pharmacol., 2010, 56(2), 247-255.
[http://dx.doi.org/10.1211/0022357022575] [PMID: 15005884]
[66]
Seo, H.J.; Park, E.J.; Kim, M.J.; Kang, S.Y.; Lee, S.H.; Kim, H.J.; Lee, K.N.; Jung, M.E.; Lee, M.; Kim, M.S.; Son, E.J.; Park, W.K.; Kim, J.; Lee, J. Design and synthesis of novel arylpiperazine derivatives containing the imidazole core targeting 5-HT(2A) receptor and 5-HT transporter. J. Med. Chem., 2011, 54(18), 6305-6318.
[http://dx.doi.org/10.1021/jm200682b] [PMID: 21823597]
[67]
Han, M.S.; Han, Y.H.; Song, C.M.; Hahn, H.G. The design and synthesis of 1,4-substituted piperazine derivatives as triple reuptake inhibitors. Bull. Korean Chem. Soc., 2012, 33(8), 2597-2602.
[http://dx.doi.org/10.5012/bkcs.2012.33.8.2597]
[68]
Pytka, K.; Rapacz, A.; Zygmunt, M.; Olczyk, A.; Waszkielewicz, A.; Sapa, J.; Filipek, B. Antidepressant-like activity of a new piperazine derivative of xanthone in the forced swim test in mice: The involvement of serotonergic system. Pharmacol. Rep., 2015, 67(1), 160-165.
[http://dx.doi.org/10.1016/j.pharep.2014.08.016] [PMID: 25560591]
[69]
Kaya, B.; Yurttaş, L.; Sağlik, B.N.; Levent, S.; Özkay, Y.; Kaplancikli, Z.A. Novel 1-(2-pyrimidin-2-yl)piperazine derivatives as selective monoamine oxidase (MAO)-A inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 193-202.
[http://dx.doi.org/10.1080/14756366.2016.1247054] [PMID: 28097890]
[70]
Gu, Z.S.; Zhou, A.; Xiao, Y.; Zhang, Q.W.; Li, J.Q. Synthesis and antidepressant-like activity of novel aralkyl piperazine derivatives targeting SSRI/5-HT 1A/5-HT 7. Eur. J. Med. Chem., 2018, 144, 701-715.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.063] [PMID: 29291438]
[71]
da Silva, D.M.; Sanz, G.; Vaz, B.G.; de Carvalho, F.S.; Lião, L.M.; de Oliveira, D.R.; Moreira, L.K.S.; Cardoso, C.S.; de Brito, A.F.; da Silva, D.P.B.; da Rocha, F.F.; Santana, I.G.C.; Galdino, P.M.; Costa, E.A.; Menegatti, R. Tert-butyl 4-((1-phenyl-1H-pyrazol-4-yl) methyl) piperazine-1-carboxylate (LQFM104)– New piperazine derivative with antianxiety and antidepressant-like effects: Putative role of serotonergic system. Biomed. Pharmacother., 2018, 103, 546-552.
[http://dx.doi.org/10.1016/j.biopha.2018.04.077] [PMID: 29677541]
[72]
Kędzierska, E.; Fiorino, F.; Magli, E.; Poleszak, E.; Wlaź, P.; Orzelska-Górka, J.; Knap, B.; Kotlińska, J.H. New arylpiperazine derivatives with antidepressant-like activity containing isonicotinic and picolinic nuclei: Evidence for serotonergic system involvement. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(6), 743-754.
[http://dx.doi.org/10.1007/s00210-019-01620-7] [PMID: 30783717]
[73]
Norman, M.H.; Navas, F.I. Antipsychotic piperazine and piperadine derivatives. Expert Opin. Ther. Pat., 1994, 4(3), 281-282.
[http://dx.doi.org/10.1517/13543776.4.3.281]
[74]
Jain, M.S.; Surana, S.J. Synthesis and evaluation of antipsychotic activity of 11-(4′-(N-aryl carboxamido/N-aryl-α-phenyl-acetamido)-piperazinyl)-dibenz[b,f][1,4]-oxazepine derivatives. Arab. J. Chem., 2017, 10, S2032-S2039.
[http://dx.doi.org/10.1016/j.arabjc.2013.07.033]
[75]
Gao, L.; Hao, C.; Ma, R.; Chen, J.; Zhang, G.; Chen, Y. Synthesis and biological evaluation of a new class of multi-target heterocycle piperazine derivatives as potential antipsychotics. RSC Advances, 2021, 11(28), 16931-16941.
[http://dx.doi.org/10.1039/D1RA02426D] [PMID: 35479681]
[76]
Özkay, Ü.D.; Can, Ö.D.; Özkay, Y.; Öztürk, Y. Effect of benzothiazole/piperazine derivatives on intracerebroventricular streptozotocin-induced cognitive deficits. Pharmacol. Rep., 2012, 64(4), 834-847.
[http://dx.doi.org/10.1016/S1734-1140(12)70878-2] [PMID: 23087135]
[77]
Aliabadia, A.; Mohammadi-Farania, A.; Bistounib, J.R. Synthesis and acetylcholinesterase inhibitory assessment of benzamide derivatives incorporated piperazine moiety as potential anti-alzheimer agents. J. Pharm. Sci. Res, 2017, 9(9), 1598-1603.
[78]
Dhanawat, M.; Banerjee, A.G.; Shrivastava, S.K. Design, synthesis, and anticonvulsant screening of some substituted piperazine and aniline derivatives of 5-phenyl-oxazolidin-2,4-diones and 5,5-diphenylimidazolidin-2,4 diones. Med. Chem. Res., 2012, 21(10), 2807-2822.
[http://dx.doi.org/10.1007/s00044-011-9805-z]
[79]
Aboul-Enein, M.N.; Saleh, O.A.; El-Behery, M.F.; El-Azzouny, A.E.S.; Maklad, Y. Anticonvulsant potential of certain N-(6-substituted benzo[d] thiazol-2-yl)-2-(4-substituted piperazin-1-yl)acetamides. Egypt. Pharmaceut. J., 2016, 15(2), 62-69.
[http://dx.doi.org/10.4103/1687-4315.190404]
[80]
Ianevski, A.; Andersen, P.I.; Merits, A.; Bjørås, M.; Kainov, D. Expanding the activity spectrum of antiviral agents. Drug Discov. Today, 2019, 24(5), 1224-1228.
[http://dx.doi.org/10.1016/j.drudis.2019.04.006] [PMID: 30980905]
[81]
Asraf, M.A.; Hossen, M.F.; Bitu, N.A.; Uddin, M.E.; Islam, M.R.; Zamir, R. Antiviral compounds: A road to quest for novel antiviral drugs. Ann. Med. Chem., 2020, 1(1), 1004.
[82]
Forchette, L.; Sebastian, W.; Liu, T. A comprehensive review of COVID-19 virology, vaccines, variants, and therapeutics. Curr. Med. Sci., 2021, 41(6), 1037-1051.
[http://dx.doi.org/10.1007/s11596-021-2395-1] [PMID: 34241776]
[83]
Ammassari, A.; Murri, R.; Pezzotti, P.; Trotta, M.P.; Ravasio, L.; De Longis, P.; Caputo, S.L.; Narciso, P.; Pauluzzi, S.; Carosi, G.; Nappa, S.; Piano, P.; Izzo, C.M.; Lichtner, M.; Rezza, G.; Monforte, A.A.; Ippolito, G.; Moroni, M.; Wu, A.W.; Antinori, A. Self-reported symptoms and medication side effects influence adherence to highly active antiretroviral therapy in persons with HIV infection. J. Acquir. Immune Defic. Syndr., 2001, 28(5), 445-449.
[http://dx.doi.org/10.1097/00042560-200112150-00006] [PMID: 11744832]
[84]
Ewers, E.C.; Shah, P.A.; Carmichael, M.G.; Ferguson, T.M. In Concurrent systemic chemo immunotherapy and sofosbuvir-based antiviral treatment in a hepatitis C virus-infected patient with diffuse large B-cell lymphoma. Open Forum Infect. Dis., 2016, 3(4), ofw223.
[http://dx.doi.org/10.1093/ofid/ofw223] [PMID: 28018926]
[85]
Enkhtaivan, G.; Muthuraman, P.; Kim, D.H. Inhibitory effect of 2,4-dichlorophenoxyacetic acid on ROS, autophagy formation, and mRNA replication for influenza virus infection. J. Mol. Recognit., 2017, 30(8), e2616.
[http://dx.doi.org/10.1002/jmr.2616] [PMID: 28233349]
[86]
Fried, M.W. Side effects of therapy of hepatitis C and their management. Hepatology, 2002, 36(5(S1)), S237-S244.
[PMID: 12407599]
[87]
Hanson, K.E.; Swaminathan, S. Cytomegalovirus antiviral drug resistance: Future prospects for prevention, detection and management. Future Microbiol., 2015, 10(10), 1545-1548.
[http://dx.doi.org/10.2217/fmb.15.82] [PMID: 26437628]
[88]
Brennan, T.; Shrank, W. New expensive treatments for hepatitis C infection. JAMA, 2014, 312(6), 593-594.
[http://dx.doi.org/10.1001/jama.2014.8897] [PMID: 25038617]
[89]
Sharma, A.; Wakode, S.; Fayaz, F.; Khasimbi, S.; Pottoo, F.H.; Kaur, A. An overview of piperazine scaffold as promising nucleus for different therapeutic targets. Curr. Pharm. Des., 2020, 26(35), 4373-4385.
[http://dx.doi.org/10.2174/1381612826666200417154810] [PMID: 32303168]
[90]
Bhat, M.; Al-Omar, M.; Ghabbour, H.; Naglah, A. A one-pot biginelli synthesis and characterization of novel dihydropyrimidinone derivatives containing piperazine/morpholine moiety. Molecules, 2018, 23(7), 1559.
[http://dx.doi.org/10.3390/molecules23071559] [PMID: 29954138]
[91]
Liu, T.; Weng, Z.; Dong, X.; Chen, L.; Ma, L.; Cen, S.; Zhou, N.; Hu, Y. Design, synthesis and biological evaluation of novel piperazine derivatives as CCR5 antagonists. PLoS One, 2013, 8(1), e53636.
[http://dx.doi.org/10.1371/journal.pone.0053636] [PMID: 23308267]
[92]
Liu, Z.; Zhao, J.; Li, W.; Shen, L.; Huang, S.; Tang, J.; Duan, J.; Fang, F.; Huang, Y.; Chang, H.; Chen, Z.; Zhang, R. Computational screen and experimental validation of anti-influenza effects of quercetin and chlorogenic acid from traditional Chinese medicine. Sci. Rep., 2016, 6(1), 19095.
[http://dx.doi.org/10.1038/srep19095] [PMID: 26754609]
[93]
Moesslacher, J.; Battisti, V.; Delang, L.; Neyts, J.; Abdelnabi, R.; Pürstinger, G.; Urban, E.; Langer, T. Identification of 2-(4-(Phenylsulfonyl)piperazine-1-yl)pyrimidine analogues as novel inhibitors of chikungunya virus. ACS Med. Chem. Lett., 2020, 11(5), 906-912.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00662] [PMID: 32435404]
[94]
Bassetto, M.; Leyssen, P.; Neyts, J.; Yerukhimovich, M.M.; Frick, D.N.; Courtney-Smith, M.; Brancale, A. In silico identification, design and synthesis of novel piperazine-based antiviral agents targeting the hepatitis C virus helicase. Eur. J. Med. Chem., 2017, 125, 1115-1131.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.043] [PMID: 27810598]
[95]
Ofia, M.J.; Kakarla, R.; Liu, J.; Naduthambi, D.; Mosley, R.; Steuer, H.M. Preparation of piperazine derivatives and their uses to treat viral infections, including hepatitis C. US2012/0202794 A1, 2012.
[96]
Moussa, I.A.; Banister, S.D.; Beinat, C.; Giboureau, N.; Reynolds, A.J.; Kassiou, M. Design, synthesis, and structure-affinity relationships of regioisomeric N-benzyl alkyl ether piperazine derivatives as σ-1 receptor ligands. J. Med. Chem., 2010, 53(16), 6228-6239.
[http://dx.doi.org/10.1021/jm100639f] [PMID: 20662542]
[97]
Ferla, S.; Manganaro, R.; Benato, S.; Paulissen, J.; Neyts, J.; Jochmans, D.; Brancale, A.; Bassetto, M. Rational modifications, synthesis and biological evaluation of new potential antivirals for RSV designed to target the M2-1 protein. Bioorg. Med. Chem., 2020, 28(8), 115401.
[http://dx.doi.org/10.1016/j.bmc.2020.115401] [PMID: 32143992]
[98]
Enkhtaivan, G.; Kim, D.H.; Park, G.S.; Pandurangan, M.; Nicholas, D.A.; Moon, S.H.; Kadam, A.A.; Patel, R.V.; Shin, H.S.; Mistry, B.M. Berberine-piperazine conjugates as potent influenza neuraminidase blocker. Int. J. Biol. Macromol., 2018, 119, 1204-1210.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.047] [PMID: 30099043]
[99]
Dou, D.; He, G.; Mandadapu, S.R.; Aravapalli, S.; Kim, Y.; Chang, K.O.; Groutas, W.C. Inhibition of noroviruses by piperazine derivatives. Bioorg. Med. Chem. Lett., 2012, 22(1), 377-379.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.122] [PMID: 22119464]
[100]
Mazzotta, S.; Marrugal-Lorenzo, J.A.; Vega-Holm, M.; Serna-Gallego, A.; Álvarez-Vidal, J.; Berastegui-Cabrera, J.; Pérez del Palacio, J.; Díaz, C.; Aiello, F.; Pachón, J.; Iglesias-Guerra, F.; Vega-Pérez, J.M.; Sánchez-Céspedes, J. Optimization of piperazine-derived ureas privileged structures for effective antiadenovirus agents. Eur. J. Med. Chem., 2020, 185, 111840.
[http://dx.doi.org/10.1016/j.ejmech.2019.111840] [PMID: 31711794]
[101]
Bungard, C.J.; Williams, P.D.; Schulz, J.; Wiscount, C.M.; Holloway, M.K.; Loughran, H.M.; Manikowski, J.J.; Su, H.P.; Bennett, D.J.; Chang, L.; Chu, X.J.; Crespo, A.; Dwyer, M.P.; Keertikar, K.; Morriello, G.J.; Stamford, A.W.; Waddell, S.T.; Zhong, B.; Hu, B.; Ji, T.; Diamond, T.L.; Bahnck-Teets, C.; Carroll, S.S.; Fay, J.F.; Min, X.; Morris, W.; Ballard, J.E.; Miller, M.D.; McCauley, J.A. Design and synthesis of piperazine sulfonamide cores leading to highly potent HIV-1 protease inhibitors. ACS Med. Chem. Lett., 2017, 8(12), 1292-1297.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00386] [PMID: 29259750]
[102]
Fytas, C.; Kolocouris, A.; Fytas, G.; Zoidis, G.; Valmas, C.; Basler, C.F. Influence of an additional amino group on the potency of aminoadamantanes against influenza virus A. II – Synthesis of spiropiperazines and in vitro activity against influenza A H3N2 virus. Bioorg. Chem., 2010, 38(6), 247-251.
[http://dx.doi.org/10.1016/j.bioorg.2010.09.001] [PMID: 20926112]
[103]
Wang, Y.; Zhou, R.; Quan, Y.; Chen, S.; Shi, X.; Li, Y.; Cen, S. Design, synthesis, and evaluation of novel 4-amino-2-(4-benzylpiperazin-1-yl)methylbenzonitrile compounds as Zika inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(4), 126906.
[http://dx.doi.org/10.1016/j.bmcl.2019.126906] [PMID: 31902708]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy