Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Gastrointestinal Tract and Kidney Injury Pathogenesis in Post-COVID-19 Syndrome

Author(s): Basheer Abdullah Marzoog*

Volume 20, Issue 4, 2024

Published on: 05 October, 2023

Article ID: e051023221787 Pages: 9

DOI: 10.2174/0115733998250889230919185305

Price: $65

conference banner
Abstract

COVID-19 is a global health emergency that requires worldwide collaboration to control its spread. The scientific community is working to understand the different aspects of the post-COVID-19 syndrome and potential treatment strategies. Interestingly, there have been reports of gastrointestinal tract (GIT) involvement in the post-COVID-19 syndrome, suggesting the presence of both severe and mild GIT disorders. The development of the post-COVID-19- GIT syndrome involves various factors, such as impaired GIT mucosa cells, disruptions in the feeling of satiety, reduced blood supply due to the formation of small blood clots, and increased prostaglandin secretion caused by an excessive immune response. GIT symptoms have been observed in around 16% of COVID-19 patients. Other complications include kidney damage and prolonged impairment in the filtration and excretion functions of the glomeruli and tubules. The pathogenesis of post-COVID-19 renal syndrome involves factors, like an overactive immune response, reduced lung perfusion and oxygenation, viral infection in kidney tissues, endothelial dysfunction, and decreased blood volume. Roughly 20% of hospitalized patients experience renal manifestations after recovering from COVID-19.

[1]
WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) dashboard with vaccination data. Available from: https://covid19.who.int/ (accessed Jun 17, 2021).
[2]
Carfì A, Bernabei R, Landi F. Persistent symptoms in patients after acute COVID-19. JAMA 2020; 324(6): 603-5.
[http://dx.doi.org/10.1001/jama.2020.12603] [PMID: 32644129]
[3]
Chopra V, Flanders SA, O’Malley M, et al. Sixty-day outcomes among patients hospitalized with COVID-19. Ann Intern Med 2021; 174(4): 576-8.
[http://dx.doi.org/10.7326/M20-5661] [PMID: 33175566]
[4]
Halpin SJ, McIvor C, Whyatt G, et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID‐19 infection: A cross‐sectional evaluation. J Med Virol 2021; 93(2): 1013-22.
[http://dx.doi.org/10.1002/jmv.26368] [PMID: 32729939]
[5]
Garrigues E, Janvier P, Kherabi Y, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect 2020; 81(6): e4-6.
[http://dx.doi.org/10.1016/j.jinf.2020.08.029] [PMID: 32853602]
[6]
Arnold DT, Hamilton FW, Milne A, et al. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: Results from a prospective UK cohort. Thorax 2021; 76(4): 399-401.
[http://dx.doi.org/10.1136/thoraxjnl-2020-216086] [PMID: 33273026]
[7]
Moreno-Pérez O, Merino E, Leon-Ramirez JM, et al. Post-acute COVID-19 syndrome. Incidence and risk factors: A mediterranean cohort study. J Infect 2021; 82(3): 378-83.
[http://dx.doi.org/10.1016/j.jinf.2021.01.004] [PMID: 33450302]
[8]
Huang C, Huang L, Wang Y, et al. RETRACTED: 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021; 397(10270): 220-32.
[http://dx.doi.org/10.1016/S0140-6736(20)32656-8] [PMID: 33428867]
[9]
Mao R, Qiu Y, He JS, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: A system-atic review and meta-analysis. Lancet Gastroenterol Hepatol 2020; 5(7): 667-78.
[http://dx.doi.org/10.1016/S2468-1253(20)30126-6] [PMID: 32405603]
[10]
Buscarini E, Manfredi G, Brambilla G, et al. GI symptoms as early signs of COVID-19 in hospitalised Italian patients. Gut 2020; 69(8): 1547-8.
[http://dx.doi.org/10.1136/gutjnl-2020-321434]
[11]
Weng J, Li Y, Li J, et al. Effect of IBD medications on COVID-19 outcomes: Results from an international registry. Gut 2021; 70(4): 725-32.
[http://dx.doi.org/10.1136/gutjnl-2020-322539]
[12]
Zhang H, Kang Z, Gong H, et al. Digestive system is a potential route of COVID-19: An analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut 2020; 69(6): 1010-8.
[http://dx.doi.org/10.1136/gutjnl-2020-320953] [PMID: 33028666]
[13]
Lamers MM, Beumer J, Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes. Science 2020; 369(6499): 50-4.
[http://dx.doi.org/10.1126/science.abc1669]
[14]
Burgueño JF, Reich A, Hazime H, et al. Expression of SARS-CoV-2 entry molecules ACE2 and TMPRSS2 in the gut of patients with IBD. Inflamm Bowel Dis 2020; 26(6): 797-808.
[http://dx.doi.org/10.1093/ibd/izaa085] [PMID: 32333601]
[15]
Du M, Cai G, Chen F, Christiani DC, Zhang Z, Wang M. Multiomics evaluation of gastrointestinal and other clinical characteristics of COVID-19. Gastroenterology 2020; 158(8): 2298-2301.e7.
[http://dx.doi.org/10.1053/j.gastro.2020.03.045] [PMID: 32234303]
[16]
Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 2020; 158(6): 1831-1833.e3.
[http://dx.doi.org/10.1053/j.gastro.2020.02.055] [PMID: 32142773]
[17]
Yu D, Du Q, Yan S, et al. Liver injury in COVID-19: Clinical features and treatment management. Virol J 2021; 18(1): 121.
[http://dx.doi.org/10.1186/s12985-021-01593-1] [PMID: 34108015]
[18]
Wu Y, Guo C, Tang L, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol 2020; 5(5): 434-5.
[http://dx.doi.org/10.1016/S2468-1253(20)30083-2]
[19]
Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: Is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol 2020; 5(4): 335-7.
[http://dx.doi.org/10.1016/S2468-1253(20)30048-0] [PMID: 32087098]
[20]
Ding S, Liang TJ. Is SARS-CoV-2 also an enteric pathogen with potential fecal-oral transmission? A COVID-19 virological and clinical review. Gastroenterology 2020; 159(1): 53-61.
[http://dx.doi.org/10.1053/j.gastro.2020.04.052]
[21]
Ianiro G, Mullish BH, Kelly CR, et al. Screening of faecal microbiota transplant donors during the COVID-19 outbreak: Suggestions for urgent updates from an international expert panel. Lancet Gastroenterol Hepatol 2020; 5(5): 430-2.
[http://dx.doi.org/10.1016/S2468-1253(20)30082-0]
[22]
Shang H, Bai T, Chen Y, et al. Outcomes and implications of diarrhea in patients with SARS-CoV-2 infection. Scand J Gastroenterol 2020; 55(9): 1049-56.
[http://dx.doi.org/10.1080/00365521.2020.1800078] [PMID: 32749177]
[23]
Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan. China: Springer 2020; 46: pp. 846-.
[http://dx.doi.org/10.1007/s00134-020-05991-x]
[24]
Larsen CP, Bourne TD, Wilson JD, Saqqa O, Sharshir MA. Collapsing glomerulopathy in a patient with COVID-19. Kidney Int Rep 2020; 5(6): 935-9.
[http://dx.doi.org/10.1016/j.ekir.2020.04.002] [PMID: 32292867]
[25]
Pei G, Zhang Z, Peng J, et al. Renal involvement and early prognosis in patients with COVID-19 pneumonia. J Am Soc Nephrol 2020; 31(6): 1157-65.
[http://dx.doi.org/10.1681/ASN.2020030276] [PMID: 32345702]
[26]
Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int 2020; 98(1): 209-18.
[http://dx.doi.org/10.1016/j.kint.2020.05.006] [PMID: 32416116]
[27]
Mohamed MMB, Lukitsch I, Torres-Ortiz AE, et al. Acute kidney injury associated with coronavirus disease 2019 in urban new orleans. Kidney360 2020; 1(7): 614-22.
[http://dx.doi.org/10.34067/KID.0002652020] [PMID: 35372932]
[28]
Gupta S, Hayek SS, Wang W, et al. Factors associated with death in critically ill patients with coronavirus disease 2019 in the US. JAMA Intern Med 2020; 180(11): 1436-47.
[http://dx.doi.org/10.1001/jamainternmed.2020.3596] [PMID: 32667668]
[29]
Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nat Med 2020; 26(7): 1017-32.
[http://dx.doi.org/10.1038/s41591-020-0968-3] [PMID: 32651579]
[30]
Wang L, Li X, Chen H, et al. Coronavirus disease 19 infection does not result in acute kidney injury: An analysis of 116 hospitalized patients from Wuhan, China. Am J Nephrol 2020; 51(5): 343-8.
[http://dx.doi.org/10.1159/000507471] [PMID: 32229732]
[31]
Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 2020; 97(5): 829-38.
[http://dx.doi.org/10.1016/j.kint.2020.03.005] [PMID: 32247631]
[32]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospec-tive cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[33]
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med 2020; 8(5): 475-81.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[34]
Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[35]
Wan S, Xiang Y, Fang W, et al. Clinical features and treatment of COVID‐19 patients in northeast Chongqing. J Med Virol 2020; 92(7): 797-806.
[http://dx.doi.org/10.1002/jmv.25783] [PMID: 32198776]
[36]
Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA 2020; 323(16): 1612-4.
[http://dx.doi.org/10.1001/jama.2020.4326]
[37]
Effenberger M, Grabherr F, Mayr L, et al. Faecal calprotectin indicates intestinal inflammation in COVID-19. Gut 2020; 69(8): 1543-4.
[http://dx.doi.org/10.1136/gutjnl-2020-321388]
[38]
Lin L, Jiang X, Zhang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 2020; 69(6): 997-1001.
[http://dx.doi.org/10.1136/gutjnl-2020-321013] [PMID: 32241899]
[39]
Armellini E, Repici A, Alvisi C, et al. Analysis of patients attitude to undergo urgent endoscopic procedures during COVID-19 outbreak in Italy. Dig Liver Dis 2020; 52(7): 695-9.
[http://dx.doi.org/10.1016/j.dld.2020.05.015] [PMID: 32425732]
[40]
Pan Y, Zhang D, Yang P, Poon LLM, Wang Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis 2020; 20(4): 411-2.
[http://dx.doi.org/10.1016/S1473-3099(20)30113-4]
[41]
Zheng T, Yang C, Wang HY, et al. Clinical characteristics and outcomes of COVID-19 patients with gastrointestinal symptoms admitted to Jianghan Fangcang Shelter Hospital in Wuhan, China. J Med Virol 2020; 92(11): 2735-41.
[http://dx.doi.org/10.1002/jmv.26146] [PMID: 32510173]
[42]
Zhang J, Garrett S, Sun J. Gastrointestinal symptoms, pathophysiology, and treatment in COVID-19. Genes Dis 2020; 8(4): 385-400.
[http://dx.doi.org/10.1016/j.gendis.2020.08.013]
[43]
Kaafarani HMA, El Moheb M, Hwabejire JO, et al. Gastrointestinal complications in critically ill patients with COVID-19. Ann Surg 2020; 272(2): e61-2.
[http://dx.doi.org/10.1097/SLA.0000000000004004] [PMID: 32675498]
[44]
Ignat M, Philouze G, Aussenac-Belle L, et al. Small bowel ischemia and SARS-CoV-2 infection: An underdiagnosed distinct clinical entity. Surgery 2020; 168(1): 14-6.
[http://dx.doi.org/10.1016/j.surg.2020.04.035] [PMID: 32473831]
[45]
Sierra-Arango F, Vergara-Cabra C, Vásquez-Roldan M, Pérez-Riveros ED. Acute surgical‐like abdomen as a gastrointestinal manifestation of COVID-19 infection: A case report in Colombia. BMC Gastroenterol 2021; 21(1): 187.
[http://dx.doi.org/10.1186/s12876-021-01762-0] [PMID: 33888085]
[46]
Gartland RM, Velmahos GC. Bowel necrosis in the setting of COVID-19. J Gastrointest Surg 2020; 24(12): 2888-9.
[http://dx.doi.org/10.1007/s11605-020-04632-4] [PMID: 32363540]
[47]
Bhayana R, Som A, Li MD, et al. Abdominal imaging findings in COVID-19: Preliminary observations. Radiology 2020; 297(1): E207-15.
[http://dx.doi.org/10.1148/radiol.2020201908] [PMID: 32391742]
[48]
Chilosi M, Poletti V, Ravaglia C, et al. The pathogenic role of epithelial and endothelial cells in early-phase COVID-19 pneumonia: Vic-tims and partners in crime. modern pathology. Mod Pathol 2021; 34(8): 1444-55.
[http://dx.doi.org/10.1038/s41379-021-00808-8]
[49]
Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine in-terventions. Autoimmun Rev 2020; 19(7): 102567.
[http://dx.doi.org/10.1016/j.autrev.2020.102567] [PMID: 32376392]
[50]
Wang C, Wang S, Li D, Wei DQ, Zhao J, Wang J. Human intestinal defensin 5 inhibits SARS-CoV-2 invasion by cloaking ACE2. Gastroenterology 2020; 159(3): 1145-1147.e4.
[http://dx.doi.org/10.1053/j.gastro.2020.05.015] [PMID: 32437749]
[51]
Xu XW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: Retrospective case series. BMJ 2020; 368: m606.
[http://dx.doi.org/10.1136/bmj.m606] [PMID: 32075786]
[52]
Cao J, Tu WJ, Cheng W, et al. Clinical features and short-term outcomes of 102 patients with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis 2020; 71(15): 748-55.
[http://dx.doi.org/10.1093/cid/ciaa243] [PMID: 32239127]
[53]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wu-han, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[54]
Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis 2020; 71(15): 769-77.
[http://dx.doi.org/10.1093/cid/ciaa272] [PMID: 32176772]
[55]
Cárdenas-Jaén K, Sánchez-Luna SA, Vaillo-Rocamora A, et al. Gastrointestinal symptoms and complications in patients hospitalized due to COVID-19, an international multicentre prospective cohort study (TIVURON project). Gastroenterol Hepatol 2023; 46(6): 425-38.
[http://dx.doi.org/10.1016/j.gastrohep.2022.10.007] [PMID: 36243249]
[56]
Gu S, Chen Y, Wu Z, et al. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 Influenza. Clin Infect Dis 2020; 71(10): 2669-78.
[http://dx.doi.org/10.1093/cid/ciaa709] [PMID: 32497191]
[57]
Del Vecchio L, Locatelli F. Hypoxia response and acute lung and kidney injury: Possible implications for therapy of COVID-19. Clin Kidney J 2020; 494-9.
[http://dx.doi.org/10.1093/ckj/sfaa149]
[58]
Peleg Y, Kudose S, D’Agati V, et al. Acute kidney injury due to collapsing glomerulopathy following COVID-19 infection. Kidney Int Rep 2020; 5(6): 940-5.
[http://dx.doi.org/10.1016/j.ekir.2020.04.017] [PMID: 32346659]
[59]
Husain-Syed F, Slutsky AS, Ronco C. Lung-kidney cross-talk in the critically ill patient. Am J Respir Crit Care Med 2016; 194(4): 402-14.
[http://dx.doi.org/10.1164/rccm.201602-0420CP] [PMID: 27337068]
[60]
Nugent J, Aklilu A, Yamamoto Y, et al. Assessment of acute kidney injury and longitudinal kidney function after hospital discharge among patients with and without COVID-19. JAMA Netw Open 2021; 4(3): e211095-5.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.1095] [PMID: 33688965]
[61]
Mukherjee A, Ghosh R, Furment MM. Case Report: COVID-19 associated renal infarction and ascending aortic thrombosis. Am J Trop Med Hyg 2020; 103(5): 1989-92.
[http://dx.doi.org/10.4269/ajtmh.20-0869] [PMID: 32918409]
[62]
Post A, den Deurwaarder ESG, Bakker SJL, et al. Kidney infarction in patients with COVID-19. Am J Kidney Dis 2020; 76(3): 431-5.
[http://dx.doi.org/10.1053/j.ajkd.2020.05.004] [PMID: 32479921]
[63]
Ammous A, Ghaffar MA, El-Charabaty E, El-Sayegh S. Renal infarction in COVID-19 patient. J Nephrol 2021; 34(1): 267-8.
[http://dx.doi.org/10.1007/s40620-020-00866-2] [PMID: 33119839]
[64]
Murray NP, Fuentealba C, Reyes E, Salazar A. Renal infarction associated with asymptomatic COVID-19 infection. Hematol Transfus Cell Ther 2021; 43(3): 353-6.
[http://dx.doi.org/10.1016/j.htct.2021.03.008] [PMID: 34027306]
[65]
Kundal SV, Emeasoba EU, Harris C, Randhawa G, Astashkevich M. Aortic thrombosis and renal infarction in a young female with patent foramen ovale and COVID‐19 antibody. Clin Case Rep 2021; 9(1): 345-9.
[http://dx.doi.org/10.1002/ccr3.3527] [PMID: 33362927]
[66]
Añazco PH, Balta FM, Córdova-Cueva L. Bilateral renal infarction in a patient with severe COVID-19 infection. J Bras Nefrol 2021; 43(1): 127-31.
[http://dx.doi.org/10.1590/2175-8239-jbn-2020-0156] [PMID: 33460428]
[67]
Huang Z, Huang P, Du B, et al. Prevalence and clinical outcomes of cardiac injury in patients with COVID-19: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2021; 31(1): 2-13.
[http://dx.doi.org/10.1016/j.numecd.2020.09.004] [PMID: 33229199]
[68]
Marzoog BA. Coagulopathy and brain injury pathogenesis in Post-COVID-19 syndrome. Cardiovasc Hematol Agents Med Chem 2022; 20(3): 178-88.
[http://dx.doi.org/10.2174/1871525720666220405124021] [PMID: 35382728]
[69]
Marzoog BA, Vlasova TI. The possible puzzles of BCG vaccine in protection against COVID-19 infection. Egypt J Bronchol 2021; 15(1): 7.
[http://dx.doi.org/10.1186/s43168-021-00052-3]
[70]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS Coronavirus. J Virol 2020; 94(7): e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[71]
Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int 2020; 98(1): 219-27.
[http://dx.doi.org/10.1016/j.kint.2020.04.003] [PMID: 32327202]
[72]
Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med 2020; 383(6): 590-2.
[http://dx.doi.org/10.1056/NEJMc2011400] [PMID: 32402155]
[73]
Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med 2020; 383(2): 120-8.
[http://dx.doi.org/10.1056/NEJMoa2015432] [PMID: 32437596]
[74]
Tarragón B, Valdenebro M, Serrano ML, et al. Acute kidney failure in patients admitted due to COVID-19. Nefrologia 2021; 41(1): 34-40.
[http://dx.doi.org/10.1016/j.nefroe.2021.02.006] [PMID: 36165359]
[75]
Pajo AT, Espiritu AI, Apor ADAO, Jamora RDG. Neuropathologic findings of patients with COVID-19: A systematic review. Neurol Sci 2021; 42(4): 1255-66.
[http://dx.doi.org/10.1007/s10072-021-05068-7] [PMID: 33483885]
[76]
Li Z, Wu M, Yao J, et al. Caution on kidney dysfunctions of COVID-19 patients. Electron J 2020.
[77]
Meena P, Bhargava V, Rana DS, Bhalla AK, Gupta A. COVID-19 and the kidney: A matter of concern. Curr Med Res Pract 2020; 10(4): 165-8.
[http://dx.doi.org/10.1016/j.cmrp.2020.07.003]
[78]
Benedetti C, Waldman M, Zaza G, Riella LV, Cravedi P. COVID-19 and the kidneys: An update. Front Med 2020; 7: 423.
[http://dx.doi.org/10.3389/fmed.2020.00423]
[79]
Carney EF. Ketosis slows the progression of PKD. Nat Rev Nephrol 2020; 16(1): 1.
[http://dx.doi.org/10.1038/s41581-019-0226-4]
[80]
Apetrii M, Enache S, Siriopol D, et al. A brand-new cardiorenal syndrome in the COVID-19 setting. Clin Kidney J 2020; 13(3): 291-6.
[http://dx.doi.org/10.1093/ckj/sfaa082]
[81]
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus dis-ease 2019 Pneumonia in Wuhan, China. JAMA Intern Med 2020; 180(7): 934-43.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[82]
Nadim MK, Forni LG, Mehta RL, et al. COVID-19-associated acute kidney injury: Consensus report of the 25th acute disease quality initiative (ADQI) Workgroup. Nat Rev Nephrol 2020; 16(12): 747-64.
[http://dx.doi.org/10.1038/s41581-020-00356-5]
[83]
Farkash EA, Wilson AM, Jentzen JM. Ultrastructural evidence for direct renal infection with SARS-CoV-2. J Am Soc Nephrol 2020; 31(8): 1683-7.
[http://dx.doi.org/10.1681/ASN.2020040432] [PMID: 32371536]
[84]
Prasad N, Agrawal S. COVID-19 and acute kidney injury. Indian J Nephrol 2020; 30(3): 161-5.
[http://dx.doi.org/10.4103/ijn.IJN_120_20]
[85]
Zhang P, He Z, Yu G, et al. The modified nutric score can be used for nutritional risk assessment as well as prognosis prediction in criti-cally ill COVID-19 patients. Clin Nutr 2021; 40(2): 534-41.
[http://dx.doi.org/10.1016/j.clnu.2020.05.051] [PMID: 32527576]
[86]
Rattanachaiwong S, Zribi B, Kagan I, Theilla M, Heching M, Singer P. Comparison of nutritional screening and diagnostic tools in diagno-sis of severe malnutrition in critically ill patients. Clin Nutr 2020; 39(11): 3419-25.
[http://dx.doi.org/10.1016/j.clnu.2020.02.035] [PMID: 32199698]
[87]
Brouqui P, Amrane S, Million M, et al. Asymptomatic hypoxia in COVID-19 is associated with poor outcome. Int J Infect Dis 2021; 102: 233-8.
[http://dx.doi.org/10.1016/j.ijid.2020.10.067] [PMID: 33130200]
[88]
Hachim Y, Hachim MY, Naeem KB, et al. Kidney dysfunction among COVID-19 patients in the United Arab Emirates. Oman Med J 2021; 36(1): e221.
[http://dx.doi.org/10.5001/omj.2020.92] [PMID: 33585042]
[89]
Luo S, Zhang X, Xu H. Don’t overlook digestive symptoms in patients with 2019 novel coronavirus disease (COVID-19). Clin Gastroenterol Hepatol 2020; 18(7): 1636-7.
[http://dx.doi.org/10.1016/j.cgh.2020.03.043] [PMID: 32205220]
[90]
Kaye AD, Okeagu CN, Tortorich G, et al. COVID-19 impact on the renal system: Pathophysiology and clinical outcomes. Best Pract Res Clin Anaesthesiol 2021; 35(3): 449-59.
[http://dx.doi.org/10.1016/j.bpa.2021.02.004]
[91]
Marzoog BA. Recent advances in molecular biology of metabolic syndrome pathophysiology: Endothelial dysfunction as a potential ther-apeutic target. J Diabetes Metab Disord 2022; 21(2): 1903-11.
[http://dx.doi.org/10.1007/s40200-022-01088-y] [PMID: 36065330]
[92]
Marzoog BA. Systemic and local hypothermia in the context of cell regeneration. Cryo Lett 2022; 43(2): 66-73.
[http://dx.doi.org/10.54680/fr22210110112] [PMID: 36626147]
[93]
Marzoog BA, Vlasova TI. Membrane lipids under norm and pathology. Eurp J Clin Exp Med 2021; 19(1): 59-75.
[http://dx.doi.org/10.15584/ejcem.2021.1.9]
[94]
Marzoog BA. Endothelial cell autophagy in the context of disease development. Anat Cell Biol 2023; 56(1): 16-24.
[http://dx.doi.org/10.5115/acb.22.098] [PMID: 36267005]
[95]
Marzoog B. Anticoagulant status under COVID-19: The potential pathophysiological mechanism. J App Hemato 2022; 13(4): 167.
[http://dx.doi.org/10.4103/joah.joah_154_21]
[96]
Marzoog BA. The metabolic syndrome puzzles; possible pathogenesis and management. Curr Diabetes Rev 2023; 19(4): e290422204258.
[http://dx.doi.org/10.2174/1573399818666220429100411] [PMID: 35507784]
[97]
Marzoog B. Lipid behavior in metabolic syndrome pathophysiology. Curr Diabetes Rev 2022; 18(6): e150921196497.
[http://dx.doi.org/10.2174/1573399817666210915101321] [PMID: 34525924]
[98]
Marzoog BA. Pathophysiology of cardiac cell injury in post-COVID-19 syndrome. Emir Med J 2023; 4(2): e280423216351.
[http://dx.doi.org/10.2174/0250688204666230428120808]
[99]
Marzoog BA. Caveolae’s behavior in norm and pathology. Emir Med J 2023; 4(2): e080523216639.
[http://dx.doi.org/10.2174/0250688204666230508112229]
[100]
Marzoog BA. Tree of life: Endothelial cell in norm and disease, the good guy is a partner in crime! Anat Cell Biol 2023; 56(2): 166-78.
[http://dx.doi.org/10.5115/acb.22.190] [PMID: 36879408]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy