Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and Evaluation of Imidazole Derivatives Bearing Imidazo[2,1-b] [1,3,4]thiadiazole Moiety as Antibacterial Agents

Author(s): Wen-Bo Xu, Siqi Li, Chang-Ji Zheng, Yu-Xuan Yang, Changhao Zhang and Cheng-Hua Jin*

Volume 20, Issue 1, 2024

Published on: 26 September, 2023

Page: [40 - 51] Pages: 12

DOI: 10.2174/0115734064248204230919074743

Price: $65

conference banner
Abstract

Background: Drug-resistant infections kill hundreds of thousands of people globally every year. In previous work, we found that tri-methoxy- and pyridine-substituted imidazoles show strong antibacterial activities.

Objective: The aim of this work was to investigate the antibacterial activities and bacterial resistances of imidazoles bearing an aromatic heterocyclic, alkoxy, or polycyclic moiety on the central ring.

Methods: Three series of 2-cyclopropyl-5-(5-(6-methylpyridin-2-yl)-2-substituted-1H-imidazol-4- yl)-6-phenylimidazo[2,1-b][1,3,4]thiadiazoles (13a-e, 14a-d, and 15a-f) were synthesized and their antibacterial activity was evaluated. The structures were confirmed by their 1H NMR, 13C NMR, and HRMS spectra. All the synthesized compounds were screened against Gram-positive, Gramnegative, and multidrug-resistant bacterial strains.

Results: More than half of the compounds showed moderate or strong antibacterial activity. Among them, compound 13e (MICs = 1-4 μg/mL) showed the strongest activity against Gram-positive and drug-resistant bacteria as well as high selectivity against Gram-negative bacteria. Furthermore, it showed no cytotoxicity against HepG2 cells, even at 100 μM, and no hemolysis at 20 μM.

Conclusion: These results indicate that compound 13e is excellent candicate for further study as a potential antibacterial agent.

Graphical Abstract

[1]
Li, Y.; Xu, J.; Wang, F.; Wang, B.; Liu, L.; Hou, W.; Fan, H.; Tong, Y.; Zhang, J.; Lu, Z. Overprescribing in China, driven by financial incentives, results in very high use of antibiotics, injections, and corticosteroids. Health Aff., 2012, 31(5), 1075-1082.
[http://dx.doi.org/10.1377/hlthaff.2010.0965] [PMID: 22566449]
[2]
Wang, Z.; Zhang, H.; Han, J.; Xing, H.; Wu, M.; Yang, T. Deadly sins of antibiotic abuse in China. Infect. Control Hosp. Epidemiol., 2017, 38(6), 758-759.
[http://dx.doi.org/10.1017/ice.2017.60] [PMID: 28397628]
[3]
Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of gram- negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 2020, 25(6), 1340.
[http://dx.doi.org/10.3390/molecules25061340] [PMID: 32187986]
[4]
Zhang, B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 2019, 168, 357-372.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.055] [PMID: 30826511]
[5]
Xu, M.; Wu, P.; Shen, F.; Ji, J.; Rakesh, K.P. Chalcone derivatives and their antibacterial activities: Current development. Bioorg. Chem., 2019, 91, 103133.
[http://dx.doi.org/10.1016/j.bioorg.2019.103133] [PMID: 31374524]
[6]
Strzelecka, M.; Świątek, P. 1,2,4-Triazoles as important antibacterial agents. Pharmaceuticals, 2021, 14(3), 224.
[http://dx.doi.org/10.3390/ph14030224] [PMID: 33799936]
[7]
Kong, Q.; Yang, Y. Recent advances in antibacterial agents. Bioorg. Med. Chem. Lett., 2021, 35, 127799.
[http://dx.doi.org/10.1016/j.bmcl.2021.127799] [PMID: 33476772]
[8]
D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; Golding, G.B.; Poinar, H.N.; Wright, G.D. Antibiotic resistance is ancient. Nature, 2011, 477(7365), 457-461.
[http://dx.doi.org/10.1038/nature10388] [PMID: 21881561]
[9]
McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin resistance in Staphylococcus aureus. Yale J. Biol. Med., 2017, 90(2), 269-281.
[PMID: 28656013]
[10]
Barros, E.M.; Martin, M.J.; Selleck, E.M.; Lebreton, F.; Sampaio, J.L.M.; Gilmore, M.S. Daptomycin resistance and tolerance due to loss of function in Staphylococcus aureus dsp1 and asp23. Antimicrob. Agents Chemother., 2019, 63(1), e01542-18.
[http://dx.doi.org/10.1128/AAC.01542-18] [PMID: 30397055]
[11]
Egan, S.A.; Shore, A.C.; O’Connell, B.; Brennan, G.I.; Coleman, D.C. Linezolid resistance in Enterococcus faecium and Enterococcus faecalis from hospitalized patients in Ireland: high prevalence of the MDR genes optrA and poxtA in isolates with diverse genetic backgrounds. J. Antimicrob. Chemother., 2020, 75(7), 1704-1711.
[http://dx.doi.org/10.1093/jac/dkaa075] [PMID: 32129849]
[12]
Jadhav, V.B.; Kulkarni, M.V.; Rasal, V.P.; Biradar, S.S.; Vinay, M.D. Synthesis and anti-inflammatory evaluation of methylene bridged benzofuranyl imidazo[2,1-b][1,3,4]thiadiazoles. Eur. J. Med. Chem., 2008, 43(8), 1721-1729.
[http://dx.doi.org/10.1016/j.ejmech.2007.06.023] [PMID: 17845827]
[13]
Xing, Y.; Wang, J.Y.; Li, M.Y.; Zhang, Z.H.; Jin, H.L.; Zuo, H.X.; Ma, J.; Jin, X. Convallatoxin inhibits IL‐1β production by suppressing zinc finger protein 91 (ZFP91)‐mediated pro‐IL‐1β ubiquitination and caspase‐8 inflammasome activity. Br. J. Pharmacol., 2022, 179(9), 1887-1907.
[http://dx.doi.org/10.1111/bph.15758] [PMID: 34825365]
[14]
Ma, Q.; Bian, M.; Gong, G.; Bai, C.; Liu, C.; Wei, C.; Quan, Z.; Du, H. Synthesis and evaluation of Bakuchiol derivatives as potent anti-inflammatory agents in vitro and in vivo. J. Nat. Prod., 2022, 85(1), 15-24.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00377] [PMID: 35000392]
[15]
Zhang, Z.H.; Mi, C.; Wang, K.S.; Wang, Z.; Li, M.Y.; Zuo, H.X.; Xu, G.H.; Li, X.; Piao, L.X.; Ma, J.; Jin, X. Chelidonine inhibits TNF-α-induced inflammation by suppressing the NF-κB pathways in HCT116 cells. Phytother. Res., 2018, 32(1), 65-75.
[http://dx.doi.org/10.1002/ptr.5948] [PMID: 29044876]
[16]
Lamani, R.S.; Shetty, N.S.; Kamble, R.R.; Khazi, I.A.M. Synthesis and antimicrobial studies of novel methylene bridged benzisoxazolyl imidazo[2,1-b][1,3,4]thiadiazole derivatives. Eur. J. Med. Chem., 2009, 44(7), 2828-2833.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.019] [PMID: 19168262]
[17]
Alagawadi, K.R.; Alegaon, S.G. Synthesis, characterization and antimicrobial activity evaluation of new 2,4-Thiazolidinediones bearing imidazo[2,1-b][1,3,4]thiadiazole moiety. Arab. J. Chem., 2011, 4(4), 465-472.
[http://dx.doi.org/10.1016/j.arabjc.2010.07.012]
[18]
Chandrakantha, B.; Isloor, A.M.; Shetty, P.; Fun, H.K.; Hegde, G. Synthesis and biological evaluation of novel substituted 1,3,4-thiadiazole and 2,6-di aryl substituted imidazo[2,1-b] [1,3,4] thiadiazole derivatives. Eur. J. Med. Chem., 2014, 71, 316-323.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.056] [PMID: 24321835]
[19]
Gireesh, T.M.; Kamble, R.R.; Taj, T. Synthesis and antimicrobial and anticancer activity of new of imidazo[2,1-b][1,3,4]thiadiazoles. Pharm. Chem. J., 2011, 45(5), 313-316.
[http://dx.doi.org/10.1007/s11094-011-0624-9]
[20]
Wang, Q.; Jin, M.; Liu, Y.; Sun, L.; Lu, B.; Zhao, L.; Li, G. Synthesis, characterization and in vitro anti-proliferative effects of pentacyclic triterpenoids. Med. Chem. Res., 2021, 30, 2055-2068.
[http://dx.doi.org/10.1007/s00044-021-02795-6]
[21]
Wu, J.; Ma, S.; Zhang, T.Y.; Wei, Z.Y.; Wang, H.M.; Guo, F.Y.; Zheng, C.J.; Piao, H.R. Synthesis and biological evaluation of ursolic acid derivatives containing an aminoguanidine moiety. Med. Chem. Res., 2019, 28(7), 959-973.
[http://dx.doi.org/10.1007/s00044-019-02349-x]
[22]
Song, M.X.; Deng, X.Q.; Wei, Z.Y.; Zheng, C.J.; Wu, Y.; An, C.S.; Piao, H.R. Synthesis and antibacterial evaluation of (S,Z)-4-methyl-2-(4-oxo-5-((5-substituted phenylfuran-2-yl) methylene)-2-thioxothiazolidin-3-yl)Pentanoic Acids. Iran. J. Pharm. Res., 2015, 14(1), 89-96.
[PMID: 25561915]
[23]
Farghaly, A.R.; Esmail, S.; Abdel-Zaher, A.; Abdel-Hafez, A.; El-Kashef, H. Synthesis and anticonvulsant activity of some new pyrazolo[3,4-b]pyrazines and related heterocycles. Bioorg. Med. Chem., 2014, 22(7), 2166-2175.
[http://dx.doi.org/10.1016/j.bmc.2014.02.019] [PMID: 24618512]
[24]
Bhongade, B.A.; Talath, S.; Gadad, R.A.; Gadad, A.K. Biological activities of imidazo[2,1-b][1,3,4]thiadiazole derivatives: A review. J. Saudi Chem. Soc., 2016, 20, S463-S475.
[http://dx.doi.org/10.1016/j.jscs.2013.01.010]
[25]
Zhang, G.R.; Ren, Y.; Yin, X.M.; Quan, Z.S. Synthesis and evaluation of the anticonvulsant activities of new 5-substituted-[1,2,4]triazolo[4,3-α]quinoxalin-4(5H)-one derivatives. Lett. Drug Des. Discov., 2018, 15(4), 406-413.
[http://dx.doi.org/10.2174/1570180814666170619094408]
[26]
Liu, X.J.; Zhang, H.J.; Quan, Z.S. Synthesis and evaluation of the anticonvulsant activities of 2,3-dihydrophthalazine-1,4-dione derivatives. Med. Chem. Res., 2017, 26(9), 1935-1946.
[http://dx.doi.org/10.1007/s00044-017-1896-8]
[27]
Palkar, M.B.; Noolvi, M.N.; Maddi, V.S.; Ghatole, M.; Nargund, L.G. Synthesis, spectral studies and biological evaluation of a novel series of 2-substituted-5,6-diarylsubstituted imidazo[2,1-b]-1,3,4-thiadiazole derivatives as possible anti-tubercular agents. Med. Chem. Res., 2012, 21, 1313-1321.
[http://dx.doi.org/10.1007/s00044-011-9646-9]
[28]
Joshi, S.D.; Manish, K.; Badiger, A. Synthesis and evaluation of antibacterial and antitubercular activities of some novel imidazo[2,1-b][1,3,4]thiadiazole derivatives. Med. Chem. Res., 2013, 22(2), 869-878.
[http://dx.doi.org/10.1007/s00044-012-0080-4]
[29]
Wadhwa, P.; Bagchi, S.; Sharma, A. In-silico analysis of imidazo[2,1-b][1,3,4]thiadiazole analogs as putative mycobacterium tuberculosis enoyl reductase inhibitors. Curr. Drug Ther., 2017, 12(1), 46-63.
[http://dx.doi.org/10.2174/1574885511666160930121123]
[30]
Ramprasad, J.; Nayak, N.; Dalimba, U.; Yogeeswari, P.; Sriram, D. Ionic liquid-promoted one-pot synthesis of thiazole–imidazo[2,1-b][1,3,4]thiadiazole hybrids and their antitubercular activity. Med-Chem. Comm, 2016, 7(2), 338-344.
[http://dx.doi.org/10.1039/C5MD00346F]
[31]
Er, M.; Tahtaci, H.; Karakurt, T.; Onaran, A. Novel substituted imidazo[2,1-b][1,3,4] thiadiazole derivatives: Synthesis, characterization, molecular docking study, and investigation of their in vitro antifungal activities. J. Heterocycl. Chem., 2019, 56(9), 2555-2570.
[http://dx.doi.org/10.1002/jhet.3653]
[32]
Alwan, W.S.; Karpoormath, R.; Palkar, M.B.; Patel, H.M.; Rane, R.A.; Shaikh, M.S.; Kajee, A.; Mlisana, K. Novel imidazo[2,1-b][1,3,4]-thiadiazoles as promising antifungal agents against clinical isolate of Cryptococcus neoformans. Eur. J. Med. Chem., 2015, 95, 514-525.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.021] [PMID: 25847769]
[33]
Zhang, T.Y.; Li, C.; Li, Y.R.; Li, X.Z.; Sun, L.P.; Zheng, C.J.; Piao, H.R. Synthesis and antimicrobial evaluation of aminoguanidine and 3-amino-1,2,4-triazole derivatives as potential antibacterial agents. Lett. Drug Des. Discov., 2016, 13(10), 1063-1075.
[http://dx.doi.org/10.2174/1570180813666160819151239]
[34]
Wei, Z.Y.; Liu, J.C.; Zhang, W.; Li, Y.R.; Li, C.; Zheng, C.J.; Piao, H.R. Synthesis and antimicrobial evaluation of (Z)-5-((3-phenyl-1H-pyrazol-4- yl)methylene)-2-thioxothiazolidin-4-one derivatives. Med. Chem., 2016, 12(8), 751-759.
[http://dx.doi.org/10.2174/1573406412666160822160156] [PMID: 27550428]
[35]
Karki, S.S.; Panjamurthy, K.; Kumar, S.; Nambiar, M.; Ramareddy, S.A.; Chiruvella, K.K.; Raghavan, S.C. Synthesis and biological evaluation of novel 2-aralkyl-5-substituted-6-(4′-fluorophenyl)-imidazo[2,1-b][1,3,4]thiadiazole derivatives as potent anticancer agents. Eur. J. Med. Chem., 2011, 46(6), 2109-2116.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.064] [PMID: 21439690]
[36]
El-Gohary, N.S.; Shaaban, M.I. Synthesis, antimicrobial, antiquorum-sensing, antitumor and cytotoxic activities of new series of fused-[1,3,4] thiadiazoles. Eur. J. Med. Chem., 2013, 63, 185-195.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.010] [PMID: 23474904]
[37]
Sun, T.X.; Li, M.Y.; Zhang, Z.H.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jin, H.L.; Zuo, H.X.; Ma, J.; Jin, X. Usnic acid suppresses cervical cancer cell proliferation by inhibiting PD‐L1 expression and enhancing T‐lymphocyte tumor‐killing activity. Phytother. Res., 2021, 35(7), 3916-3935.
[http://dx.doi.org/10.1002/ptr.7103] [PMID: 33970512]
[38]
Wang, Z.; Li, M.Y.; Zhang, Z.H.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, H.L.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jiang, C.G.; Ma, J.; Jin, X. Panaxadiol inhibits programmed cell death-ligand 1 expression and tumour proliferation via hypoxia-inducible factor (HIF)-1α and STAT3 in human colon cancer cells. Pharmacol. Res., 2020, 155, 104727.
[http://dx.doi.org/10.1016/j.phrs.2020.104727] [PMID: 32113874]
[39]
Zhang, Z.H.; Li, M.Y.; Wang, Z.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Jin, C.; Xu, G.; Piao, L.; Piao, H.; Ma, J.; Jin, X. Convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer. Phytomedicine, 2020, 68, 153172.
[http://dx.doi.org/10.1016/j.phymed.2020.153172] [PMID: 32004989]
[40]
Sheen, Y.Y.; Kim, M.J.; Park, S.A.; Park, S.Y.; Nam, J.S. Targeting the transforming growth factor-β signaling in cancer therapy. Biomol. Ther., 2013, 21(5), 323-331.
[http://dx.doi.org/10.4062/biomolther.2013.072] [PMID: 24244818]
[41]
Park, C.Y.; Min, K.N.; Son, J.Y.; Park, S.Y.; Nam, J.S.; Kim, D.K.; Sheen, Y.Y. An novel inhibitor of TGF-β type I receptor, IN-1130, blocks breast cancer lung metastasis through inhibition of epithelial–mesenchymal transition. Cancer Lett., 2014, 351(1), 72-80.
[http://dx.doi.org/10.1016/j.canlet.2014.05.006] [PMID: 24887560]
[42]
Park, C.Y.; Kim, D.K.; Sheen, Y.Y. EW-7203, a novel small molecule inhibitor of transforming growth factor-β (TGF-β) type I receptor/activin receptor-like kinase-5, blocks TGF-β1-mediated epithelial-to-mesenchymal transition in mammary epithelial cells. Cancer Sci., 2011, 102(10), 1889-1896.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02014.x] [PMID: 21707864]
[43]
Naka, K.; Ishihara, K.; Jomen, Y.; Jin, C.H.; Kim, D.H.; Gu, Y.K.; Jeong, E.S.; Li, S.; Krause, D.S.; Kim, D.W.; Bae, E.; Takihara, Y.; Hirao, A.; Oshima, H.; Oshima, M.; Ooshima, A.; Sheen, Y.Y.; Kim, S.J.; Kim, D.K. Novel oral transforming growth factor‐β signaling inhibitor EW ‐7197 eradicates CML ‐initiating cells. Cancer Sci., 2016, 107(2), 140-148.
[http://dx.doi.org/10.1111/cas.12849] [PMID: 26583567]
[44]
Park, C.Y.; Son, J.Y.; Jin, C.H.; Nam, J.S.; Kim, D.K.; Sheen, Y.Y. EW-7195, a novel inhibitor of ALK5 kinase inhibits EMT and breast cancer metastasis to lung. Eur. J. Cancer, 2011, 47(17), 2642-2653.
[http://dx.doi.org/10.1016/j.ejca.2011.07.007] [PMID: 21852112]
[45]
Min, K.N.; Joung, K.E.; Kim, D.K.; Sheen, Y.Y. Anti-Cancer Effect of 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide in MCF-7 Human Breast Cancer. Environ. Health Toxicol., 2012, 27, e2012010.
[http://dx.doi.org/10.5620/eht.2012.27.e2012010] [PMID: 22639737]
[46]
Son, J.Y.; Park, S.Y.; Kim, S.J.; Lee, S.J.; Park, S.A.; Kim, M.J.; Kim, S.W.; Kim, D.K.; Nam, J.S.; Sheen, Y.Y. EW-7197, a novel ALK-5 kinase inhibitor, potently inhibits breast to lung metastasis. Mol. Cancer Ther., 2014, 13(7), 1704-1716.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0903] [PMID: 24817629]
[47]
Tahtaci, H.; Karacik, H.; Ece, A.; Mine Gül Şeker, M.E. Design, synthesis, SAR and molecular modeling studies of novel imidazo[2,1-b][1,3,4]thiadiazole derivatives as highly potent antimicrobial agents. Mol. Inform., 2017, 36, 1700083.
[http://dx.doi.org/10.1002/mini.201700083]
[48]
Dagli, M.; Er, M.; Karakurt, T.; Onaran, A.; Alici, H.; Tahtaci, H. Synthesis, characterization, antimicrobial evaluation, and computational investigation of substituted imidazole[2,1-b][1,3,4] thiadiazole derivatives. Chemistry Select, 2020, 5(38), 11753-11763.
[http://dx.doi.org/10.1002/slct.202002821]
[49]
Nagarajan, N.; Vanitha, G.; Ananth, D.A.; Rameshkumar, A.; Sivasudha, T.; Renganathan, R. Bioimaging, antibacterial and antifungal properties of imidazole-pyridine fluorophores: Synthesis, characterization and solvatochromism. J. Photochem. Photobiol. B, 2013, 127, 212-222.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.08.016] [PMID: 24061160]
[50]
Sharma, S.; Sharma, V.; Singh, G.; Kaur, H.; Srivastava, S.; Ishar, M.P.S. 2-(chromon-3-yl)imidazole derivatives as potential antimicrobial agents: Synthesis, biological evaluation and molecular docking studies. J. Chem. Biol., 2017, 10(1), 35-44.
[http://dx.doi.org/10.1007/s12154-016-0162-8]
[51]
Zhang, E.; Wang, M.; Xu, S.; Wang, S.; Zhao, D.; Bai, P.; Cui, D.; Hua, Y.; Wang, Y.; Qin, S.; Liu, H. Synthesis and antibiotic activity study of pyridine chalcone derivatives against Methicillin-Resistant Staphylococcus aureus. Youji Huaxue, 2017, 37(4), 959-966.
[http://dx.doi.org/10.6023/cjoc201610016]
[52]
Ali, I.; Burki, S.; El-Haj, B.M.; Shafiullah,; Parveen, S.; Nadeem, H.Ş.; Nadeem, S.; Shah, M.R. Synthesis and characterization of pyridine-based organic salts: Their antibacterial, antibiofilm and wound healing activities. Bioorg. Chem., 2020, 100, 103937.
[http://dx.doi.org/10.1016/j.bioorg.2020.103937] [PMID: 32460178]
[53]
Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Park, H.J.; Park, S.J.; Sheen, Y.Y.; Kim, D.K. 4-([1,2,4]Triazolo[1,5-a]pyridin-6-yl)-5(3)-(6-methylpyridin-2-yl)imidazole and -pyrazole derivatives as potent and selective inhibitors of transforming growth factor-β type I receptor kinase. Bioorg. Med. Chem., 2014, 22(9), 2724-2732.
[http://dx.doi.org/10.1016/j.bmc.2014.03.022] [PMID: 24704197]
[54]
Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Lee, H.J.; Park, S.J.; Park, H.J.; Lee, K.; Sheen, Y.Y.; Kim, D.K. Discovery of N-((-4-([1,2,4]triazolo[1,5-α]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): A highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/antifibrotic agent. J. Med. Chem., 2014, 57(10), 4213-4238.
[http://dx.doi.org/10.1021/jm500115w] [PMID: 24786585]
[55]
Guo, Z.; Song, X.; Zhao, L.M.; Piao, M.G.; Quan, J.; Piao, H.R.; Jin, C.H. Synthesis and biological evaluation of novel benzo[c][1,2,5]thiadiazol-5-yl and thieno[3,2-c]- pyridin-2-yl imidazole derivatives as ALK5 inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(16), 2070-2075.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.015] [PMID: 31303386]
[56]
Liu, Y.Y.; Guo, Z.; Wang, J.Y.; Wang, H.M.; Da Qi, J.; Ma, J.; Piao, H.R.; Jin, C.H.; Jin, X. Synthesis and evaluation of the epithelial-to- mesenchymal inhibitory activity of indazole-derived imidazoles as dual ALK5/p38α MAP inhibitors. Eur. J. Med. Chem., 2021, 216, 113311.
[http://dx.doi.org/10.1016/j.ejmech.2021.113311] [PMID: 33677350]
[57]
Zheng, G.H.; Liu, J.; Guo, F.Y.; Zhang, Z.H.; Jiang, Y.J.; Lin, Y.C.; Lan, X.Q.; Ren, J.; Wu, Y.L.; Nan, J.X.; Jin, C.H.; Lian, L.H. The in vitro and in vivo study of a pyrazole derivative, J-1063, as a novel anti-liver fibrosis agent: Synthesis, biological evaluation, and mechanistic analysis. Bioorg. Chem., 2022, 122, 105715.
[http://dx.doi.org/10.1016/j.bioorg.2022.105715] [PMID: 35279552]
[58]
Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Rao, K.S.; Subrahmanyam, V.B.; Park, C.Y.; Son, J.Y.; Sheen, Y.Y.; Kim, D.K. Synthesis and biological evaluation of 1-substituted-3(5)-(6-methylpyridin-2-yl)-4-(quinolin-6-yl)pyrazoles as transforming growth factor-β type 1 receptor kinase inhibitors. Bioorg. Med. Chem., 2011, 19(8), 2633-2640.
[http://dx.doi.org/10.1016/j.bmc.2011.03.008] [PMID: 21435890]
[59]
Jin, CH.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Mohan, A.V.V.; Park, C.Y.; Son, J.Y; Sheen, Y.Y.; Kim, D.K. Synthesis and biological evaluation of 1-substituted-3-(6-methylpyridin-2-yl)-4-([1,2,4]triazolo)1,5-α]pyridine-6-yl)pyrazoles as transforming growth factor-β type 1 receptor kinase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21, 6049-6053.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.064] [PMID: 21911290]
[60]
Krishnaiah, M.; Jin, C.H.; Sheen, Y.Y.; Kim, D.K. Synthesis and biological evaluation of 5-(fluoro-substituted-6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)imidazoles as inhibitors of transforming growth factor-β type I receptor kinase. Bioorg. Med. Chem. Lett., 2015, 25(22), 5228-5231.
[http://dx.doi.org/10.1016/j.bmcl.2015.09.058] [PMID: 26483198]
[61]
Li, Y.W.; Li, X.Y.; Li, S.; Zhao, L.M.; Ma, J.; Piao, H.R.; Jiang, Z.; Jin, C.H.; Jin, X. Synthesis and evaluation of the HIF-1α inhibitory activity of 3(5)-substituted-4-(quinolin-4-yl)- and 4-(2-phenylpyridin-4-yl)pyrazoles as inhibitors of ALK5. Bioorg. Med. Chem. Lett., 2020, 30(2), 126822.
[http://dx.doi.org/10.1016/j.bmcl.2019.126822] [PMID: 31810777]
[62]
Jin, C.H.; Sreenu, D.; Krishnaiah, M.; Subrahmanyam, V.B.; Rao, K.S.; Nagendra Mohan, A.V.; Park, C.Y.; Son, J.Y.; Son, D.H.; Park, H.J.; Sheen, Y.Y.; Kim, D.K. Synthesis and biological evaluation of 1-substituted-3(5)-(6-methylpyridin-2-yl)-4-(quinoxalin-6-yl)pyrazoles as transforming growth factor-β type 1 receptor kinase inhibitors. Eur. J. Med. Chem., 2011, 46(9), 3917-3925.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.063] [PMID: 21696866]
[63]
Krishnaiah, M.; Jin, C.H.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Son, D.H.; Park, H.J.; Kim, S.W.; Sheen, Y.Y.; Kim, D.K. Synthesis and biological evaluation of 2-benzylamino-4(5)-(6-methylpyridin-2-yl)-5(4)-([1,2,4]triazolo[1,5-a]-pyridin-6-yl)thiazoles as transforming growth factor-β type 1 receptor kinase inhibitors. Eur. J. Med. Chem., 2012, 57, 74-84.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.011] [PMID: 23047226]
[64]
Zhu, W.J.; Cui, B.W.; Wang, H.M.; Nan, J.X.; Piao, H.R.; Lian, L.H.; Jin, C.H. Design, synthesis, and antifibrosis evaluation of 4-(benzo-[c][1,2,5]thiadiazol-5-yl)-3(5)-(6-methyl- pyridin-2-yl)pyrazole and 3(5)-(6-methylpyridin- 2-yl)-4-(thieno-[3,2,-c]pyridin-2-yl)pyrazole derivatives. Eur. J. Med. Chem., 2019, 180, 15-27.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.013] [PMID: 31299584]
[65]
Zhao, L.M.; Guo, Z.; Xue, Y.J.; Min, J.; Zhu, W.J.; Li, X.Y.; Piao, H.R.; Jin, C. Synthesis and evaluation of 3-substituted-4-(quinoxalin-6-yl) pyrazoles as TGF-β type 1 receptor kinase inhibitors. Molecules, 2018, 23(12), 3369.
[http://dx.doi.org/10.3390/molecules23123369] [PMID: 30572609]
[66]
Yan Guo, F.; Ji Zheng, C.; Wang, M.; Ai, J.; Ying Han, L.; Yang, L.; Fang Lu, Y.; Xuan Yang, Y.; Guan Piao, M.; Piao, H.R.; Jin, C.M.; Jin, C.H. Synthesis and antimicrobial activity evaluation of imidazo-fused imidazo[2,1-b][1,3,4]thiadiazole analogues. Chem. Med. Chem., 2021, 16(15), 2354-2365.
[http://dx.doi.org/10.1002/cmdc.202100122] [PMID: 33738962]
[67]
Han, L.; Zhao, L.; Wang, H.; Dou, T.; Guo, F.; Qi, J.; Xu, W.; Piao, L.; Jin, X.; Chen, F.; Piao, H.; Zheng, C.; Jin, C. Synthesis, antibacterial and antifungal evaluation of rhodanine derivatives bearing quinoxalinyl imidazole moiety as ALK5 inhibitors. Youji Huaxue, 2021, 41(11), 4428-4436.
[http://dx.doi.org/10.6023/cjoc202106015]
[68]
Zheng, C.J.; Jin, C.H.; Zhao, L-M.; Guo, F.Y.; Wang, H.M.; Dou, T.; Da Qi, J.; Xu, W.B.; Piao, L.; Jin, X.; Chen, F-E.; Piao, H-R. Synthesis and evaluation of chiral rhodanine derivatives bearing quinoxalinyl imidazole moiety as ALK5 inhibitors. Med. Chem., 2022, 18(4), 509-520.
[http://dx.doi.org/10.2174/1573406417666210628144849] [PMID: 34182915]
[69]
Yang, L.; Bo Xu, W.; Sun, L.; Zhang, C.; Hua Jin, C. SAR analysis of heterocyclic compounds with monocylic and bicyclic structures as antifungal agents. ChemMedChem, 2022, 17(12), e202200221.
[http://dx.doi.org/10.1002/cmdc.202200221] [PMID: 35475328]
[70]
Xu, W.B.; Meng, Y.Q.; Sun, J.; Yang, Y.X.; Li, W.X.; Wang, M.Y.; Piao, M.G.; Li, S.; Quan, J.; Jin, C.H. Synthesis and antibacterial activity evaluation of imidazole derivatives containing 6-methylpyridine moiety. Chem. Biodivers., 2023, 20(5), e202300105.
[http://dx.doi.org/10.1002/cbdv.202300105] [PMID: 36945745]
[71]
Liu, J.; Li, H.; He, Q.; Chen, K.; Chen, Y.; Zhong, R.; Li, H.; Fang, S.; Liu, S.; Lin, S. Design, synthesis, and biological evaluation of tetrahydroquinoline amphiphiles as membrane-targeting antimicrobials against pathogenic bacteria and fungi. Eur. J. Med. Chem., 2022, 243, 114734.
[http://dx.doi.org/10.1016/j.ejmech.2022.114734] [PMID: 36088756]
[72]
Chen, B.; Mou, C.; Guo, F.; Sun, Q.; Qu, L.; Li, L.; Cui, W.; Lu, F.; Jin, C.; Liu, F. Tolcapone derivative (Tol-D) inhibits Aβ42 fibrillogenesis and ameliorates Aβ42-induced cytotoxicity and cognitive impairment. ACS Chem. Neurosci., 2022, 13(5), 638-647.
[http://dx.doi.org/10.1021/acschemneuro.1c00771] [PMID: 35148068]
[73]
Nandwana, N.K.; Singh, R.P.; Patel, O.P.S.; Dhiman, S.; Saini, H.K.; Jha, P.N.; Kumar, A. Design and synthesis of imidazo/benzimidazo[1,2-c] quinazoline derivatives and evaluation of their antimicrobial activity. ACS Omega, 2018, 3(11), 16338-16346.
[http://dx.doi.org/10.1021/acsomega.8b01592] [PMID: 31458269]
[74]
Richter, A.P.; Brown, J.S.; Bharti, B.; Wang, A.; Gangwal, S.; Houck, K.; Cohen Hubal, E.A.; Paunov, V.N.; Stoyanov, S.D.; Velev, O.D. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat. Nanotechnol., 2015, 10(9), 817-823.
[http://dx.doi.org/10.1038/nnano.2015.141] [PMID: 26167765]
[75]
Ma, L.; Xie, X.; Liu, H.; Huang, Y.; Wu, H.; Jiang, M.; Xu, P.; Ye, X.; Zhou, C. Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics, 2020, 10(3), 1373-1390.
[http://dx.doi.org/10.7150/thno.39157] [PMID: 31938070]
[76]
Xu, H.; Su, X.; Guo, M.; An, R.; Mou, Y.; Hou, Z.; Guo, C. Design, synthesis, and biological evaluation of novel miconazole analogues containing selenium as potent antifungal agents. Eur. J. Med. Chem., 2020, 198, 112360.
[http://dx.doi.org/10.1016/j.ejmech.2020.112360] [PMID: 32403018]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy