Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Mini-Review Article

Phosphodiesterase Inhibitors of Natural Origin

Author(s): Rui Han, Anand Gaurav*, Chun-Wai Mai, Vertika Gautam and Akowuah Gabriel Akyirem

Volume 14, Issue 4, 2024

Published on: 05 October, 2023

Article ID: e051023221770 Pages: 16

DOI: 10.2174/0122103155251390230927064442

Price: $65

Abstract

Phosphodiesterases (PDEs) function to hydrolyze intracellular cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), regulating a variety of intracellular signal transduction and physiological activities. PDEs can be divided into 11 families (PDE1~11) and the diversity and complex expression of PDE family genes suggest that different subtypes may have different mechanisms. PDEs are involved in various disease pathologies such as inflammation, asthma, depression, and erectile dysfunction and are thus targets of interest for several drug discovery campaigns. Natural products have always been an important source of bioactive compounds for drug discovery, over the years several natural compounds have shown potential as inhibitors of PDEs. In this article, phosphodiesterase inhibitors of natural origin have been reviewed with emphasis on their chemistry and biological activities.

Graphical Abstract

[1]
Francis, S.H.; Busch, J.L.; Corbin, J.D.; Sibley, D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol. Rev., 2010, 62(3), 525-563.
[http://dx.doi.org/10.1124/pr.110.002907] [PMID: 20716671]
[2]
Bender, A.T.; Beavo, J.A. Cyclic nucleotide phosphodiesterases: Molecular regulation to clinical use. Pharmacol. Rev., 2006, 58(3), 488-520.
[http://dx.doi.org/10.1124/pr.58.3.5] [PMID: 16968949]
[3]
Gaurav, A.; Singh, R. 3D QSAR pharmacophore, CoMFA and CoMSIA based design and docking studies on phenyl alkyl ketones as inhibitors of phosphodiesterase 4. Med. Chem., 2012, 8(5), 894-912.
[http://dx.doi.org/10.2174/157340612802084298] [PMID: 22741782]
[4]
Puzzo, D.; Sapienza, S.; Arancio, O.; Palmeri, A. Role of phosphodiesterase 5 in synaptic plasticity and memory. Neuropsychiatr. Dis. Treat., 2008, 4(2), 371-387.
[http://dx.doi.org/10.2147/NDT.S2447] [PMID: 18728748]
[5]
Wang, Z.Z.; Zhang, Y.; Zhang, H.T.; Li, Y.F. Phosphodiesterase: An interface connecting cognitive deficits to neuropsychiatric and neuro degenerative diseases. Curr. Pharm. Des., 2014, 21(3), 303-316.
[http://dx.doi.org/10.2174/1381612820666140826115559] [PMID: 25159069]
[6]
Al-Nema, M.Y.; Gaurav, A. Phosphodiesterase as a target for cognition enhancement in schizophrenia. Curr. Top. Med. Chem., 2020, 20(26), 2404-2421.
[http://dx.doi.org/10.2174/1568026620666200613202641] [PMID: 32533817]
[7]
Yan, K.; Gao, L.N.; Cui, Y.L.; Zhang, Y.; Zhou, X. The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review). Mol. Med. Rep., 2016, 13(5), 3715-3723.
[http://dx.doi.org/10.3892/mmr.2016.5005] [PMID: 27035868]
[8]
Knott, E.; Assi, M.; Rao, S.; Ghosh, M.; Pearse, D. Phosphodiesterase inhibitors as a therapeutic approach to neuroprotection and repair. Int. J. Mol. Sci., 2017, 18(4), 696.
[http://dx.doi.org/10.3390/ijms18040696] [PMID: 28338622]
[9]
Page, C.P.; Spina, D. Selective PDE inhibitors as novel treatments for respiratory diseases. Curr. Opin. Pharmacol., 2012, 12(3), 275-286.
[http://dx.doi.org/10.1016/j.coph.2012.02.016] [PMID: 22497841]
[10]
Lin, C.H.; Chang, S.H.; Fang, J.Y. Recent advances using phosphodiesterase 4 (PDE4) inhibitors to treat inflammatory disorders: Animal and clinical studies. Curr. Drug Ther., 2016, 11(1), 21-40.
[http://dx.doi.org/10.2174/1574885511666160421145339]
[11]
Kloner, R.A. Cardiovascular effects of the 3 phosphodiesterase-5 inhibitors approved for the treatment of erectile dysfunction. Circulation, 2004, 110(19), 3149-3155.
[http://dx.doi.org/10.1161/01.CIR.0000146906.42375.D3] [PMID: 15533876]
[12]
Kouvelas, D.; Goulas, A.; Papazisis, G.; Sardeli, C.; Pourzitaki, C. PDE5 inhibitors: In vitro and in vivo pharmacological profile. Curr. Pharm. Des., 2009, 15(30), 3464-3475.
[http://dx.doi.org/10.2174/138161209789206971] [PMID: 19860692]
[13]
Fala, L. Otezla (Apremilast), an Oral PDE-4 Inhibitor, Receives FDA Approval for the Treatment of Patients with Active Psoriatic Arthritis and Plaque Psoriasis. Am Health Drug Benefits., 2015, 8((Spec Feature)), 105-110.
[14]
Papp, K.; Reich, K.; Leonardi, C.L.; Kircik, L.; Chimenti, S.; Langley, R.G.B.; Hu, C.; Stevens, R.M.; Day, R.M.; Gordon, K.B.; Korman, N.J.; Griffiths, C.E.M. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: Results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM] 1). J. Am. Acad. Dermatol., 2015, 73(1), 37-49.
[http://dx.doi.org/10.1016/j.jaad.2015.03.049] [PMID: 26089047]
[15]
Rahimi, R.; Ghiasi, S.; Azimi, H.; Fakhari, S.; Abdollahi, M. A review of the herbal phosphodiesterase inhibitors; Future perspective of new drugs. Cytokine, 2010, 49(2), 123-129.
[http://dx.doi.org/10.1016/j.cyto.2009.11.005] [PMID: 20005737]
[16]
Nabavi, S.M.; Talarek, S.; Listos, J.; Nabavi, S.F.; Devi, K.P.; Roberto de Oliveira, M.; Tewari, D.; Argüelles, S.; Mehrzadi, S.; Hosseinzadeh, A.; D’onofrio, G.; Orhan, I.E.; Sureda, A.; Xu, S.; Momtaz, S.; Farzaei, M.H. Phosphodiesterase inhibitors say NO to Alzheimer’s disease. Food Chem. Toxicol., 2019, 134, 110822.
[http://dx.doi.org/10.1016/j.fct.2019.110822] [PMID: 31536753]
[17]
Moustafa, F.; Feldman, S.R. A Review of phosphodiesterase-inhibition and the potential role for phosphodiesterase 4-inhibitors in clinical dermatology. Dermatol. Online J., 2014, 20(5), 22608.
[http://dx.doi.org/10.5070/D3205022608] [PMID: 24852768]
[18]
Bhat, A.; Ray, B.; Mahalakshmi, A.M.; Tuladhar, S.; Nandakumar, D.N.; Srinivasan, M.; Essa, M.M.; Chidambaram, S.B.; Guillemin, G.J.; Sakharkar, M.K. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol. Res., 2020, 160, 105078.
[http://dx.doi.org/10.1016/j.phrs.2020.105078] [PMID: 32673703]
[19]
Liu, Y.; Shakur, Y.; Yoshitake, M.; Kambayashi, J. Cilostazol (pletal): A dual inhibitor of cyclic nucleotide phosphodiesterase type 3 and adenosine uptake. Cardiovasc. Drug Rev., 2001, 19(4), 369-386.
[http://dx.doi.org/10.1111/j.1527-3466.2001.tb00076.x] [PMID: 11830753]
[20]
Liu, X.; Li, Z.; Liu, S.; Sun, J.; Chen, Z.; Jiang, M.; Zhang, Q.; Wei, Y.; Wang, X.; Huang, Y.Y.; Shi, Y.; Xu, Y.; Xian, H.; Bai, F.; Ou, C.; Xiong, B.; Lew, A.M.; Cui, J.; Fang, R.; Huang, H.; Zhao, J.; Hong, X.; Zhang, Y.; Zhou, F.; Luo, H.B. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm. Sin. B, 2020, 10(7), 1205-1215.
[http://dx.doi.org/10.1016/j.apsb.2020.04.008] [PMID: 32318327]
[21]
Baillie, G.S.; Tejeda, G.S.; Kelly, M.P. Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: Inhibition and beyond. Nat. Rev. Drug Discov., 2019, 18(10), 770-796.
[http://dx.doi.org/10.1038/s41573-019-0033-4] [PMID: 31388135]
[22]
DiBianco, R. Acute positive inotropic intervention: The phosphodiesterase inhibitors. Am. Heart J., 1991, 121(6), 1871-1875.
[http://dx.doi.org/10.1016/0002-8703(91)90078-V] [PMID: 2035420]
[23]
Baye, J. Roflumilast (daliresp): A novel phosphodiesterase-4 inhibitor for the treatment of severe chronic obstructive pulmonary disease. P&T, 2012, 37(3), 149-161.
[PMID: 22605906]
[24]
Papier, A.; Strowd, L.C. Atopic dermatitis: A review of topical nonsteroid therapy. Drugs Context, 2018, 7, 1-10.
[http://dx.doi.org/10.7573/dic.212521] [PMID: 29632548]
[25]
Xing, M.; Akowuah, G.A.; Gautam, V.; Gaurav, A. Structure-based design of selective phosphodiesterase 4B inhibitors based on ginger phenolic compounds. J. Biomol. Struct. Dyn., 2017, 35(13), 2910-2924.
[http://dx.doi.org/10.1080/07391102.2016.1234417] [PMID: 27608741]
[26]
Ongaro, A.; Zagotto, G.; Memo, M.; Gianoncelli, A.; Ribaudo, G. Natural phosphodiesterase 5 (PDE5) inhibitors: A computational approach. Nat. Prod. Res., 2021, 35(10), 1648-1653.
[http://dx.doi.org/10.1080/14786419.2019.1619726] [PMID: 31140295]
[27]
Ahmed, N.S. Tadalafil: 15 years’ journey in male erectile dysfunction and beyond. Drug Dev. Res., 2019, 80(6), 683-701.
[http://dx.doi.org/10.1002/ddr.21493] [PMID: 30548639]
[28]
Dhaliwal, A.; Gupta, M. PDE5 inhibitors; StatPearls Publishing: Florida, 2021.
[29]
Smith, W.B., II; McCaslin, I.R.; Gokce, A.; Mandava, S.H.; Trost, L.; Hellstrom, W.J. PDE5 inhibitors: Considerations for preference and long-term adherence. Int. J. Clin. Pract., 2013, 67(8), 768-780.
[http://dx.doi.org/10.1111/ijcp.12074] [PMID: 23869678]
[30]
Paes, D.; Schepers, M.; Rombaut, B.; van den Hove, D.; Vanmierlo, T.; Prickaerts, J. The Molecular Biology of Phosphodiesterase 4 Enzymes as Pharmacological Targets: An Interplay of Isoforms, Conformational States, and Inhibitors. Pharmacol. Rev., 2021, 73(3), 1016-1049.
[http://dx.doi.org/10.1124/pharmrev.120.000273] [PMID: 34233947]
[31]
Spina, D. PDE4 inhibitors: Current status. Br. J. Pharmacol., 2008, 155(3), 308-315.
[http://dx.doi.org/10.1038/bjp.2008.307] [PMID: 18660825]
[32]
Radfar, M.; Abdollahi, M. Pharmacotherapy in endocrinology: Diabetes, obesity, and hyperlipidemia-review article. Iranian J Public Health, 2014, 43(3), 49-63.
[33]
Lattanzio, V.; Kroon, P.A.; Quideau, S.; Treutter, D. Plant Phenolics – Secondary Metabolites with Diverse FunctionsRecent Advances in Polyphenol Research; Wiley: Hoboken, 2008. 1
[34]
Ha, C.H.H.; Fatima, A.; Gaurav, A. In Silico investigation of flavonoids as potential trypanosomal nucleoside hydrolase inhibitors. articletitle> Adv. Bioinformatics, 2015, 2015, 826047.
[http://dx.doi.org/10.1155/2015/826047]
[35]
Guerrero, L.; Castillo, J.; Quiñones, M.; Garcia-Vallvé, S.; Arola, L.; Pujadas, G.; Muguerza, B. Inhibition of angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies. PLoS One, 2012, 7(11), e49493.
[http://dx.doi.org/10.1371/journal.pone.0049493] [PMID: 23185345]
[36]
Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients, 2020, 12(2), 457.
[http://dx.doi.org/10.3390/nu12020457] [PMID: 32059369]
[37]
Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[38]
Wang, L.; Song, J.; Liu, A.; Xiao, B.; Li, S.; Wen, Z.; Lu, Y.; Du, G. Research progress of the antiviral bioactivities of natural flavonoids. Nat. Prod. Bioprospect., 2020, 10(5), 271-283.
[http://dx.doi.org/10.1007/s13659-020-00257-x] [PMID: 32948973]
[39]
Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc., 2010, 69(3), 273-278.
[http://dx.doi.org/10.1017/S002966511000162X] [PMID: 20569521]
[40]
Kawai, M.; Hirano, T.; Higa, S.; Arimitsu, J.; Maruta, M.; Kuwahara, Y.; Ohkawara, T.; Hagihara, K.; Yamadori, T.; Shima, Y.; Ogata, A.; Kawase, I.; Tanaka, T. Flavonoids and related compounds as anti-allergic substances. Allergol. Int., 2007, 56(2), 113-123.
[http://dx.doi.org/10.2332/allergolint.R-06-135] [PMID: 17384531]
[41]
AL-Ishaq. R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 2019, 9(9), 430.
[http://dx.doi.org/10.3390/biom9090430] [PMID: 31480505]
[42]
Batra, P.; Sharma, A. K. Anti-cancer potential of flavonoids: Recent trends and future perspectives. 3 Biotech., 2013, 3(6), 439-459.
[43]
Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Ovais, M.; Ullah, I.; Ahmed, J.; Shahid, M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front. Aging Neurosci., 2019, 11, 155.
[http://dx.doi.org/10.3389/fnagi.2019.00155] [PMID: 31293414]
[44]
Harnafi, H.; Amrani, S. Phcog Rev.: Review Article Flavonoids as Potent Phytochemicals in Cardiovascular Diseases Prevention. Pharmacogn. Rev., 2007, 1(2)
[45]
Gaurav, A.; Yadav, M.R.; Giridhar, R.; Gautam, V.; Singh, R. 3D-QSAR studies of 4-quinolone derivatives as high-affinity ligands at the benzodiazepine site of brain GABAA receptors. Med. Chem. Res., 2011, 20(2), 192-199.
[http://dx.doi.org/10.1007/s00044-010-9306-5]
[46]
Cao, Y.; Xie, L.; Liu, K.; Liang, Y.; Dai, X.; Wang, X.; Lu, J.; Zhang, X.; Li, X. The antihypertensive potential of flavonoids from Chinese Herbal Medicine: A review. Pharmacol. Res., 2021, 174, 105919.
[http://dx.doi.org/10.1016/j.phrs.2021.105919] [PMID: 34601080]
[47]
Lin, S.; Zhang, G.; Liao, Y.; Pan, J.; Gong, D. Dietary flavonoids as xanthine oxidase inhibitors: Structure–affinity and structure–activity relationships. J. Agric. Food Chem., 2015, 63(35), 7784-7794.
[http://dx.doi.org/10.1021/acs.jafc.5b03386] [PMID: 26285120]
[48]
Ferriola, P.C.; Cody, V.; Middleton, E. Jr Protein kinase C inhibition by plant flavonoids. Biochem. Pharmacol., 1989, 38(10), 1617-1624.
[http://dx.doi.org/10.1016/0006-2952(89)90309-2] [PMID: 2730676]
[49]
Kara, J.; Suwanhom, P.; Wattanapiromsakul, C.; Nualnoi, T.; Puripattanavong, J.; Khongkow, P.; Lee, V.S.; Gaurav, A.; Lomlim, L. Synthesis of 2‐(2‐oxo‐2 H ‐chromen‐4‐yl)acetamides as potent acetylcholinesterase inhibitors and molecular insights into binding interactions. Arch. Pharm. (Weinheim), 2019, 352(7), 1800310.
[http://dx.doi.org/10.1002/ardp.201800310] [PMID: 31125474]
[50]
Aniszewski, T. Alkaloids: Chemistry, biology, ecology, and applications; Elsevier: Amsterdam, 2015.
[51]
Souza, C.R.M.; Bezerra, W.P.; Souto, J.T. Marine alkaloids with anti-inflammatory activity: Current knowledge and future perspectives. Mar. Drugs, 2020, 18(3), 147.
[http://dx.doi.org/10.3390/md18030147] [PMID: 32121638]
[52]
Zhang, J.; Morris-Natschke, S.L.; Ma, D.; Shang, X.F.; Yang, C.J.; Liu, Y.Q.; Lee, K.H. Biologically active indolizidine alkaloids. Med. Res. Rev., 2021, 41(2), 928-960.
[http://dx.doi.org/10.1002/med.21747] [PMID: 33128409]
[53]
Chen, J.; Liu, J.H.; Wang, T.; Xiao, H.J.; Yin, C.P.; Yang, J. Effects of plant extract neferine on cyclic adenosine monophosphate and cyclic guanosine monophosphate levels in rabbit corpus cavernosum in vitro. Asian J. Androl., 2008, 10(2), 307-312.
[http://dx.doi.org/10.1111/j.1745-7262.2008.00342.x] [PMID: 18097520]
[54]
Desai, S.D.; Desai, D.G.; Kaur, H. Saponins and their biological activities. Pharm. Times, 2009, 41(3), 13-16.
[55]
Junyu, Z.; Zhigang, Y.; Banghong, W. Structure and Bioactivities of Saponin and Its Application in Aquaculture; Genomics Appl Bio, 2018, p. 8.
[56]
Ji, H.F.; Li, X.J.; Zhang, H.Y. Natural products and drug discovery. EMBO Rep., 2009, 10(3), 194-200.
[http://dx.doi.org/10.1038/embor.2009.12] [PMID: 19229284]
[57]
Samidurai, A.; Xi, L.; Das, A.; Iness, A.N.; Vigneshwar, N.G.; Li, P.L.; Singla, D.K.; Muniyan, S.; Batra, S.K.; Kukreja, R.C. Role of phos-phodiesterase 1 in the pathophysiology of diseases and potential therapeutic opportunities. Pharmacol. Ther., 2021, 226, 107858.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107858] [PMID: 33895190]
[58]
Maurice, D.H.; Palmer, D.; Tilley, D.G.; Dunkerley, H.A.; Netherton, S.J.; Raymond, D.R.; Elbatarny, H.S.; Jimmo, S.L. Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol. Pharmacol., 2003, 64(3), 533-546.
[http://dx.doi.org/10.1124/mol.64.3.533] [PMID: 12920188]
[59]
Orallo, F.; Camiña, M.; Álvarez, E.; Basaran, H.; Lugnier, C. Implication of cyclic nucleotide phosphodiesterase inhibition in the vaso relaxant activity of the citrus-fruits flavonoid (+/-)-naringenin. Planta Med., 2005, 71(2), 99-107.
[http://dx.doi.org/10.1055/s-2005-837774] [PMID: 15729616]
[60]
Alam, M.A.; Subhan, N.; Rahman, M.M.; Uddin, S.J.; Reza, H.M.; Sarker, S.D. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr., 2014, 5(4), 404-417.
[http://dx.doi.org/10.3945/an.113.005603] [PMID: 25022990]
[61]
Roghani, M.; Fallahi, F.; Moghadami, S. Citrus flavonoid naringenin improves aortic reactivity in streptozotocin-diabetic rats. Indian J. Pharmacol., 2012, 44(3), 382-386.
[http://dx.doi.org/10.4103/0253-7613.96350] [PMID: 22701251]
[62]
Zaidun, N.H.; Thent, Z.C.; Latiff, A.A. Combating oxidative stress disorders with citrus flavonoid. Naringenin. Life Sci., 2018, 208, 111-122.
[http://dx.doi.org/10.1016/j.lfs.2018.07.017] [PMID: 30021118]
[63]
Nikaido, T.; Ohmoto, T.; Kinoshita, T.; Sankawa, U.; Monache, F.D.; Botta, B.; Tomimori, T.; Miyaichi, Y.; Shirataki, Y.; Yokoe, I.; Komatsu, M. Inhibition of adenosine 3′,5′-cyclic monophosphate phosphodiesterase by flavonoids. III. Chem. Pharm. Bull. (Tokyo), 1989, 37(5), 1392-1395.
[http://dx.doi.org/10.1248/cpb.37.1392] [PMID: 2560949]
[64]
Shen, X-P.; Xiao, P-G.; Liu, C-X. Research and application of Radix Glycyrrhizae. Asian J. Pharmacodyn. Pharmacokinet, 2007, 7, 181-200.
[65]
Maurice, D.H.; Ke, H.; Ahmad, F.; Wang, Y.; Chung, J.; Manganiello, V.C. Advances in targeting cyclic nucleotide phosphodiesterases. Nat. Rev. Drug Discov., 2014, 13(4), 290-314.
[http://dx.doi.org/10.1038/nrd4228] [PMID: 24687066]
[66]
Sadek, M.S.; Cachorro, E.; El-Armouche, A.; Kämmerer, S. Therapeutic implications for PDE2 and cGMP/cAMP mediated crosstalk in cardiovascular diseases. Int. J. Mol. Sci., 2020, 21(20), 7462.
[http://dx.doi.org/10.3390/ijms21207462] [PMID: 33050419]
[67]
Polidovitch, N.; Yang, S.; Sun, H.; Lakin, R.; Ahmad, F.; Gao, X.; Turnbull, P.C.; Chiarello, C.; Perry, C.G.R.; Manganiello, V.; Yang, P.; Backx, P.H. Phosphodiesterase type 3A (PDE3A), but not type 3B (PDE3B), contributes to the adverse cardiac remodeling induced by pressure overload. J. Mol. Cell. Cardiol., 2019, 132, 60-70.
[http://dx.doi.org/10.1016/j.yjmcc.2019.04.028] [PMID: 31051182]
[68]
Kharche, A.; Jain, V. Phosphodiesterase family: Characterization & properties. World J. Pharmaceut. Res., 2021, 10(8), 788-802.
[69]
Alsheikh, M.M. Targeting phosphodiesterase 4: A novel way to treat leukemia; University of South Alabama, 2015.
[70]
Tronik-Le Roux, D.; Renard, J.; Vérine, J.; Renault, V.; Tubacher, E.; LeMaoult, J.; Rouas-Freiss, N.; Deleuze, J.F.; Desgrandschamps, F.; Carosella, E.D. Novel landscape of HLA-G isoforms expressed in clear cell renal cell carcinoma patients. Mol. Oncol., 2017, 11(11), 1561-1578.
[http://dx.doi.org/10.1002/1878-0261.12119] [PMID: 28815885]
[71]
Peixoto, C.A.; Nunes, A.K.S.; Garcia-Osta, A. Phosphodiesterase-5 inhibitors: Action on the signaling pathways of neuroinflammation, neurodegeneration, and cognition. Mediators Inflamm., 2015, 2015, 940207.
[http://dx.doi.org/10.1155/2015/940207]
[72]
Wang, T.; Reingruber, J.; Woodruff, M.L.; Majumder, A.; Camarena, A.; Artemyev, N.O.; Fain, G.L.; Chen, J. The PDE6 mutation in the rd10 retinal degeneration mouse model causes protein mislocalization and instability and promotes cell death through increased ion influx. J. Biol. Chem., 2018, 293(40), 15332-15346.
[http://dx.doi.org/10.1074/jbc.RA118.004459] [PMID: 30126843]
[73]
Cote, R.H. Characteristics of Photoreceptor PDE (PDE6): Similarities and differences to PDE5. Int. J. Impot. Res., 2004, 16(S1), S28-S33.
[http://dx.doi.org/10.1038/sj.ijir.3901212] [PMID: 15224133]
[74]
Francis, S.H.; Turko, I.V.; Corbin, J.D. Cyclic nucleotide phosphodiesterases: Relating structure and function. Prog. Nucleic Acid Res. Mol. Biol., 2001, 16, 1-52.
[http://dx.doi.org/10.1016/S0079-6603(00)65001-8]
[75]
Epstein, P.M.; Basole, C.; Brocke, S. The Role of PDE8 in T Cell Recruitment and Function in Inflammation. Front. Cell Dev. Biol., 2021, 9, 636778.
[http://dx.doi.org/10.3389/fcell.2021.636778] [PMID: 33937235]
[76]
Fedele, E.; Ricciarelli, R. Memory enhancers for Alzheimer’s dementia: Focus on cGMP. Pharmaceuticals (Basel), 2021, 14(1), 61.
[http://dx.doi.org/10.3390/ph14010061] [PMID: 33451088]
[77]
Ribaudo, G.; Memo, M.; Gianoncelli, A. A Perspective on Natural and Nature-Inspired Small Molecules Targeting Phosphodiesterase 9 (PDE9): Chances and Challenges against Neurodegeneration. Pharmaceuticals (Basel), 2021, 14(1), 58.
[http://dx.doi.org/10.3390/ph14010058] [PMID: 33451065]
[78]
Zagórska, A. Phosphodiesterase 10 (PDE10) inhibitors: An updated patent review (2014-present). Expert Opin. Ther. Pat., 2020, 30(2), 147-157.
[http://dx.doi.org/10.1080/13543776.2020.1709444] [PMID: 31874060]
[79]
Lugnier, C.; Meyer, A.; Talha, S.; Geny, B. Cyclic nucleotide phosphodiesterases: New targets in the metabolic syndrome? Pharmacol. Ther., 2020, 208, 107475.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107475] [PMID: 31926200]
[80]
Rauf, A.; Bawazeer, S.; Herrera-Bravo, J.; Raza, M.; Naz, H.; Gul, S.; Muhammad, N.; Almarhoon, Z.M.; Mabkhot, Y.N.; Ramadan, M.F. Potent In Vitro Phosphodiesterase 1 Inhibition of Flavone Isolated from Pistacia integerrima Galls. Biomed Res. Int., 2022, 2022, 6116003.
[81]
Rehman, N.U.; Ansari, M.N.; Samad, A. In silico, ex vivo and in vivo studies of roflumilast as a potential antidiarrheal and antispasmodic agent: Inhibition of the PDE-4 enzyme and voltage-gated Ca++ ion channels. Molecules, 2020, 25(4), 1008.
[http://dx.doi.org/10.3390/molecules25041008] [PMID: 32102361]
[82]
Ikeda, Y.; Sugiura, M.; Fukaya, C.; Yokoyama, K.; Hashimoto, Y.; Kawanishi, K.; Moriyasu, M.; Periandradulcins, A. B and C: Phosphodiesterase inhibitors from Periandra dulcis Mart. Chem. Pharm. Bull. (Tokyo), 1991, 39(3), 566-571.
[http://dx.doi.org/10.1248/cpb.39.566] [PMID: 2070439]
[83]
Fakhrudin, N.; Nurrochmad, A.; Sudarmanto, A.; Ikawati, Z. Caesalpinia sappan L. Wood is a Potential Source of Natural Phosphodiesterase-1 Inhibitors. Pharmacogn. J., 2020, 12(6)
[84]
Masaenah, E.; Elya, B.; Setiawan, H.; Fadhilah, Z.; Wediasari, F.; Nugroho, G.A. Elfahmi; Mozef, T. Antidiabetic activity and acute toxicity of combined extract of Andrographis paniculata, Syzygium cumini, and Caesalpinia sappan. Heliyon, 2021, 7(12), e08561.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08561] [PMID: 34950791]
[85]
Abusnina, A.; Keravis, T.; Yougbaré, I.; Bronner, C.; Lugnier, C. Anti-proliferative effect of curcumin on melanoma cells is mediated by PDE1A inhibition that regulates the epigenetic integrator UHRF1. Mol. Nutr. Food Res., 2011, 55(11), 1677-1689.
[http://dx.doi.org/10.1002/mnfr.201100307] [PMID: 22045655]
[86]
Zoccarato, A.; Fields, L.H.; Zaccolo, M. Response to Wagner et al.: Phosphodiesterase-2—anti-adrenergic friend or hypertrophic foe in heart disease? Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389, 1143-1145.
[87]
Shi, J.; Li, Y.; Zhang, Y.; Chen, J.; Gao, J.; Zhang, T.; Shang, X.; Zhang, X. Baicalein Ameliorates Aβ-Induced Memory Deficits and Neu-ronal Atrophy via Inhibition of PDE2 and PDE4. Front. Pharmacol., 2021, 12, 794458.
[http://dx.doi.org/10.3389/fphar.2021.794458] [PMID: 34966284]
[88]
Gaire, B.P.; Moon, S.K.; Kim, H. Scutellaria baicalensis in stroke management: Nature’s blessing in traditional Eastern medicine. Chin. J. Integr. Med., 2014, 20(9), 712-720.
[http://dx.doi.org/10.1007/s11655-014-1347-9] [PMID: 24752475]
[89]
Song, J.W.; Long, J.Y.; Xie, L.; Zhang, L.L.; Xie, Q.X.; Chen, H.J.; Deng, M.; Li, X.F. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: A review. Chin. Med., 2020, 15(1), 102.
[http://dx.doi.org/10.1186/s13020-020-00384-0] [PMID: 32994803]
[90]
Sato, Y.; Akao, T.; He, J.X.; Nojima, H.; Kuraishi, Y.; Morota, T.; Asano, T.; Tani, T. Glycycoumarin from Glycyrrhizae Radix acts as a potent antispasmodic through inhibition of phosphodiesterase 3. J. Ethnopharmacol., 2006, 105(3), 409-414.
[http://dx.doi.org/10.1016/j.jep.2005.11.017] [PMID: 16387459]
[91]
Göttel, C.; Niesen, S.; Daub, V.; Werle, T.; Bakuradze, T.; Winterhalter, P.; Richling, E. In vitro inhibition of phosphodiesterase 3B (PDE 3B) by anthocyanin-rich fruit juice extracts and selected anthocyanins. Int. J. Mol. Sci., 2020, 21(18), 6934.
[http://dx.doi.org/10.3390/ijms21186934] [PMID: 32967310]
[92]
Ko, W.C.; Chen, M.C.; Wang, S.H.; Lai, Y.H.; Chen, J.H.; Lin, C.N. 3-O-methylquercetin more selectively inhibits phosphodiesterase sub type 3. Planta Med., 2003, 69(4), 310-315.
[http://dx.doi.org/10.1055/s-2003-38874] [PMID: 12709896]
[93]
Townsend, E.A.; Zhang, Y.; Xu, C.; Wakita, R.; Emala, C.W. Active components of ginger potentiate β-agonist-induced relaxation of airway smooth muscle by modulating cytoskeletal regulatory proteins. Am. J. Respir. Cell Mol. Biol., 2014, 50(1), 115-124.
[http://dx.doi.org/10.1165/rcmb.2013-0133OC] [PMID: 23962082]
[94]
Ishii, H.; Kobayashi, J.I.; Ishikawa, T. Toddacoumalone, a novel mixed dimer of coumarin and quinolone from Toddalia asiatica (L.) Lam. (T. aculeata pers.). Tetrahedron Lett., 1991, 32(47), 6907-6910.
[http://dx.doi.org/10.1016/0040-4039(91)80441-8]
[95]
Huang, Y.; Liu, X.; Wu, D.; Tang, G.; Lai, Z.; Zheng, X.; Yin, S.; Luo, H.B. The discovery, complex crystal structure, and recognition mechanism of a novel natural PDE4 inhibitor from Selaginella pulvinata. Biochem. Pharmacol., 2017, 130, 51-59.
[http://dx.doi.org/10.1016/j.bcp.2017.01.016] [PMID: 28159622]
[96]
Liang, J.; Huang, Y.Y.; Zhou, Q.; Gao, Y.; Li, Z.; Wu, D.; Yu, S.; Guo, L.; Chen, Z.; Huang, L.; Liang, S.H.; He, X.; Wu, R.; Luo, H.B. Discovery and optimization of α-mangostin derivatives as novel PDE4 inhibitors for the treatment of vascular dementia. J. Med. Chem., 2020, 63(6), 3370-3380.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00060] [PMID: 32115956]
[97]
Liu, Y.N.; Huang, Y.Y.; Bao, J.M.; Cai, Y.H.; Guo, Y.Q.; Liu, S.N.; Luo, H.B.; Yin, S. Natural phosphodiesterase-4 (PDE4) inhibitors from Crotalaria ferruginea. Fitoterapia, 2014, 94, 177-182.
[http://dx.doi.org/10.1016/j.fitote.2014.02.010] [PMID: 24594242]
[98]
Tan, B.X.; Yang, L.; Huang, Y.Y.; Chen, Y.Y.; Peng, G.T.; Yu, S.; Wu, Y.N.; Luo, H.B.; He, X.X. Bioactive triterpenoids from the leaves of Eriobotrya japonica as the natural PDE4 inhibitors. Nat. Prod. Res., 2017, 31(24), 2836-2841.
[http://dx.doi.org/10.1080/14786419.2017.1300796] [PMID: 28281360]
[99]
Chen, S.K.; Zhao, P.; Shao, Y.X.; Li, Z.; Zhang, C.; Liu, P.; He, X.; Luo, H.B.; Hu, X. Moracin M from Morus alba L. is a natural phosphodiesterase-4 inhibitor. Bioorg. Med. Chem. Lett., 2012, 22(9), 3261-3264.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.026] [PMID: 22483586]
[100]
Lourenço, E.M.G.; Fernandes, J.M.; Carvalho, V.F.; Grougnet, R.; Martins, M.A.; Jordão, A.K.; Zucolotto, S.M.; Barbosa, E.G. Identification of a selective PDE4B inhibitor from bryophyllum pinnatum by target fishing study and in vitro evaluation of quercetin 3-O-α-L-arabinopyranosyl-(1→ 2)-O-α-L-rhamnopyranoside. Front. Pharmacol., 2020, 10, 1582.
[http://dx.doi.org/10.3389/fphar.2019.01582] [PMID: 32038254]
[101]
Ning, H.; Xin, Z.C.; Lin, G.; Banie, L.; Lue, T.F.; Lin, C.S. Effects of icariin on phosphodiesterase-5 activity in vitro and cyclic guanosine monophosphate level in cavernous smooth muscle cells. Urology, 2006, 68(6), 1350-1354.
[http://dx.doi.org/10.1016/j.urology.2006.09.031] [PMID: 17169663]
[102]
Lines, T.C.; Ono, M. FRS 1000, an extract of red onion peel, strongly inhibits phosphodiesterase 5A (PDE 5A). Phytomedicine, 2006, 13(4), 236-239.
[http://dx.doi.org/10.1016/j.phymed.2004.12.001] [PMID: 16492525]
[103]
Chen, J.; Chiou, W.F.; Chen, C.C.; Chen, C.F. Effect of the plant-extract osthole on the relaxation of rabbit corpus cavernosum tissue in vitro. J. Urol., 2000, 163(6), 1975-1980.
[http://dx.doi.org/10.1016/S0022-5347(05)67613-6] [PMID: 10799242]
[104]
Shin, H.J.; Kim, H.J.; Kwak, J.H.; Chun, H.O.; Kim, J.H.; Park, H.; Kim, D.H.; Lee, Y.S. A prenylated flavonol, sophoflavescenol: A potent and selective inhibitor of cGMP phosphodiesterase 5. Bioorg. Med. Chem. Lett., 2002, 12(17), 2313-2316.
[http://dx.doi.org/10.1016/S0960-894X(02)00401-8] [PMID: 12161123]
[105]
Dell’Agli, M.; Galli, G.V.; Bosisio, E. Inhibition of cGMP-phosphodiesterase-5 by biflavones of Ginkgo biloba. Planta Med., 2006, 72(5), 468-470.
[http://dx.doi.org/10.1055/s-2005-916236] [PMID: 16557462]
[106]
Alamgeer,; Chabert, P.; Akhtar, M.S.; Jabeen, Q.; Delecolle, J.; Heintz, D.; Garo, E.; Hamburger, M.; Auger, C.; Lugnier, C.; Kim, H.J; Oak, M.H.; Schini-Kerth, V.B. Endothelium-independent vasorelaxant effect of a Berberis orthobotrys root extract via inhibition of phosphodiesterases in the porcine coronary artery. Phytomedicine, 2016, 23(8), 793-799.
[http://dx.doi.org/10.1016/j.phymed.2016.04.005] [PMID: 27288914]
[107]
Nam, K.; Je, K.H.; Shin, Y.J.; Kang, S.S.; Mar, W. Inhibitory effects of furoquinoline alkaloids fromMelicope confusa andDictamnus al bus against human phosphodiesterase 5 (hPDE5A)in vitro. Arch. Pharm. Res., 2005, 28(6), 675-679.
[http://dx.doi.org/10.1007/BF02969357] [PMID: 16042076]
[108]
Maschi, O.; Cero, E.D.; Galli, G.V.; Caruso, D.; Bosisio, E.; Dell’Agli, M. Inhibition of human cAMP-phosphodiesterase as a mechanism of the spasmolytic effect of Matricaria recutita L. J. Agric. Food Chem., 2008, 56(13), 5015-5020.
[http://dx.doi.org/10.1021/jf800051n] [PMID: 18553893]
[109]
Liu, B.; Yang, J.; Wen, Q.; Li, Y. Isoliquiritigenin, a flavonoid from licorice, relaxes guinea-pig tracheal smooth muscle in vitro and in vivo: Role of cGMP/PKG pathway. Eur. J. Pharmacol., 2008, 587(1-3), 257-266.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.015] [PMID: 18462716]
[110]
Peng, T.; Gong, J.; Jin, Y.; Zhou, Y.; Tong, R.; Wei, X.; Bai, L.; Shi, J. Inhibitors of phosphodiesterase as cancer therapeutics. Eur. J. Med. Chem., 2018, 150, 742-756.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.046] [PMID: 29574203]
[111]
Liu, H.; Zhou, K.; Jiang, H.; Wen, L.; He, Y.; Lu, S.; Wang, B.; Li, J. Current advances in anthocyanins: Structure, bioactivity and human health. J. Food Nutr. Res., 2021, 60(3)
[112]
Nassour, R.; Ayash, A.; Al-Tameemi, K. Anthocyanin pigments: Structure and biological importance. J. Chem. Pharm. Sci, 2020, 13, 45-57.
[113]
Jin, S.L.C.; Lin, S-C.; Ding, S-L. Phosphodiesterase 4 and its inhibitors in inflammatory diseases. Biomed. J., 2012, 35(3), 197-210.
[http://dx.doi.org/10.4103/2319-4170.106152] [PMID: 22735051]
[114]
Martinez, A.; Gil, C. cAMP-specific phosphodiesterase inhibitors: Promising drugs for inflammatory and neurological diseases. Expert Opin. Ther. Pat., 2014, 24(12), 1311-1321.
[http://dx.doi.org/10.1517/13543776.2014.968127] [PMID: 25284693]
[115]
Zuo, H.; Cattani-Cavalieri, I.; Musheshe, N.; Nikolaev, V.O.; Schmidt, M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol. Ther., 2019, 197, 225-242.
[http://dx.doi.org/10.1016/j.pharmthera.2019.02.002] [PMID: 30759374]
[116]
Lin, T.T.; Huang, Y.Y.; Tang, G.H.; Cheng, Z.B.; Liu, X.; Luo, H.B.; Yin, S. Prenylated coumarins: Natural phosphodiesterase-4 inhibitors from Toddalia asiatica. J. Nat. Prod., 2014, 77(4), 955-962.
[http://dx.doi.org/10.1021/np401040d] [PMID: 24597921]
[117]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. The power of natural Chinese medicine, ginger and ginseng root in an organic life. Middle East J. Sci. Res., 2019, 27(1), 64-71.
[118]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric. Scand. B Soil Plant Sci., 2019, 69(6), 546-556.
[http://dx.doi.org/10.1080/09064710.2019.1606930]
[119]
Lee, S.; Lee, D.K. What is the proper way to apply the multiple comparison test? Korean J. Anesthesiol., 2018, 71(5), 353-360.
[http://dx.doi.org/10.4097/kja.d.18.00242] [PMID: 30157585]
[120]
Roy, P.; Ghosh, A. Progress on cocrystallization of poorly soluble NME’s in the last decade. CrystEngComm, 2020, 22(42), 6958-6974.
[http://dx.doi.org/10.1039/D0CE01276A]
[121]
Ojewole, J.A.O. Antinociceptive, anti-inflammatory and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract. J. Ethnopharmacol., 2005, 99(1), 13-19.
[http://dx.doi.org/10.1016/j.jep.2005.01.025] [PMID: 15848014]
[122]
Chibli, L.A.; Rodrigues, K.C.M.; Gasparetto, C.M.; Pinto, N.C.C.; Fabri, R.L.; Scio, E.; Alves, M.S.; Del-Vechio-Vieira, G.; Sousa, O.V. Anti-inflammatory effects of Bryophyllum pinnatum (Lam.) Oken ethanol extract in acute and chronic cutaneous inflammation. J. Ethnopharmacol., 2014, 154(2), 330-338.
[http://dx.doi.org/10.1016/j.jep.2014.03.035] [PMID: 24727190]
[123]
Ogungbamila, F.O.; Onawunmi, G.O.; Adeosun, O. A new acylated flavan-3-ol from Bryophyllum pinnatum. Nat. Prod. Lett., 1997, 10(3), 201-203.
[http://dx.doi.org/10.1080/10575639708041195]
[124]
Mahata, S.; Maru, S.; Shukla, S.; Pandey, A.; Mugesh, G.; Das, B.C.; Bharti, A.C. Anticancer property of Bryophyllum pinnata (Lam.) Oken. leaf on human cervical cancer cells. BMC Complement. Altern. Med., 2012, 12(1), 15.
[http://dx.doi.org/10.1186/1472-6882-12-15] [PMID: 22405256]
[125]
Al-Kuraishy, H.; Al-Gareeb, A.; Al-Niemi, M.; Al-Buhadily, A.; Al-Harchan, N.; Lugnier, C. COVID-19 and phosphodiesterase enzyme type 5 inhibitors. J. Microsc. Ultrastruct., 2020, 8(4), 141-145.
[http://dx.doi.org/10.4103/JMAU.JMAU_63_20] [PMID: 33623736]
[126]
Liu, L.; Xu, H.; Ding, S.; Wang, D.; Song, G.; Huang, X. Phosphodiesterase 5 inhibitors as novel agents for the treatment of Alzheimer’s disease. Brain Res. Bull., 2019, 153, 223-231.
[http://dx.doi.org/10.1016/j.brainresbull.2019.09.001] [PMID: 31493542]
[127]
Andersson, K-E. PDE5 inhibitors - pharmacology and clinical applications 20 years after sildenafil discovery. Br. J. Pharmacol., 2018, 175(13), 2554-2565.
[http://dx.doi.org/10.1111/bph.14205] [PMID: 29667180]
[128]
Lorigo, M.; Oliveira, N.; Cairrao, E. PDE-Mediated Cyclic Nucleotide Compartmentation in Vascular Smooth Muscle Cells: From Basic to a Clinical Perspective. J. Cardiovasc. Dev. Dis., 2021, 9(1), 4.
[http://dx.doi.org/10.3390/jcdd9010004] [PMID: 35050214]
[129]
Munshi, A.; Das, S. Genetic Understanding of Stroke Treatment: Potential Role for Phosphodiesterase Inhibitors. Adv. Neurobiol., 2017, 17, 445-461.
[130]
Duranti, G.; Ceci, R.; Sgrò, P.; Sabatini, S.; Di Luigi, L. Influence of the PDE5 inhibitor tadalafil on redox status and antioxidant defense system in C2C12 skeletal muscle cells. Cell Stress Chaperones, 2017, 22(3), 389-396.
[http://dx.doi.org/10.1007/s12192-017-0778-9] [PMID: 28283895]
[131]
Hutchings, D.C.; Anderson, S.G.; Caldwell, J.L.; Trafford, A.W. Phosphodiesterase-5 inhibitors and the heart: Compound cardioprotection? Heart, 2018, 104(15), 1244-1250.
[http://dx.doi.org/10.1136/heartjnl-2017-312865] [PMID: 29519873]
[132]
Gambaryan, S. The role of NO/sGC/cGMP/PKG signaling pathway in regulation of platelet function. Cells, 2022, 11(22), 3704.
[http://dx.doi.org/10.3390/cells11223704] [PMID: 36429131]
[133]
Khan, I.; Najeebullah, S.; Ali, M.; Shinwari, Z.K. Phytopharmacological and ethnomedicinal uses of the Genus Berberis (Berberidaceae): A review. Trop. J. Pharm. Res., 2016, 15(9), 2047-2057.
[http://dx.doi.org/10.4314/tjpr.v15i9.33]
[134]
Ahmed, S.; Shuaib, M.; Ali, K.; Ali, S.; Hussain, F. Evaluation of different parts of Berberis lyceum and their biological activities: A review. Pure Appl. Biol., 2017, 6(3), 897-907.
[http://dx.doi.org/10.19045/bspab.2017.60095]
[135]
Anand Ganapathy, A.; Hari Priya, V.M.; Kumaran, A. Medicinal plants as a potential source of Phosphodiesterase-5 inhibitors: A review. J. Ethnopharmacol., 2021, 267, 113536.
[http://dx.doi.org/10.1016/j.jep.2020.113536] [PMID: 33137431]
[136]
Jenkins, G.; Etheridge, C.; Mason, P. Herbal Infusions and Women’s Health: A Review of Findings with a Focus on Human Studies on Specific Infusions with Studies on Extracts to Evaluate Mechanisms. J. Nurs. Womens. Health, 2022, 6(178), 2577-1450.
[137]
Boon, H.; Smith, M. The complete natural medicine guide to the 50 most common medicinal herbs; Robert Rose: Texas, 2004.
[138]
Liu, H.; Wang, J.; Zhou, W.; Wang, Y.; Yang, L. Systems approaches and polypharmacology for drug discovery from herbal medicines: An example using licorice. J. Ethnopharmacol., 2013, 146(3), 773-793.
[http://dx.doi.org/10.1016/j.jep.2013.02.004] [PMID: 23415946]
[139]
Wang, W.; Yao, Q.; Teng, F.; Cui, J.; Dong, J.; Wei, Y. Active ingredients from Chinese medicine plants as therapeutic strategies for asthma: Overview and challenges. Biomed. Pharmacother., 2021, 137, 111383.
[http://dx.doi.org/10.1016/j.biopha.2021.111383] [PMID: 33761604]
[140]
Zhan, C.; Yang, J. Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Pharmacol. Res., 2006, 53(3), 303-309.
[http://dx.doi.org/10.1016/j.phrs.2005.12.008] [PMID: 16459097]
[141]
Fawcett, L.; Baxendale, R.; Stacey, P.; McGrouther, C.; Harrow, I.; Soderling, S.; Hetman, J.; Beavo, J.A.; Phillips, S.C. Molecular cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A. Proc. Natl. Acad. Sci. USA, 2000, 97(7), 3702-3707.
[http://dx.doi.org/10.1073/pnas.97.7.3702] [PMID: 10725373]
[142]
Bischoff, E. Potency, selectivity, and consequences of nonselectivity of PDE inhibition. Int. J. Impot. Res., 2004, 16(S1)(Suppl. 1), S11-S14.
[http://dx.doi.org/10.1038/sj.ijir.3901208] [PMID: 15224129]
[143]
Paterniti, I.; Mazzon, E.; Gil, C.; Impellizzeri, D.; Palomo, V.; Redondo, M.; Perez, D.I.; Esposito, E.; Martinez, A.; Cuzzocrea, S. PDE 7 inhibitors: New potential drugs for the therapy of spinal cord injury. PLoS One, 2011, 6(1), e15937.
[http://dx.doi.org/10.1371/journal.pone.0015937] [PMID: 21297958]
[144]
Dong, H.; Osmanova, V.; Epstein, P.M.; Brocke, S. Phosphodiesterase 8 (PDE8) regulates chemotaxis of activated lymphocytes. Biochem. Biophys. Res. Commun., 2006, 345(2), 713-719.
[http://dx.doi.org/10.1016/j.bbrc.2006.04.143] [PMID: 16696947]
[145]
Vang, A.G.; Ben-Sasson, S.Z.; Dong, H.; Kream, B.; DeNinno, M.P.; Claffey, M.M.; Housley, W.; Clark, R.B.; Epstein, P.M.; Brocke, S. PDE8 regulates rapid Teff cell adhesion and proliferation independent of ICER. PLoS One, 2010, 5(8), e12011.
[http://dx.doi.org/10.1371/journal.pone.0012011] [PMID: 20711499]
[146]
Heckman, P.R.A.; Wouters, C.; Prickaerts, J. Phosphodiesterase inhibitors as a target for cognition enhancement in aging and Alzheimer’s disease: A translational overview. Curr. Pharm. Des., 2014, 21(3), 317-331.
[http://dx.doi.org/10.2174/1381612820666140826114601] [PMID: 25159073]
[147]
Orhan, I.E.; Rauf, A.; Saleem, M.; Khalil, A.A. Natural Molecules as Talented Inhibitors of Nucleotide Pyrophosphatases/Phos-phodiesterases (PDEs). Curr. Top. Med. Chem., 2022, 22(3), 209-228.
[http://dx.doi.org/10.2174/1568026621666210909164118] [PMID: 34503407]
[148]
Meng, F.; Hou, J.; Shao, Y.X.; Wu, P.Y.; Huang, M.; Zhu, X.; Cai, Y.; Li, Z.; Xu, J.; Liu, P.; Luo, H.B.; Wan, Y.; Ke, H. Structure-based discovery of highly selective phosphodiesterase-9A inhibitors and implications for inhibitor design. J. Med. Chem., 2012, 55(19), 8549-8558.
[http://dx.doi.org/10.1021/jm301189c] [PMID: 22985069]
[149]
Li, X.; Yu, Y.; Tu, Z. Pyrazole scaffold synthesis, functionalization, and applications in Alzheimer’s disease and Parkinson’s disease treatment (2011–2020). Molecules, 2021, 26(5), 1202.
[http://dx.doi.org/10.3390/molecules26051202] [PMID: 33668128]
[150]
Rodefer, J.S.; Murphy, E.R.; Baxter, M.G. PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur. J. Neurosci., 2005, 21(4), 1070-1076.
[http://dx.doi.org/10.1111/j.1460-9568.2005.03937.x] [PMID: 15787711]
[151]
Bhat, A.; Tan, V.; Heng, B.; Chow, S.; Basappa, S.; Essa, M.M.; Chidambaram, S.B.; Guillemin, G.J. Papaverine, a phosphodiesterase 10a inhibitor, ameliorates quinolinic acid-induced synaptotoxicity in human cortical neurons. Neurotox. Res., 2021, 39(4), 1238-1250.
[http://dx.doi.org/10.1007/s12640-021-00368-4] [PMID: 33914237]
[152]
Li, N.; Lee, K.; Xi, Y.; Zhu, B.; Gary, B.D.; Ramírez-Alcántara, V.; Gurpinar, E.; Canzoneri, J.C.; Fajardo, A.; Sigler, S.; Piazza, J.T.; Chen, X.; Andrews, J.; Thomas, M.; Lu, W.; Li, Y.; Laan, D.J.; Moyer, M.P.; Russo, S.; Eberhardt, B.T.; Yet, L.; Keeton, A.B.; Grizzle, W.E.; Piazza, G.A. Phosphodiesterase 10A: A novel target for selective inhibition of colon tumor cell growth and β-catenin-dependent TCF tran-scriptional activity. Oncogene, 2015, 34(12), 1499-1509.
[http://dx.doi.org/10.1038/onc.2014.94] [PMID: 24704829]
[153]
Cantin, L.D.; Magnuson, S.; Gunn, D.; Barucci, N.; Breuhaus, M.; Bullock, W.H.; Burke, J.; Claus, T.H.; Daly, M.; DeCarr, L.; Gore-Willse, A.; Hoover-Litty, H.; Kumarasinghe, E.S.; Li, Y.; Liang, S.X.; Livingston, J.N.; Lowinger, T.; MacDougall, M.; Ogutu, H.O.; Olague, A.; Ott-Morgan, R.; Schoenleber, R.W.; Tersteegen, A.; Wickens, P.; Zhang, Z.; Zhu, J.; Zhu, L.; Sweet, L.J. PDE-10A inhibitors as insulin secretagogues. Bioorg. Med. Chem. Lett., 2007, 17(10), 2869-2873.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.061] [PMID: 17400452]
[154]
Hu, L.; Zhao, C.; Chen, Z.; Hu, G.; Li, X.; Li, Q. An emerging strategy for targeted therapy of pulmonary arterial hypertension: Vasodilation plus vascular remodeling inhibition. Drug Discov. Today, 2022, 27(5), 1457-1463.
[http://dx.doi.org/10.1016/j.drudis.2022.01.011] [PMID: 35104622]
[155]
Faja, F.; Finocchi, F.; Carlini, T.; Rizzo, F.; Pallotti, F.; Spaziani, M.; Balercia, G.; Lenzi, A.; Paoli, D.; Lombardo, F. PDE11A gene poly-morphism in testicular cancer: Sperm parameters and hormonal profile. J. Endocrinol. Invest., 2021, 44(10), 2273-2284.
[http://dx.doi.org/10.1007/s40618-021-01534-3] [PMID: 33661511]
[156]
Kamilaris, C.D.C.; Hannah-Shmouni, F.; Stratakis, C.A. Adrenocortical tumorigenesis: Lessons from genetics. Best Pract. Res. Clin. Endocrinol. Metab., 2020, 34(3), 101428.
[http://dx.doi.org/10.1016/j.beem.2020.101428] [PMID: 32507359]
[157]
Pitsava, G.; Stratakis, C. Genetic Alterations in Benign Adrenal Tumors. Biomedicines, 2022, 10(5), 1041.
[http://dx.doi.org/10.3390/biomedicines10051041]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy