Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and Evaluation of Novel Substituted N-Aryl 1,4-Dihydropyridines as Antituberculostatic Agents

Author(s): Lisa Seitz, Norbert Reiling, Christopher Vorreiter, Wolfgang Sippl, Sonja Kessler and Andreas Hilgeroth*

Volume 20, Issue 1, 2024

Published on: 25 August, 2023

Page: [30 - 39] Pages: 10

DOI: 10.2174/1573406419666230622121512

Price: $65

conference banner
Abstract

Background: Tuberculosis has been the main cause of mortality of infectious diseases worldwide, with strongly limited therapeutic options. With increasing resistance and missing suitable drugs in those cases, there is a strong need for novel antituberculostatic drugs. We developed novel N-aryl 1,4-dihydropyridines with various substitution patterns to evaluate them as antituberculostatic agents.

Methods: 1,4-Dihydropyridine derivatives were synthesized and purified by column chromatography or recrystallization. The mycobacterial growth inhibition was determined in a fluorescent mycobacterial growth assay.

Results: The compounds were prepared in a simple one-pot reaction under acidic conditions with structurally varied components. The substituent effects on the determined mycobacterial growth inhibitory properties are discussed.

Conclusion: Lipophilic diester substituted derivatives show promising activities that were additionally affected by the aromatic substituent functions. Thus, we identified compounds with activities almost reaching that of the used antimycobacterial drug as control.

Graphical Abstract

[1]
Dartois, V.A.; Rubin, E.J. Anti-tuberculosis treatment strategies and drug development: Challenges and priorities. Nat. Rev. Microbiol., 2022, 20(11), 685-701.
[http://dx.doi.org/10.1038/s41579-022-00731-y] [PMID: 35478222]
[2]
Antonio-Arques, V.; Franch-Nadal, J.; Caylà, J.A. Diabetes and tuberculosis: A syndemic complicated by COVID-19. Med. Clin., 2021, 157(6), 288-293.
[http://dx.doi.org/10.1016/j.medcli.2021.04.004]
[3]
Wilkinson, R.J. Tuberculosis and type 2 diabetes mellitus: An inflammatory danger signal in the time of coronavirus disease. Clin. Infect. Dis., 2021, 72(1), 79-81.
[PMID: 32533824]
[4]
Bates, M.; Marais, B.J.; Zumla, A. Tuberculosis comorbidity with communicable and noncommunicable diseases. Cold Spring Harb. Perspect. Med., 2015, 5(11), a017889.
[http://dx.doi.org/10.1101/cshperspect.a017889] [PMID: 25659380]
[5]
Houben, R.M.G.J.; Dodd, P.J. The global burden of latent tuberculosis infection: A re-estimation using mathematical modelling. PLoS Med., 2016, 13(10), e1002152.
[http://dx.doi.org/10.1371/journal.pmed.1002152] [PMID: 27780211]
[6]
Zenner, D.; Loutet, M.G.; Harris, R.; Wilson, S.; Ormerod, L.P. Evaluating 17 years of latent tuberculosis infection screening in north-west England: A retrospective cohort study of reactivation. Eur. Respir. J., 2017, 50(1), 1602505.
[http://dx.doi.org/10.1183/13993003.02505-2016] [PMID: 28751410]
[7]
Kiazyk, S.; Ball, T.B. Latent tuberculosis infection: An overview. Can. Commun. Dis. Rep., 2017, 43(3/4), 62-66.
[http://dx.doi.org/10.14745/ccdr.v43i34a01] [PMID: 29770066]
[8]
Fox, W.; Ellard, G.A.; Mitchison, D.A. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946-1986, with relevant subsequent publications. Int. J. Tuberc. Lung Dis., 1999, 3(10), S231-S279.
[PMID: 10529902]
[9]
De Luca, M.; Ioele, G.; Ragno, G. 1,4-Dihydropyridine antihypertensive drugs: Recent advances in photostabilization strategies. Pharmaceutics, 2019, 11(2), 85.
[http://dx.doi.org/10.3390/pharmaceutics11020085] [PMID: 30781584]
[10]
Xu, L.; Li, D.; Tao, L.; Yang, Y.; Li, Y.; Hou, T. Binding mechanisms of 1,4-dihydropyridine derivatives to L-type calcium channel Ca v 1.2: A molecular modeling study. Mol. Biosyst., 2016, 12(2), 379-390.
[http://dx.doi.org/10.1039/C5MB00781J] [PMID: 26673131]
[11]
Jumde, R.P.; Guardigni, M.; Gierse, R.M.; Alhayek, A.; Zhu, D.; Hamid, Z.; Johannsen, S.; Elgaher, W.A.M.; Neusens, P.J.; Nehls, C.; Haupenthal, J.; Reiling, N.; Hirsch, A.K.H. Hit-optimization using target-directed dynamic combinatorial chemistry: development of inhibitors of the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase. Chem. Sci., 2021, 12, 7775-7785.
[12]
Hantzsch, A. Condensationsprodukte aus Aldehydammoniak und ketonartigen Verbindungen. Ber. Dtsch. Chem. Ges., 1881, 14(2), 1637-1638.
[http://dx.doi.org/10.1002/cber.18810140214]
[13]
Filipan-Litvić, M.; Litvić, M.; Cepanec, I.; Vinković, V. Hantzsch Synthesis of 2,6-Dimethyl-3,5-dimethoxycarbonyl-4-(o-methoxyphenyl)-1,4-dihydropyridine; a Novel Cyclisation Leading to an Unusual Formation of 1-Amino-2-methoxycarbonyl-3,5-bis(o-methoxyphenyl)-4-oxa-cyclohexan-1-ene. Molecules, 2007, 12(11), 2546-2558.
[http://dx.doi.org/10.3390/12112546] [PMID: 18065957]
[14]
Sharma, M.G.; Rajani, D.P.; Patel, H.M. Green approach for synthesis of bioactive Hantzsch 1,4-dihydropyridine derivatives based on thiophene moiety via multicomponent reaction. R. Soc. Open Sci., 2017, 4(6), 170006.
[http://dx.doi.org/10.1098/rsos.170006] [PMID: 28680664]
[15]
Marinescu, M.; Popa, C.V. Pyridine compounds with antimicrobial and antiviral activities. Int. J. Mol. Sci., 2022, 23(10), 5659.
[http://dx.doi.org/10.3390/ijms23105659] [PMID: 35628466]
[16]
Ling, Y.; Hao, Z.Y.; Liang, D.; Zhang, C.L.; Liu, Y.F.; Wang, Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Devel. Ther., 2021, 15, 4289-4338.
[http://dx.doi.org/10.2147/DDDT.S329547] [PMID: 34675489]
[17]
Ioele, G.; Gündüz, M.G.; Spatari, C.; De Luca, M.; Grande, F.; Ragno, G. A new generation of dihydropyridine calcium channel blockers: Photostabilization of liquid formulations using nonionic surfactants. Pharmaceutics, 2019, 11(1), 28.
[http://dx.doi.org/10.3390/pharmaceutics11010028] [PMID: 30641992]
[18]
Wang, J.; Jin, Z.; Ma, R.; Hao, Y.; Wang, Y.; Li, N.; Xu, X. Efficient synthesis of 1,4-dihydropyridines and polyhydroquinolines catalyzed by novel schiff base zirconium lewis acid. Youji Huaxue, 2020, 40(4), 969-977.
[http://dx.doi.org/10.6023/cjoc201909006]
[19]
Wang, J.; Li, N.; Qiu, R.; Zhang, X.; Xu, X.; Yin, S.F. Air-stable zirconocene bis(perfluorobutanesulfonate) as a highly efficient catalyst for synthesis of N-heterocyclic compounds. J. Organomet. Chem., 2015, 785, 61-67.
[http://dx.doi.org/10.1016/j.jorganchem.2015.02.014]
[20]
Yamashita, S.; Furubayashi, T.; Kataoka, M.; Sakane, T.; Sezaki, H.; Tokuda, H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur. J. Pharm. Sci., 2000, 10(3), 195-204.
[http://dx.doi.org/10.1016/S0928-0987(00)00076-2] [PMID: 10767597]
[21]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[22]
Oprea, T.I. Property distribution of drug-related chemical databases. J. Comput. Aided Mol. Des., 2000, 14(3), 251-264.
[http://dx.doi.org/10.1023/A:1008130001697] [PMID: 10756480]
[23]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[24]
Manjunatha, U.H.; Rao, S.P.S.; Kondreddi, R.R.; Noble, C.G.; Camaco, L.R.; Tan, B.H.; Ng, S.H.; Pearly, S.N.; Ma, N.L.; Suresh, B.L.; Maxime, H.; Susan, W.B.; Weixuan, Y.; Kelli, K.; Francesca, B.; David, B.; John, R.W.; Peter, J.T.; Richard, G.; Paul, W.S.; Thierry, T.D. Direct inhibitors of InhA are active against Mycobacterium tuberculosis. Sci. Transl. Med., 2015, 7(269), 269ra3.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy