Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Organocatalysis for the Chemical Fixation of Carbon Dioxide to Synthesise N-Heterocycles

Author(s): Henrique Esteves, Nathália Evelyn Morais Costa, Vinicius Kalil Tomazett, Jorge Luiz Sônego Milani*, Rafael Pavão das Chagas* and Ângelo de Fátima*

Volume 11, Issue 2, 2024

Published on: 04 October, 2023

Page: [87 - 126] Pages: 40

DOI: 10.2174/0122133461255437230930182648

Price: $65

Abstract

Organocatalysed reactions are becoming powerful tools in the construction of complex molecular skeletons. It gains extra importance when used as a chemical approach to the chemical fixation of carbon dioxide (CO2). Carbon dioxide is an increasingly dangerous environmental hazard as the global climate temperature rises through the greenhouse effect. Meanwhile, in the past decades, significant advances can be noted in the use of organocatalysis for CO2 capture and its conversion into valuable chemicals. Therefore, herein we review a full set of organocatalysts used in CO2 fixation for the synthesis of N-heterocycles since they are present in several chemical structures with biological relevance.

Graphical Abstract

[1]
National Oceanic and Atmospheric Administration (NOAA). Global monitoring laboratory—Earth system research laboratories, Trends in Atmospheric Carbon Dioxide. Available from: https://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html
[2]
Peres, C.B.; Resende, P.M.R.; Nunes, L.J.R.; Morais, L.C. Advances in Carbon Capture and Use (CCU) Technologies: A comprehensive review and CO2 mitigation potential analysis. Cleanroom Technol., 2022, 4(4), 1193-1207.
[http://dx.doi.org/10.3390/cleantechnol4040073]
[3]
Gao, W.; Liang, S.; Wang, R.; Jiang, Q.; Zhang, Y.; Zheng, Q.; Xie, B.; Toe, C.Y.; Zhu, X.; Wang, J.; Huang, L.; Gao, Y.; Wang, Z.; Jo, C.; Wang, Q.; Wang, L.; Liu, Y.; Louis, B.; Scott, J.; Roger, A.C.; Amal, R.; He, H.; Park, S.E. Industrial carbon dioxide capture and utilization: State of the art and future challenges. Chem. Soc. Rev., 2020, 49(23), 8584-8686.
[http://dx.doi.org/10.1039/D0CS00025F] [PMID: 33073812]
[4]
Challa, P.; Paleti, G.; Madduluri, V.R.; Gadamani, S.B.; Pothu, R.; Burri, D.R.; Boddula, R.; Perugopu, V.; Kamaraju, S.R.R. Trends in emission and utilization of CO2: Sustainable feedstock in the synthesis of value-added fine chemicals. Catal. Surv. Asia, 2022, 26(2), 80-91.
[http://dx.doi.org/10.1007/s10563-021-09352-6]
[5]
Kondo, K.; Yokoyama, S.; Miyoshi, N.; Murai, S.; Sonoda, N. A new synthesis of carbonyl selenide. Angew. Chem. Int. Ed. Engl., 1979, 18(9), 691-691.
[http://dx.doi.org/10.1002/anie.197906911]
[6]
Flosi, W.J.; DeGoey, D.A.; Grampovnik, D.J.; Chen, H.; Klein, L.L.; Dekhtyar, T.; Masse, S.; Marsh, K.C.; Mo, H.M.; Kempf, D. Discovery of imidazolidine-2,4-dione-linked HIV protease inhibitors with activity against lopinavir-resistant mutant HIV. Bioorg. Med. Chem., 2006, 14(19), 6695-6712.
[http://dx.doi.org/10.1016/j.bmc.2006.05.063] [PMID: 16828558]
[7]
Leung, M.; Lai, J.L.; Lau, K.H.; Yu, H.; Hsiao, H.J. S-dimethyl dithiocarbonate: A convenient reagent for the synthesis of symmetrical and unsymmetrical ureas. J. Org. Chem., 1996, 61(12), 4175-4179.
[http://dx.doi.org/10.1021/jo9522825] [PMID: 11667305]
[8]
Pérez-Fortes, M.; Schöneberger, J.C.; Boulamanti, A.; Tzimas, E. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Appl. Energy, 2016, 161, 718-732.
[http://dx.doi.org/10.1016/j.apenergy.2015.07.067]
[9]
Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A.V.; Wezendonk, T.A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev., 2017, 117(14), 9804-9838.
[http://dx.doi.org/10.1021/acs.chemrev.6b00816] [PMID: 28656757]
[10]
Yan, T.; Liu, H.; Zeng, Z.X.; Pan, W.G. Recent progress of catalysts for synthesis of cyclic carbonates from CO2 and epoxides. J. CO2 Util., 2023, 68, 102355.
[http://dx.doi.org/10.1016/j.jcou.2022.102355]
[11]
Arshadi, S.; Vessally, E.; Sobati, M.; Hosseinian, A.; Bekhradnia, A. Chemical fixation of CO2 to N -propargylamines: A straightforward route to 2-oxazolidinones. J. CO2 Util., 2017, 19, 120-129.
[http://dx.doi.org/10.1016/j.jcou.2017.03.009]
[12]
Liu, X.F.; Wang, M.Y.; He, L.N. Heterogeneous catalysis for oxazolidinone synthesis from aziridines and CO2. Curr. Org. Chem., 2017, 21(8), 698-707.
[http://dx.doi.org/10.2174/1385272820666161017115814]
[13]
Niemi, T.; Repo, T. Antibiotics from carbon dioxide: Sustainable pathways to pharmaceutically relevant cyclic carbamates. Eur. J. Org. Chem., 2019, 2019(6), 1180-1188.
[http://dx.doi.org/10.1002/ejoc.201801598]
[14]
Liu, S.; Wang, X. Polymers from carbon dioxide: Polycarbonates, polyurethanes. Curr. Opin. Green Sustain. Chem., 2017, 3, 61-66.
[http://dx.doi.org/10.1016/j.cogsc.2016.08.003]
[15]
Das, A.; Mandal, S.C.; Pathak, B. Mechanistic exploration of CO2 conversion to dimethoxymethane (DMM) using transition metal (Co, Ru) catalysts: an energy span model. Phys. Chem. Chem. Phys., 2022, 24(14), 8387-8397.
[http://dx.doi.org/10.1039/D1CP05144J] [PMID: 35332910]
[16]
Yu, B.; He, L.N. Upgrading carbon dioxide by incorporation into heterocycles. ChemSusChem, 2015, 8(1), 52-62.
[http://dx.doi.org/10.1002/cssc.201402837] [PMID: 25209543]
[17]
Gheidari, D.; Mehrdad, M.; Maleki, S. The quinazoline-2,4(1H,3H)-diones skeleton: A key intermediate in drug synthesis. Sustain. Chem. Pharm., 2022, 27, 100696.
[http://dx.doi.org/10.1016/j.scp.2022.100696]
[18]
Dalpozzo, R.; Della Ca, N.; Gabriele, B.; Mancuso, R. Recent advances in the chemical fixation of carbon dioxide: A green route to carbonylated heterocycle synthesis. Catalysts, 2019, 9(6), 511.
[http://dx.doi.org/10.3390/catal9060511]
[19]
Kleij, A.W. Advancing halide-free catalytic synthesis of CO2-based heterocycles. Curr. Opin. Green Sustain. Chem., 2020, 24, 72-81.
[http://dx.doi.org/10.1016/j.cogsc.2020.04.002]
[20]
Hulla, M.; Dyson, P.J. Pivotal role of the basic character of organic and salt catalysts in C−N bond forming reactions of amines with CO2. Angew. Chem. Int. Ed., 2020, 59(3), 1002-1017.
[http://dx.doi.org/10.1002/anie.201906942] [PMID: 31364789]
[21]
Didehban, K.; Vessally, E.; Salary, M.; Edjlali, L.; Babazadeh, M. Synthesis of a variety of key medicinal heterocyclic compounds via chemical fixation of CO2 onto o-alkynylaniline derivatives. J. CO2 Util., 2018, 23, 42-50.
[http://dx.doi.org/10.1016/j.jcou.2017.10.025]
[22]
Truong, C.C.; Ngo, H.L. Sustainable synthesis of nitrogen heterocycles from carbon dioxide and aromatic amines over heterogeneous catalysts. J. CO2 Util., 2020, 42, 101325.
[http://dx.doi.org/10.1016/j.jcou.2020.101325]
[23]
Wang, S.; Xi, C. Recent advances in nucleophile-triggered CO2 -incorporated cyclization leading to heterocycles. Chem. Soc. Rev., 2019, 48(1), 382-404.
[http://dx.doi.org/10.1039/C8CS00281A] [PMID: 30480679]
[24]
Vessally, E.; Soleimani-Amiri, S.; Hosseinian, A.; Edjlali, L.; Babazadeh, M. Chemical fixation of CO2 to 2-aminobenzonitriles: A straightforward route to quinazoline-2,4(1h,3h)-diones with green and sustainable chemistry perspectives. J. CO2 Util., 2017, 21, 342-352.
[http://dx.doi.org/10.1016/j.jcou.2017.08.006]
[25]
Lamb, K.J.; Ingram, I.D.V.; North, M.; Sengoden, M. Valorization of carbon dioxide into oxazolidinones by reaction with aziridines. Curr. Green Chem., 2019, 6(1), 32-43.
[http://dx.doi.org/10.2174/2213346106666190321142328]
[26]
Bezerra, W.A.; Milani, J.L.S.; Franco, C.H.J.; Martins, F.T.; de Fátima, Â.; da Mata, Á.F.A.; das Chagas, R.P. Bis-benzimidazolium salts as bifunctional organocatalysts for the cycloaddition of CO2 with epoxides. Molecular Catalysis, 2022, 530, 112632.
[http://dx.doi.org/10.1016/j.mcat.2022.112632]
[27]
Guo, L.; Lamb, K.J.; North, M. Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates. Green Chem., 2021, 23(1), 77-118.
[http://dx.doi.org/10.1039/D0GC03465G]
[28]
Fiorani, G.; Guo, W.; Kleij, A.W. Sustainable conversion of carbon dioxide: the advent of organocatalysis. Green Chem., 2015, 17(3), 1375-1389.
[http://dx.doi.org/10.1039/C4GC01959H]
[29]
Arruda da Mata, Á.F.; Glanzmann, N.; Fazza Stroppa, P.H.; Terra Martins, F.; das Chagas, R.P.; da Silva, A.D.; Milani, J.L.S. Single-component, metal-free, solvent-free HO-functionalized 1,2,3-triazole-based ionic liquid catalysts for efficient CO2 conversion. New J. Chem., 2022, 46(25), 12237-12243.
[http://dx.doi.org/10.1039/D2NJ02052A]
[30]
Zappia, G.; Menendez, P.; Delle Monache, G.; Misiti, D.; Nevola, L.; Botta, B. The contribution of oxazolidinone frame to the biological activity of pharmaceutical drugs and natural products. Mini Rev. Med. Chem., 2007, 7(4), 389-409.
[http://dx.doi.org/10.2174/138955707780363783] [PMID: 17430225]
[31]
Leach, K.L.; Brickner, S.J.; Noe, M.C.; Miller, P.F. Linezolid, the first oxazolidinone antibacterial agent. Ann. N. Y. Acad. Sci., 2011, 1222(1), 49-54.
[http://dx.doi.org/10.1111/j.1749-6632.2011.05962.x] [PMID: 21434942]
[32]
DrugBank Online. Database for Drug and Drug Target Info. Available from: https://go.drugbank.com
[33]
Singh, A.; Goel, N. DFT study of mechanism of cycloaddition of carbondioxide with tertiary-aziridine. Struct. Chem., 2014, 25(4), 1245-1255.
[http://dx.doi.org/10.1007/s11224-014-0399-1]
[34]
Wang, B.; Luo, Z.; Elageed, E.H.M.; Wu, S.; Zhang, Y.; Wu, X.; Xia, F.; Zhang, G.; Gao, G. DBU and DBU-derived ionic liquid synergistic catalysts for the conversion of carbon dioxide/carbon disulfide to 3-aryl-2-oxazolidinones/[1,3]dithiolan-2-ylidenephenyl- amine. ChemCatChem, 2016, 8(4), 830-838.
[http://dx.doi.org/10.1002/cctc.201500928]
[35]
Lv, M.; Wang, P.; Yuan, D.; Yao, Y. Conversion of carbon dioxide into oxazolidinones mediated by quaternary ammonium salts and DBU. ChemCatChem, 2017, 9(24), 4451-4455.
[http://dx.doi.org/10.1002/cctc.201700594]
[36]
Wang, S.; Zhang, X.; Cao, C.; Chen, C.; Xi, C. I 2 -Mediated oxidative bicyclization of 4-pentenamines to prolinol carbamates with CO2 incorporating oxyamination of the C6C bond. Green Chem., 2017, 19(19), 4515-4519.
[http://dx.doi.org/10.1039/C7GC01992K]
[37]
Kim, N.K.; Sogawa, H.; Felicia, M.D.; Takata, T. DBU-catalyzed CO2 fixation in polypropargylamines under solvent-free conditions. Polym. J., 2019, 51(3), 351-357.
[http://dx.doi.org/10.1038/s41428-018-0125-8]
[38]
Lai, Z.; Zhang, R.; Feng, Q.; Sun, J. 3-Aminooxetanes: versatile 1,3-amphoteric molecules for intermolecular annulation reactions. Chem. Sci. (Camb.), 2020, 11(36), 9945-9949.
[http://dx.doi.org/10.1039/D0SC04254D] [PMID: 34094256]
[39]
Chen, X.C.; Zhao, K.C.; Yao, Y.Q.; Lu, Y.; Liu, Y. Synergetic activation of CO2 by the DBU-organocatalyst and amine substrates towards stable carbamate salts for synthesis of oxazolidinones. Catal. Sci. Technol., 2021, 11(21), 7072-7082.
[http://dx.doi.org/10.1039/D1CY01298C]
[40]
Wang, M.Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.N.; Li, S.H. Photoinduced radical-initiated carboxylative cyclization of allyl amines with carbon dioxide. Green Chem., 2017, 19(5), 1240-1244.
[http://dx.doi.org/10.1039/C6GC03200A]
[41]
Zhou, H.; Mu, S.; Ren, B.H.; Zhang, R.; Lu, X.B. Organocatalyzed carboxylative cyclization of propargylic amides with atmospheric CO2 towards oxazolidine-2,4-diones. Green Chem., 2019, 21(5), 991-994.
[http://dx.doi.org/10.1039/C8GC03929A]
[42]
Zanda, N.; Zhou, L.; Alza, E.; Kleij, A.W.; Pericàs, M.À. Continuous organocatalytic flow synthesis of 2-substituted oxazolidinones using carbon dioxide. Green Chem., 2022, 24(11), 4628-4633.
[http://dx.doi.org/10.1039/D2GC00503D]
[43]
Liu, H.; Hua, R. Conversion of carbon dioxide into 2-oxazolidinones and 2(3H)-oxazolones catalyzed by 2,2′,2″-terpyridine. Tetrahedron, 2016, 72(9), 1200-1204.
[http://dx.doi.org/10.1016/j.tet.2016.01.015]
[44]
Zhou, H.; Chen, W.; Liu, J.H.; Zhang, W.Z.; Lu, X.B. Highly effective capture and subsequent catalytic transformation of low-concentration CO2 by superbasic guanidines. Green Chem., 2020, 22(22), 7832-7838.
[http://dx.doi.org/10.1039/D0GC03009K]
[45]
Yu, B.; Kim, D.; Kim, S.; Hong, S.H. Cyanuric acid-based organocatalyst for utilization of carbon dioxide at atmospheric pressure. ChemSusChem, 2017, 10(6), 1080-1084.
[http://dx.doi.org/10.1002/cssc.201601684] [PMID: 27959474]
[46]
Nicholls, R.; Kaufhold, S.; Nguyen, B.N. Observation of guanidine–carbon dioxide complexation in solution and its role in the reaction of carbon dioxide and propargylamines. Catal. Sci. Technol., 2014, 4(10), 3458-3462.
[http://dx.doi.org/10.1039/C4CY00480A]
[47]
Mannisto, J.K.; Sahari, A.; Lagerblom, K.; Niemi, T.; Nieger, M.; Sztanó, G.; Repo, T. One‐step synthesis of 3,4‐disubstituted 2‐oxazolidinones by base‐catalyzed CO2 fixation and aza‐michael addition. Chemistry, 2019, 25(44), 10284-10289.
[http://dx.doi.org/10.1002/chem.201902451] [PMID: 31141227]
[48]
Niemi, T.; Perea-Buceta, J.E.; Fernández, I.; Hiltunen, O.M.; Salo, V.; Rautiainen, S.; Räisänen, M.T.; Repo, T. A one-pot synthesis of N -aryl-2-oxazolidinones and cyclic urethanes by the lewis base catalyzed fixation of carbon dioxide into anilines and bromoalkanes. Chemistry, 2016, 22(30), 10355-10359.
[http://dx.doi.org/10.1002/chem.201602338] [PMID: 27220085]
[49]
He, X.; Yao, X.Y.; Chen, K.H.; He, L.N. Metal‐free photocatalytic synthesis of exo‐iodomethylene 2‐oxazolidinones: An alternative strategy for CO2 valorization with solar energy. ChemSusChem, 2019, 12(23), 5081-5085.
[http://dx.doi.org/10.1002/cssc.201902417] [PMID: 31671246]
[50]
Toda, Y.; Shishido, M.; Aoki, T.; Sukegawa, K.; Suga, H. Switchable synthesis of cyclic carbamates by carbon dioxide fixation at atmospheric pressure. Chem. Commun. (Camb.), 2021, 57(54), 6672-6675.
[http://dx.doi.org/10.1039/D1CC02493K] [PMID: 34132256]
[51]
Qiu, W.; Jin, F.; Hao, Y.; Bao, X.; Yuan, D.; Yao, Y. Amine-catalyzed site- and stereo-selective coupling of epoxy amines and carbon dioxide to construct oxazolidinones. Org. Chem. Front., 2022, 9(16), 4294-4300.
[http://dx.doi.org/10.1039/D2QO00583B]
[52]
Zhao, Y.; Qiu, J.; Li, Z.; Wang, H.; Fan, M.; Wang, J. An experimental and theoretical study on the unexpected catalytic activity of triethanolamine for the carboxylative cyclization of propargylic amines with CO2. ChemSusChem, 2017, 10(9), 2001-2007.
[http://dx.doi.org/10.1002/cssc.201700241] [PMID: 28266144]
[53]
Nale, D.B.; Rana, S.; Parida, K.; Bhanage, B.M. Amine functionalized MCM-41 as a green, efficient, and heterogeneous catalyst for the regioselective synthesis of 5-aryl-2-oxazolidinones, from CO2 and aziridines. Appl. Catal. A Gen., 2014, 469, 340-349.
[http://dx.doi.org/10.1016/j.apcata.2013.10.011]
[54]
Sonzini, P.; Berthet, N.; Damiano, C.; Dufaud, V.; Gallo, E. A metal-free porphyrin heterogenised onto SBA-15 silica: A performant material for the CO2 cycloaddition to epoxides and aziridines. J. Catal., 2022, 414, 143-154.
[http://dx.doi.org/10.1016/j.jcat.2022.08.036]
[55]
Xie, Y.F.; Guo, C.; Shi, L.; Peng, B.H.; Liu, N. Bifunctional organocatalysts for the conversion of CO2, epoxides and aryl amines to 3-aryl-2-oxazolidinones. Org. Biomol. Chem., 2019, 17(14), 3497-3506.
[http://dx.doi.org/10.1039/C9OB00224C] [PMID: 30888376]
[56]
Yousefi, R.; Struble, T.J.; Payne, J.L.; Vishe, M.; Schley, N.D.; Johnston, J.N. Catalytic, enantioselective synthesis of cyclic carbamates from dialkyl amines by CO2 -capture: Discovery, development, and mechanism. J. Am. Chem. Soc., 2019, 141(1), 618-625.
[http://dx.doi.org/10.1021/jacs.8b11793] [PMID: 30582326]
[57]
Takeda, Y.; Kawai, H.; Minakata, S. PCy3-catalyzed ring expansion of aziridinofullerenes with CO2 and aryl isocyanates: Evidence for a two consecutive nucleophilic substitution pathway on the fullerene cage. Chemistry, 2013, 19(40), 13479-13483.
[http://dx.doi.org/10.1002/chem.201301617] [PMID: 23955836]
[58]
Villameriel, J.M.; Pedersen, C.M. Conformational lock of glycosyl donors using cyclic carbamates. Eur. J. Org. Chem., 2020, 2020(41), 6459-6467.
[http://dx.doi.org/10.1002/ejoc.202001130]
[59]
Zhang, W.Z.; Xia, T.; Yang, X.T.; Lu, X.B. Synthesis of oxazolidine-2,4-diones by a tandem phosphorus-mediated carboxylative condensation–cyclization reaction using atmospheric carbon dioxide. Chem. Commun. (Camb.), 2015, 51(28), 6175-6178.
[http://dx.doi.org/10.1039/C5CC01530H] [PMID: 25754376]
[60]
Del Vecchio, A.; Talbot, A.; Caillé, F.; Chevalier, A.; Sallustrau, A.; Loreau, O.; Destro, G.; Taran, F.; Audisio, D. Carbon isotope labeling of carbamates by late-stage [11C], [13C] and [14C]carbon dioxide incorporation. Chem. Commun. (Camb.), 2020, 56(78), 11677-11680.
[http://dx.doi.org/10.1039/D0CC05031H] [PMID: 33000792]
[61]
Ueno, A.; Kayaki, Y.; Ikariya, T. Cycloaddition of tertiary aziridines and carbon dioxide using a recyclable organocatalyst, 1,3-di-tert-butylimidazolium-2-carboxylate: Straightforward access to 3-substituted 2-oxazolidones. Green Chem., 2013, 15(2), 425-430.
[http://dx.doi.org/10.1039/C2GC36414J]
[62]
Fujita, K.; Sato, J.; Yasuda, H. Tautomerization of 5-alkylidene-2-oxazolidinone to 2-oxazolone by use of an N-heterocyclic carbene catalyst. Synlett, 2015, 26(8), 1106-1110.
[http://dx.doi.org/10.1055/s-0034-1380274]
[63]
Fujita, K.; Fujii, A.; Sato, J.; Onozawa, S.; Yasuda, H. Synthesis of 2-oxazolidinone by N-heterocyclic carbene-catalyzed carboxylative cyclization of propargylic amine with CO2. Tetrahedron Lett., 2016, 57(11), 1282-1284.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.027]
[64]
Fujita, K.; Sato, J.; Fujii, A.; Onozawa, S.; Yasuda, H. A carboxylative cyclization of propargylic amines with carbon dioxide catalyzed by the n-heterocyclic carbene 1,3-Di- tert -butylimidazol-2-ylidene (ItBu). Asian J. Org. Chem., 2016, 5(6), 828-833.
[http://dx.doi.org/10.1002/ajoc.201600114]
[65]
Saptal, V.B.; Bhanage, B.M. N-heterocyclic olefins as robust organocatalyst for the chemical conversion of carbon dioxide to value-added chemicals. ChemSusChem, 2016, 9(15), 1980-1985.
[http://dx.doi.org/10.1002/cssc.201600467] [PMID: 27357432]
[66]
Liu, A.H.; Dang, Y.L.; Zhou, H.; Zhang, J-J.; Lu, X-B. CO2 adducts of carbodicarbenes: robust and versatile organocatalysts for chemical transformation of carbon dioxide into heterocyclic compounds. ChemCatChem, 2018, 10(12), 2686-2692.
[http://dx.doi.org/10.1002/cctc.201800148]
[67]
Zhou, H.; Zhang, R.; Lu, X.B. Isolable CO2 adducts of polarized alkenes: High thermal stability and catalytic activity for CO2 chemical transformation. Adv. Synth. Catal., 2019, 361(2), 326-334.
[http://dx.doi.org/10.1002/adsc.201801194]
[68]
Takada, Y.; Foo, S.W.; Yamazaki, Y.; Saito, S. Catalytic fluoride triggers dehydrative oxazolidinone synthesis from CO2. RSC Advances, 2014, 4(92), 50851-50857.
[http://dx.doi.org/10.1039/C4RA09609F]
[69]
Fujii, A.; Choi, J.C.; Fujita, K. Quaternary ammonium salt-catalyzed carboxylative cyclization of propargylic amines with CO2. Tetrahedron Lett., 2017, 58(48), 4483-4486.
[http://dx.doi.org/10.1016/j.tetlet.2017.10.016]
[70]
Fujii, A.; Matsuo, H.; Choi, J.C.; Fujitani, T.; Fujita, K. Efficient synthesis of 2-oxazolidinones and quinazoline-2,4(1H,3H)-diones from CO2 catalyzed by tetrabutylammonium fluoride. Tetrahedron, 2018, 74(24), 2914-2920.
[http://dx.doi.org/10.1016/j.tet.2018.04.059]
[71]
Sonzini, P.; Damiano, C.; Intrieri, D.; Manca, G.; Gallo, E. A metal‐free synthesis of N‐aryl oxazolidin‐2‐ones by the one‐pot reaction of carbon dioxide with N‐aryl aziridines. Adv. Synth. Catal., 2020, 362(14), 2961-2969.
[http://dx.doi.org/10.1002/adsc.202000175]
[72]
Damiano, C.; Sonzini, P.; Manca, G.; Gallo, E. Valorization of CO2 into N ‐alkyl oxazolidin‐2‐ones promoted by metal‐free porphyrin/TBACl System: experimental and computational studies. Eur. J. Org. Chem., 2021, 2021(19), 2807-2814.
[http://dx.doi.org/10.1002/ejoc.202100365]
[73]
Mei, C.; Zhao, Y.; Chen, Q.; Cao, C.; Pang, G.; Shi, Y. Synthesis of oxazolidinones and derivatives through three-component fixation of carbon dioxide. ChemCatChem, 2018, 10(14), 3057-3068.
[http://dx.doi.org/10.1002/cctc.201800142]
[74]
Song, Y.; Sun, Q.; Aguila, B.; Ma, S. Optimizing the performance of porous pyridinium frameworks for carbon dioxide transformation. Catal. Today, 2020, 356, 557-562.
[http://dx.doi.org/10.1016/j.cattod.2020.01.031]
[75]
Qaroush, A.K.; Eftaiha, A.F.; Smadi, A.H.; Assaf, K.I.; Al-Qaisi, F.M.; Alsoubani, F. CS2/CO2 utilization using mukaiyama reagent as a (Thio)carbonylating Promoter: A proof-of-concept study. ACS Omega, 2022, 7(26), 22511-22521.
[http://dx.doi.org/10.1021/acsomega.2c01774] [PMID: 35811893]
[76]
Bresciani, G.; Bortoluzzi, M.; Pampaloni, G.; Marchetti, F. Diethylammonium iodide as catalyst for the metal-free synthesis of 5-aryl-2-oxazolidinones from aziridines and carbon dioxide. Org. Biomol. Chem., 2021, 19(18), 4152-4161.
[http://dx.doi.org/10.1039/D1OB00458A] [PMID: 33881440]
[77]
Zhou, H.; Wang, G.X.; Zhang, W.Z.; Lu, X.B. CO2 adducts of phosphorus ylides: highly active organocatalysts for carbon dioxide transformation. ACS Catal., 2015, 5(11), 6773-6779.
[http://dx.doi.org/10.1021/acscatal.5b01409]
[78]
Wang, T.; Mu, Z.; Ding, X.; Han, B. Functionalized COFs with quaternary phosphonium salt for versatilely catalyzing chemical transformations of CO2. Chem. Res. Chin. Univ., 2022, 38(2), 446-455.
[http://dx.doi.org/10.1007/s40242-022-1495-1]
[79]
Wang, B.; Elageed, E.H.M.; Zhang, D.; Yang, S.; Wu, S.; Zhang, G.; Gao, G. One-pot conversion of carbon dioxide, ethylene oxide, and amines to 3-aryl-2-oxazolidinones catalyzed with binary ionic liquids. ChemCatChem, 2014, 6(1), 278-283.
[http://dx.doi.org/10.1002/cctc.201300801]
[80]
Zha, J.; Ding, T.; Chen, J.; Wang, R.; Gao, G.; Xia, F. Reaction mechanism of CO2 and styrene oxide catalyzed by ionic liquids: A combined dft calculation and experimental study. J. Phys. Chem. A, 2020, 124(39), 7991-7998.
[http://dx.doi.org/10.1021/acs.jpca.0c04662] [PMID: 32900202]
[81]
Hu, J.; Ma, J.; Zhu, Q.; Zhang, Z.; Wu, C.; Han, B. Transformation of atmospheric CO2 catalyzed by protic ionic liquids: Efficient synthesis of 2-oxazolidinones. Angew. Chem. Int. Ed., 2015, 54(18), 5399-5403.
[http://dx.doi.org/10.1002/anie.201411969] [PMID: 25735887]
[82]
Zhu, J.; Wang, S.; Gu, Y.; Xue, B.; Li, Y. A new and efficient method of graphene oxide immobilized with ionic liquids: Promoted catalytic activity for CO2 cycloaddition. Mater. Chem. Phys., 2018, 208, 68-76.
[http://dx.doi.org/10.1016/j.matchemphys.2018.01.031]
[83]
Zhou, Y.; Zhang, W.; Ma, L.; Zhou, Y.; Wang, J. Amino acid anion paired mesoporous poly(ionic liquids) as metal-/halogen-free heterogeneous catalysts for carbon dioxide fixation. ACS Sustain. Chem.& Eng., 2019, 7(10), 9387-9398.
[http://dx.doi.org/10.1021/acssuschemeng.9b00591]
[84]
Liu, Y.; Chen, C.; Hu, Y.L. Efficient and convenient catalytic regioselective synthesis of 2-oxazolidinones from CO2 and aziridines over reusable SBA-15 supported hydroxyacetate-functionalized ionic liquid. J. Porous Mater., 2022, 29(1), 131-142.
[http://dx.doi.org/10.1007/s10934-021-01153-6]
[85]
Min, Q.; Miao, P.; Liu, J.; Ma, J.; Qi, M.; Shamsa, F. SBA-15 supported dendritic ILs as a green catalysts for synthesis of 2-imidazolidinone from ethylenediamine and carbon dioxide. Catal. Lett., 2022, 152(5), 1476-1487.
[http://dx.doi.org/10.1007/s10562-021-03728-z]
[86]
Xia, S.; Song, Y.; Li, X.; Li, H.; He, L.N. Ionic liquid-promoted three-component domino reaction of propargyl alcohols, carbon dioxide and 2-aminoethanols: a thermodynamically favorable synthesis of 2-oxazolidinones. Molecules, 2018, 23(11), 3033.
[http://dx.doi.org/10.3390/molecules23113033] [PMID: 30463369]
[87]
Lindberg, A.; Vasdev, N. Ring-opening of non-activated aziridines with [11C]CO2 via novel ionic liquids. RSC Advances, 2022, 12(33), 21417-21421.
[http://dx.doi.org/10.1039/D2RA03966D] [PMID: 35975081]
[88]
Kumar, S.; Jain, S.L. Polyethylene glycol wrapped potassium bromide assisted chemical fixation of carbon dioxide. Ind. Eng. Chem. Res., 2014, 53(2), 541-546.
[http://dx.doi.org/10.1021/ie4033439]
[89]
Chen, W.; Zhong, L.; Peng, X.; Sun, R.; Lu, F. Chemical fixation of carbon dioxide using a green and efficient catalytic system based on sugarcane bagasse—an agricultural waste. ACS Sustain. Chem. Eng., 2015, 3(1), 147-152.
[http://dx.doi.org/10.1021/sc5006445]
[90]
Sadeghzadeh, S.M.; Zhiani, R.; Emrani, S. Spirulina (Arthrospira) platensis supported ionic liquid as a catalyst for the synthesis of 3-aryl-2-oxazolidinones from carbon dioxide, epoxide, anilines. Catal. Lett., 2018, 148(1), 119-124.
[http://dx.doi.org/10.1007/s10562-017-2217-z]
[91]
Tamura, M.; Honda, M.; Nakagawa, Y.; Tomishige, K. Direct conversion of CO2 with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. J. Chem. Technol. Biotechnol., 2014, 89(1), 19-33.
[http://dx.doi.org/10.1002/jctb.4209]
[92]
Marchegiani, M.; Nodari, M.; Tansini, F.; Massera, C.; Mancuso, R.; Gabriele, B.; Costa, M.; Della Ca’, N. Urea derivatives from carbon dioxide and amines by guanidine catalysis: Easy access to imidazolidin-2-ones under solvent-free conditions. J. CO2 Util., 2017, 21, 553-561.
[http://dx.doi.org/10.1016/j.jcou.2017.08.017]
[93]
Lam, P.Y.S.; Jadhav, P.K.; Eyermann, C.J.; Hodge, C.N.; Ru, Y.; Bacheler, L.T.; Meek, J.L.; Otto, M.J.; Rayner, M.M.; Wong, Y.N.; Chang, C-H.; Weber, P.C.; Jackson, D.A.; Sharpe, T.R.; Erickson-Viitanen, S. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science, 1994, 263(5145), 380-384.
[http://dx.doi.org/10.1126/science.8278812] [PMID: 8278812]
[94]
Koizumi, H.; Takeuchi, K.; Matsumoto, K.; Fukaya, N.; Sato, K.; Uchida, M.; Matsumoto, S.; Hamura, S.; Choi, J.C. One-pot catalytic synthesis of urea derivatives from alkyl ammonium carbamates using low concentrations of CO2. Commun. Chem., 2021, 4(1), 66.
[http://dx.doi.org/10.1038/s42004-021-00505-2] [PMID: 36697711]
[95]
Bhanage, B.M.; Fujita, S.; Ikushima, Y.; Arai, M. Synthesis of cyclic ureas and urethanes from alkylene diamines and amino alcohols with pressurized carbon dioxide in the absence of catalysts. Green Chem., 2003, 5(3), 340-342.
[http://dx.doi.org/10.1039/b300778b]
[96]
Del Vecchio, A.; Caillé, F.; Chevalier, A.; Loreau, O.; Horkka, K.; Halldin, C.; Schou, M.; Camus, N.; Kessler, P.; Kuhnast, B.; Taran, F.; Audisio, D. Late-stage isotopic carbon labeling of pharmaceutically relevant cyclic ureas directly from CO2. Angew. Chem. Int. Ed., 2018, 57(31), 9744-9748.
[http://dx.doi.org/10.1002/anie.201804838] [PMID: 29862657]
[97]
Brantley, S.E.; Molinski, T.F. Synthetic studies of trichloroleucine marine natural products. Michael addition of LiCCl3 to N-crotonylcamphor sultam. Org. Lett., 1999, 1(13), 2165-2167.
[http://dx.doi.org/10.1021/ol991256g]
[98]
Jin, S.J.; Khan, Y.; Maeng, J.H.; Kim, Y.J.; Hwang, J.; Cheong, M.; Lee, J.S.; Kim, H.S. Efficient catalytic systems for the carboxylation of diamines to cyclic ureas using ethylene urea as a promoter. Appl. Catal. B, 2017, 209, 139-145.
[http://dx.doi.org/10.1016/j.apcatb.2017.02.079]
[99]
Qian, F.; McCusker, J.E.; Zhang, Y.; Main, A.D.; Chlebowski, M.; Kokka, M.; McElwee-White, L. Catalytic oxidative carbonylation of primary and secondary diamines to cyclic ureas. Optimization and substituent studies. J. Org. Chem., 2002, 67(12), 4086-4092.
[http://dx.doi.org/10.1021/jo0109319] [PMID: 12054942]
[100]
Yu, B.; Zhang, H.; Zhao, Y.; Chen, S.; Xu, J.; Hao, L.; Liu, Z. DBU-based ionic-liquid-catalyzed carbonylation of o -phenylenediamines with CO2 to 2-benzimidazolones under solvent-free conditions. ACS Catal., 2013, 3(9), 2076-2082.
[http://dx.doi.org/10.1021/cs400256j]
[101]
Sheldon, R.A. The E factor 25 years on: The rise of green chemistry and sustainability. Green Chem., 2017, 19(1), 18-43.
[http://dx.doi.org/10.1039/C6GC02157C]
[102]
Wright, J.B. The chemistry of the benzimidazoles. Chem. Rev., 1951, 48(3), 397-541.
[http://dx.doi.org/10.1021/cr60151a002] [PMID: 24541208]
[103]
Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W.A.; Kühn, F.E. Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? Angew. Chem. Int. Ed., 2011, 50(37), 8510-8537.
[http://dx.doi.org/10.1002/anie.201102010] [PMID: 21887758]
[104]
Aresta, M. Carbon Dioxide as Chemical Feedstock; Wiley-VCH: Weinheim, 2010.
[105]
Kimura, T.; Kamata, K.; Mizuno, N. A bifunctional tungstate catalyst for chemical fixation of CO2 at atmospheric pressure. Angew. Chem. Int. Ed., 2012, 51(27), 6700-6703.
[http://dx.doi.org/10.1002/anie.201203189] [PMID: 22674893]
[106]
Nomura, R.; Yamamoto, M.; Matsuda, H. Preparation of cyclic ureas from carbon dioxide and diamines catalyzed by triphenylstibine oxide. Ind. Eng. Chem. Res., 1987, 26(6), 1056-1059.
[http://dx.doi.org/10.1021/ie00066a002]
[107]
Nomura, R.; Hasegawa, Y.; Ishimoto, M.; Toyosaki, T.; Matsuda, H. Carbonylation of amines by carbon dioxide in the presence of an organoantimony catalyst. J. Org. Chem., 1992, 57(26), 7339-7342.
[http://dx.doi.org/10.1021/jo00052a060]
[108]
Hwang, J.; Han, D.; Oh, J.J.; Cheong, M.; Koo, H.J.; Lee, J.S.; Kim, H.S. Efficient non-catalytic carboxylation of diamines to cyclic ureas using 2-pyrrolidone as a solvent and a promoter. Adv. Synth. Catal., 2019, 361(2), 297-306.
[http://dx.doi.org/10.1002/adsc.201800945]
[109]
Biermann, M.; Normann, F.; Johnsson, F.; Hoballah, R.; Onarheim, K. Capture of CO2 from steam reformer flue gases using monoethanolamine: Pilot plant validation and process design for partial capture. Ind. Eng. Chem. Res., 2022, 61(38), 14305-14323.
[http://dx.doi.org/10.1021/acs.iecr.2c02205]
[110]
Inagaki, F.; Matsumoto, C.; Iwata, T.; Mukai, C. CO2-selective absorbents in air: Reverse lipid bilayer structure forming neutral carbamic acid in water without hydration. J. Am. Chem. Soc., 2017, 139(13), 4639-4642.
[http://dx.doi.org/10.1021/jacs.7b01049] [PMID: 28306250]
[111]
Wu, C.; Cheng, H.; Liu, R.; Wang, Q.; Hao, Y.; Yu, Y.; Zhao, F. Synthesis of urea derivatives from amines and CO2 in the absence of catalyst and solvent. Green Chem., 2010, 12(10), 1811-1816.
[http://dx.doi.org/10.1039/c0gc00059k]
[112]
Brahmayya, M.; Dai, S. A.; Suen, S.Y. Facile synthesis of 2- benzimidazolones via carbonylation of o -phenylenediamines with CO2. J. CO2 Util., 2017, 22, 135-142.
[http://dx.doi.org/10.1016/j.jcou.2017.09.006]
[113]
Shi, M.; Shen, Y.M. Transition-metal-catalyzed reactions of propargylamine with carbon dioxide and carbon disulfide. J. Org. Chem., 2002, 67(1), 16-21.
[http://dx.doi.org/10.1021/jo0014966] [PMID: 11777433]
[114]
Awata, N.; Satomi, O. Synthesis of 1-(2-ethoxyethyl)-2-(4-methyl-1-homopiperazinyl)-[2-14C]benzimidazole difumarate([14C]KB-2413). J. Labelled Comp. Radiopharm., 1987, 24(3), 331-338.
[http://dx.doi.org/10.1002/jlcr.2580240314]
[115]
Labas, R.; Sobrio, F.; Bramoullé, Y.; Hérard, A.S.; Guillermier, M.; Hantraye, P.; Dollé, F.; Barré, L. Radiosynthesis of N-[4-(4-fluorobenzyl)piperidin-1-yl]-N′-(2-[11C]oxo-1,3-dihydrobenzimidazol-5-yl)oxamide, a NR2B-selective NMDA receptor antagonist. J. Labelled Comp. Radiopharm., 2010, 53, 63-67.
[http://dx.doi.org/10.1002/jlcr.1702]
[116]
Rotstein, B.H.; Liang, S.H.; Placzek, M.S.; Hooker, J.M.; Gee, A.D.; Dollé, F.; Wilson, A.A.; Vasdev, N. 11C6O bonds made easily for positron emission tomography radiopharmaceuticals. Chem. Soc. Rev., 2016, 45(17), 4708-4726.
[http://dx.doi.org/10.1039/C6CS00310A] [PMID: 27276357]
[117]
Kealey, S.; Husbands, S.M.; Bennacef, I.; Gee, A.D.; Passchier, J. Palladium-mediated oxidative carbonylation reactions for the synthesis of 11 C-radiolabelled ureas. J. Labelled Comp. Radiopharm., 2014, 57(4), 202-208.
[http://dx.doi.org/10.1002/jlcr.3151] [PMID: 24327390]
[118]
Bow, J.P.J.; Adami, V.; Marasco, A.; Grønnevik, G.; Rivers, D.A.; Alvaro, G.; Riss, P.J. A direct fixation of CO2 for isotopic labelling of hydantoins using iodine–phosphine charge transfer complexes. Chem. Commun. (Camb.), 2022, 58(54), 7546-7549.
[http://dx.doi.org/10.1039/D2CC01754G] [PMID: 35704988]
[119]
Horkka, K.; Dahl, K.; Bergare, J.; Elmore, C.S.; Halldin, C.; Schou, M. Rapid and efficient synthesis of 11 C-labeled benzimidazolones using [11C]carbon dioxide. ChemistrySelect, 2019, 4(6), 1846-1849.
[http://dx.doi.org/10.1002/slct.201803561]
[120]
Galkin, A.; Fallarero, A.; Vuorela, P.M. Coumarins permeability in Caco-2 cell model. J. Pharm. Pharmacol., 2010, 61(2), 177-184.
[http://dx.doi.org/10.1211/jpp.61.02.0006] [PMID: 19178764]
[121]
Kulkarni, M.; Kulkarni, G.; Lin, C.H.; Sun, C.M. Recent advances in coumarins and 1-azacoumarins as versatile biodynamic agents. Curr. Med. Chem., 2006, 13(23), 2795-2818.
[http://dx.doi.org/10.2174/092986706778521968] [PMID: 17073630]
[122]
Prchal, L.; Podlipná, R.; Lamka, J.; Dědková, T.; Skálová, L.; Vokřál, I.; Lecová, L.; Vaněk, T.; Szotáková, B. Albendazole in environment: faecal concentrations in lambs and impact on lower development stages of helminths and seed germination. Environ. Sci. Pollut. Res. Int., 2016, 23(13), 13015-13022.
[http://dx.doi.org/10.1007/s11356-016-6472-0] [PMID: 26996913]
[123]
Wu, Q.; Li, Y.; Wang, C.; Liu, Z.; Zang, X.; Zhou, X.; Wang, Z. Dispersive liquid–liquid microextraction combined with high performance liquid chromatography–fluorescence detection for the determination of carbendazim and thiabendazole in environmental samples. Anal. Chim. Acta, 2009, 638(2), 139-145.
[http://dx.doi.org/10.1016/j.aca.2009.02.017] [PMID: 19327452]
[124]
Gilard, M.; Arnaud, B.; Cornily, J.C.; Le Gal, G.; Lacut, K.; Le Calvez, G.; Mansourati, J.; Mottier, D.; Abgrall, J.F.; Boschat, J. Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: The randomized, double-blind OCLA (Omeprazole CLopidogrel Aspirin) study. J. Am. Coll. Cardiol., 2008, 51(3), 256-260.
[http://dx.doi.org/10.1016/j.jacc.2007.06.064] [PMID: 18206732]
[125]
Jacquet, O.; Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T. Complete catalytic deoxygenation of CO2 into formamidine derivatives. ChemCatChem, 2013, 5(1), 117-120.
[http://dx.doi.org/10.1002/cctc.201200732]
[126]
Zhang, Z.; Sun, Q.; Xia, C.; Sun, W. CO2 as a C1 Source: b(c6f5)3-catalyzed cyclization of o-phenylene-diamines to construct benzimidazoles in the presence of hydrosilane. Org. Lett., 2016, 18(24), 6316-6319.
[http://dx.doi.org/10.1021/acs.orglett.6b03030] [PMID: 27978659]
[127]
Gao, X.; Yu, B.; Yang, Z.; Zhao, Y.; Zhang, H.; Hao, L.; Han, B.; Liu, Z. Ionic liquid-catalyzed c–s bond construction using CO2 as a C1 building block under mild conditions: A metal-free route to synthesis of benzothiazoles. ACS Catal., 2015, 5(11), 6648-6652.
[http://dx.doi.org/10.1021/acscatal.5b01874]
[128]
Hulla, M.; Nussbaum, S.; Bonnin, A.R.; Dyson, P.J. The dilemma between acid and base catalysis in the synthesis of benzimidazole from o -phenylenediamine and carbon dioxide. Chem. Commun. (Camb.), 2019, 55(87), 13089-13092.
[http://dx.doi.org/10.1039/C9CC06156H] [PMID: 31608908]
[129]
Wu, H.; Dai, W.; Saravanamurugan, S.; Li, H.; Yang, S. Endogenous X–C=O species enable catalyst-free formylation prerequisite for CO2 reductive upgrading. Green Chem., 2020, 22(17), 5822-5832.
[http://dx.doi.org/10.1039/D0GC02142C]
[130]
Li, X.; Zhang, J.; Yang, Y.; Hong, H.; Han, L.; Zhu, N. Reductive cyclization of o-phenylenediamine with CO2 and BH3NH3 to synthesize 1H-benzoimidazole derivatives. J. Organomet. Chem., 2021, 954-955, 122079.
[http://dx.doi.org/10.1016/j.jorganchem.2021.122079]
[131]
Boshta, N. M.; El-Essawy, F. A.; Alshammari, M. B.; Noreldein, S. G.; Darwesh, O. M. Discovery of quinazoline-2,4(1H,3H)-dione derivatives as potential antibacterial agent: Design, synthesis, and their antibacterial activity. Molecules, 2022, 27(12), 3853.
[http://dx.doi.org/10.3390/molecules27123853]
[132]
Malik, M.; Marks, K.R.; Mustaev, A.; Zhao, X.; Chavda, K.; Kerns, R.J.; Drlica, K. Fluoroquinolone and quinazolinedione activities against wild-type and gyrase mutant strains of Mycobacterium smegmatis. Antimicrob. Agents Chemother., 2011, 55(5), 2335-2343.
[http://dx.doi.org/10.1128/AAC.00033-11] [PMID: 21383100]
[133]
Kotb, A.R.; Bakhotmah, D.A.; Abdallah, A.E.; Elkady, H.; Taghour, M.S.; Eissa, I.H.; El-Zahabi, M.A. Design, synthesis, and biological evaluation of novel bioactive thalidomide analogs as anticancer immunomodulatory agents. RSC Advances, 2022, 12(52), 33525-33539.
[http://dx.doi.org/10.1039/D2RA06188K] [PMID: 36505721]
[134]
Al-Harbi, E.A.; Gad, W.A. Nitrogen-containing heterocycles in agrochemicals. Agric. Res. Technol., 2018, 16(2), 60-61.
[http://dx.doi.org/10.19080/ARTOAJ.2018.16.555986]
[135]
Nikpour, F.; Paibast, T. A green, facile, and one-pot synthesis of 2,4-(1 H, 3 H)-quinazolinediones under microwave irradiations. Chem. Lett., 2005, 34(10), 1438-1439.
[http://dx.doi.org/10.1246/cl.2005.1438]
[136]
Samrin, F.; Sharma, A.; Khan, I.A.; Puri, S. Synthesis and antibacterial activity of new diaryldiamines. J. Heterocycl. Chem., 2012, 49(6), 1391-1397.
[http://dx.doi.org/10.1002/jhet.1040]
[137]
Prabhakar, V.; Sudhakar, B.K.; Ravindranath, L.K.; Latha, J.; Venkateswarlu, B. Synthesis, characterisation and biological evaluation of quinazoline derivatives as novel anti-microbial agents. Org. Chem. Curr. Res., 2016, 5(3), 1000174.
[http://dx.doi.org/10.4172/2161-0401.1000174]
[138]
Sharafi-Kolkeshvandi, M.; Nikpour, F. A facile and convenient approach for the one-pot synthesis of 2,4(1H,3H)-quinazolinediones. Chin. Chem. Lett., 2012, 23(4), 431-433.
[http://dx.doi.org/10.1016/j.cclet.2012.01.027]
[139]
Li, W.; Yin, Y.; Shuai, W.; Xu, F.; Yao, H.; Liu, J.; Cheng, K.; Xu, J.; Zhu, Z.; Xu, S. Discovery of novel quinazolines as potential anti-tubulin agents occupying three zones of colchicine domain. Bioorg. Chem., 2019, 83, 380-390.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.027] [PMID: 30408650]
[140]
Lang, X. D.; Yu, Y. C.; Li, Z. M.; He, L. N. Protic ionic liquidspromoted efficient synthesis of quinazolines from 2- aminobenzonitriles and CO2 at ambient conditions. J. CO2 Util., 2016, 15, 115-122.
[http://dx.doi.org/10.1016/j.jcou.2016.03.002]
[141]
Mizuno, T.; Okamoto, N.; Ito, T.; Miyata, T. Synthesis of 2,4-dihydroxyquinazolines using carbon dioxide in the presence of DBU under mild conditions. Tetrahedron Lett., 2000, 41(7), 1051-1053.
[http://dx.doi.org/10.1016/S0040-4039(99)02231-5]
[142]
Mizuno, T.; Okamoto, N.; Ito, T.; Miyata, T. Synthesis of quinazolines using carbon dioxide (or carbon monoxide with sulfur) under mild conditions. Heteroatom Chem., 2000, 11(6), 428-433.
[http://dx.doi.org/10.1002/1098-1071(2000)11:6<428:AID-HC12>3.0.CO;2-Z]
[143]
Wang, Z.; Xie, R.; Hong, H.; Han, L.; Zhu, N. Mechanisms and reaction conditions of CO2 with o-aminobenzonitrile for the synthesis of quinazoline-2,4-dione. J. CO2 Util., 2021, 51, 101644.
[http://dx.doi.org/10.1016/j.jcou.2021.101644]
[144]
Mu, X.; Han, L.; Liu, T. How and why a protic ionic liquid efficiently catalyzes chemical fixation of CO2 to quinazoline-2,4-(1 H, 3 H)-diones: Electrostatically controlled reactivity. J. Phys. Chem. A, 2019, 123(43), 9394-9402.
[http://dx.doi.org/10.1021/acs.jpca.9b07838] [PMID: 31589050]
[145]
Ren, Y.; Meng, T.T.; Jia, J.; Wu, H.S. A computational study on the chemical fixation of carbon dioxide with 2-aminobenzonitrile catalyzed by 1-butyl-3-methyl imidazolium hydroxide ionic liquids. Comput. Theor. Chem., 2011, 978(1-3), 47-56.
[http://dx.doi.org/10.1016/j.comptc.2011.09.032]
[146]
Ma, J.; Han, B.; Song, J.; Hu, J.; Lu, W.; Yang, D.; Zhang, Z.; Jiang, T.; Hou, M. Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 and 2-aminobenzonitriles in water without any catalyst. Green Chem., 2013, 15(6), 1485-1489.
[http://dx.doi.org/10.1039/c3gc00091e]
[147]
Mizuno, T.; Mihara, M.; Nakai, T.; Iwai, T.; Ito, T. Solvent-free synthesis of quinazoline-2,4(1 H, 3 H)-diones using carbon dioxide and a catalytic amount of DBU. Synthesis, 2007, 2007(16), 2524-2528.
[http://dx.doi.org/10.1055/s-2007-983808]
[148]
Pereira, F.S.; deAzevedo, E.R.; da Silva, E.F.; Bonagamba, T.J.; da Silva Agostíni, D.L.; Magalhães, A.; Job, A.E.; Pérez González, E.R. Study of the carbon dioxide chemical fixation—activation by guanidines. Tetrahedron, 2008, 64(43), 10097-10106.
[http://dx.doi.org/10.1016/j.tet.2008.08.008]
[149]
Patil, Y.P.; Tambade, P.J.; Jagtap, S.R.; Bhanage, B.M. Cesium carbonate catalyzed efficient synthesis of quinazoline-2,4(1 H, 3 H)-diones using carbon dioxide and 2-aminobenzonitriles. Green Chem. Lett. Rev., 2008, 1(2), 127-132.
[http://dx.doi.org/10.1080/17518250802331181]
[150]
Patil, Y.P.; Tambade, P.J.; Parghi, K.D.; Jayaram, R.V.; Bhanage, B.M. Synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles using MgO/ZrO2 as a solid base catalyst. Catal. Lett., 2009, 133(1-2), 201-208.
[http://dx.doi.org/10.1007/s10562-009-0126-5]
[151]
Gao, J.; He, L.N.; Miao, C.X.; Chanfreau, S. Chemical fixation of CO2: efficient synthesis of quinazoline-2,4(1H, 3H)-diones catalyzed by guanidines under solvent-free conditions. Tetrahedron, 2010, 66(23), 4063-4067.
[http://dx.doi.org/10.1016/j.tet.2010.04.011]
[152]
Li, W.; Yang, N.; Lyu, Y. A mechanistic study on guanidine-catalyzed chemical fixation of CO2 with 2-aminobenzonitrile to quinazoline-2,4(1H,3H)-dione. Org. Chem. Front., 2016, 3(7), 823-835.
[http://dx.doi.org/10.1039/C6QO00085A]
[153]
Sabet-Sarvestani, H.; Eshghi, H.; Izadyar, M. A theoretical study on the efficiency and role of guanidines-based organic superbases on carbon dioxide utilization in quinazoline-2,4(1H, 3H)-diones synthesis. Struct. Chem., 2017, 28(3), 675-686.
[http://dx.doi.org/10.1007/s11224-016-0842-6]
[154]
Shi, X.L.; Du, M.; Sun, B.; Liu, S.; Jiang, L.; Hu, Q.; Gong, H.; Xu, G.; Liu, B. A novel fiber-supported superbase catalyst in the spinning basket reactor for cleaner chemical fixation of CO2 with 2-aminobenzonitriles in water. Chem. Eng. J., 2022, 430, 133204.
[http://dx.doi.org/10.1016/j.cej.2021.133204]
[155]
Zhao, Y.N.; Yu, B.; Yang, Z.Z.; He, L.N. Magnetic base catalysts for the chemical fixation of carbon dioxide to quinazoline-2,4(1H,3H)-diones. RSC Advances, 2014, 4(55), 28941-28946.
[http://dx.doi.org/10.1039/C4RA03659J]
[156]
Nale, D.B.; Rana, S.; Parida, K.; Bhanage, B.M. Amine functionalized MCM-41: An efficient heterogeneous recyclable catalyst for the synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles in water. Catal. Sci. Technol., 2014, 4(6), 1608-1614.
[http://dx.doi.org/10.1039/C3CY00992K]
[157]
Hu, J.; Chen, S.; Guo, Y.; Li, L.; Deng, T. Basic Salt‐Lake Brine: an efficient catalyst for the transformation of CO2 into quinazoline:2,4(1: H, 3: H):diones. ChemSusChem, 2018, 11, 4219-4225.
[http://dx.doi.org/10.1002/cssc.201802431] [PMID: 30430719]
[158]
Hulla, M.; Chamam, S.M.A.; Laurenczy, G.; Das, S.; Dyson, P.J. Delineating the mechanism of ionic liquids in the synthesis of quinazoline-2,4(1 H, 3 H)-dione from 2-aminobenzonitrile and CO2. Angew. Chem. Int. Ed., 2017, 56(35), 10559-10563.
[http://dx.doi.org/10.1002/anie.201705438] [PMID: 28678430]
[159]
Sheng, Z.Z.; Huang, M.M.; Xue, T.; Xia, F.; Wu, H.H. Alcohol amine-catalyzed CO2 conversion for the synthesis of quinazoline-2,4-(1 H, 3 H)-dione in water. RSC Advances, 2020, 10(57), 34910-34915.
[http://dx.doi.org/10.1039/D0RA06439D] [PMID: 35514399]
[160]
Patil, Y.P.; Tambade, P.J.; Deshmukh, K.M.; Bhanage, B.M. Synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles using [Bmim]OH as a homogeneous recyclable catalyst. Catal. Today, 2009, 148(3-4), 355-360.
[http://dx.doi.org/10.1016/j.cattod.2009.06.010]
[161]
Patil, V.S.; Padalkar, V.S.; Chaudhari, A.S.; Sekar, N. Intrinsic catalytic activity of an acidic ionic liquid as a solvent for quinazoline synthesis. Catal. Sci. Technol., 2012, 2(8), 1681.
[http://dx.doi.org/10.1039/c2cy20160g]
[162]
Gheidari, D.; Mehrdad, M.; Maleki, S. Recent advances in synthesis of quinazoline‐2,4(1H,3H)‐diones: Versatile building blocks in N ‐heterocyclic compounds. Appl. Organomet. Chem., 2022, 36(6), e6631.
[http://dx.doi.org/10.1002/aoc.6631]
[163]
Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Hao, L.; Gao, X.; Liu, Z. A protic ionic liquid catalyzes CO₂ conversion at atmospheric pressure and room temperature: Synthesis of quinazoline-2,4(1H,3H)-diones. Angew. Chem. Int. Ed., 2014, 53(23), 5922-5925.
[http://dx.doi.org/10.1002/anie.201400521] [PMID: 24788820]
[164]
Zhang, R.; Hu, D.; Zhou, Y.; Ge, C.; Liu, H.; Fan, W.; Li, L.; Chen, B.; Cheng, Y.; Chen, Y.; Zhang, W.; Cui, G.; Lu, H. Tuning ionic liquid-based catalysts for CO2 conversion into quinazoline-2,4(1H,3H)-diones. Molecules, 2023, 28(3), 1024.
[http://dx.doi.org/10.3390/molecules28031024] [PMID: 36770691]
[165]
Zheng, H.; Cao, X.; Du, K.; Xu, J.; Zhang, P. A highly efficient way to capture CX2 (O, S) mildly in reusable ReILs at atmospheric pressure. Green Chem., 2014, 16(6), 3142-3148.
[http://dx.doi.org/10.1039/c4gc00190g]
[166]
Wang, C.; Luo, H.; Jiang, D.; Li, H.; Dai, S. Carbon dioxide capture by superbase-derived protic ionic liquids. Angew. Chem. Int. Ed., 2010, 49(34), 5978-5981.
[http://dx.doi.org/10.1002/anie.201002641] [PMID: 20632428]
[167]
Liu, F.; Ping, R.; Zhao, P.; Gu, Y.; Gao, J.; Liu, M. Succinimide-Based Ionic Liquids: an efficient and versatile platform for transformation of CO2 into quinazoline-2,4(1H,3H)-diones under mild and solvent-free conditions. ACS Sustain. Chem.& Eng., 2019, 7(15), 13517-13522.
[http://dx.doi.org/10.1021/acssuschemeng.9b03154]
[168]
Liu, F.; Ping, R.; Gu, Y.; Zhao, P.; Liu, B.; Gao, J.; Liu, M. Efficient one pot capture and conversion of CO2 into quinazoline-2,4(1 H, 3 H)-diones using triazolium-based ionic liquids. ACS Sustain. Chem.& Eng., 2020, 8(7), 2910-2918.
[http://dx.doi.org/10.1021/acssuschemeng.9b07242]
[169]
Ping, R.; Zhao, P.; Zhang, Q.; Zhang, G.; Liu, F.; Liu, M. Catalytic conversion of CO2 from simulated flue gases with aminophenol-based protic ionic liquids to produce quinazoline-2,4(1 H, 3 H)-diones under mild conditions. ACS Sustain. Chem.& Eng., 2021, 9(14), 5240-5249.
[http://dx.doi.org/10.1021/acssuschemeng.1c01466]
[170]
Phatake, V.V.; Gokhale, T.A.; Bhanage, B.M. [TBDH][HFIP] ionic liquid catalyzed synthesis of quinazoline-2,4(1H,3H)-diones in the presence of ambient temperature and pressure. J. Mol. Liq., 2022, 345, 117008.
[http://dx.doi.org/10.1016/j.molliq.2021.117008]
[171]
Weng, S.; Dong, J.; Ma, J.; Bai, J.; Liu, F.; Liu, M. Biocompatible anions-derived ionic liquids a sustainable media for CO2 conversion into quinazoline-2,4(1H,3H)-diones under additive-free conditions. J. CO2 Util., 2022, 56
[http://dx.doi.org/10.1016/j.jcou.2021.101841]
[172]
Lang, X.D.; Zhang, S.; Song, Q.W.; He, L.N. Tetra-butylphosphonium arginine-based ionic liquid-promoted cyclization of 2-aminobenzonitrile with carbon dioxide. RSC Advances, 2015, 5(20), 15668-15673.
[http://dx.doi.org/10.1039/C4RA16057F]
[173]
Saptal, V.B.; Bhanage, B.M. Bifunctional ionic liquids for the multitask fixation of carbon dioxide into valuable chemicals. ChemCatChem, 2016, 8(1), 244-250.
[http://dx.doi.org/10.1002/cctc.201501044]
[174]
Shi, G.; Chen, K.; Wang, Y.; Li, H.; Wang, C. Highly efficient synthesis of quinazoline-2,4(1 H, 3 H)-diones from CO2 by Hydroxyl functionalized aprotic ionic liquids. ACS Sustain. Chem.& Eng., 2018, 6(5), 5760-5765.
[http://dx.doi.org/10.1021/acssuschemeng.8b01109]
[175]
Zhu, A.; Tang, M.; Lv, Q.; Li, L.; Bai, S.; Li, Q.; Feng, W.; Li, Q.; Wang, J. Fixation of CO2 in structurally diverse quinazoline- 2,4(1H,3H)-diones under ambient conditions. J. CO2 Util., 2019, 34, 500-506.
[http://dx.doi.org/10.1016/j.jcou.2019.07.038]
[176]
Gao, X.; Liu, J.; Liu, Z.; Zhang, L.; Zuo, X.; Chen, L.; Bai, X.; Bai, Q.; Wang, X.; Zhou, A. DBU coupled ionic liquid-catalyzed efficient synthesis of quinazolinones from CO2 and 2-aminobenzonitriles under mild conditions. RSC Advances, 2020, 10(20), 12047-12052.
[http://dx.doi.org/10.1039/D0RA00194E] [PMID: 35496607]
[177]
Chen, T.; Zhang, Y.; Xu, Y. Efficient synthesis of quinazoline-2,4(1 H, 3 H)-dione via simultaneous activated CO2 and 2-aminobenzonitrile by 1-methylhydantoin anion-functionalized ionic liquid through the multiple-site cooperative interactions. ACS Sustain. Chem.& Eng., 2022, 10(32), 10699-10711.
[http://dx.doi.org/10.1021/acssuschemeng.2c03249]
[178]
Wang, T.; Zheng, D.; Zhang, Z.; Wang, L.; Zhang, J. Exploration of catalytic species for highly efficient preparation of quinazoline-2,4(1H,3H)-diones by succinimide-based ionic liquids under atmospheric pressure: Combination of experimental and theoretical study. Fuel, 2022, 319, 123628.
[http://dx.doi.org/10.1016/j.fuel.2022.123628]
[179]
Sadeghzadeh, S.M. Ionic liquid immobilized onto fibrous nano-silica: A highly active and reusable catalyst for the synthesis of quinazoline-2,4(1H,3H)-diones. Catal. Commun., 2015, 72, 91-96.
[http://dx.doi.org/10.1016/j.catcom.2015.09.016]
[180]
Nale, D. B.; Saigaonkar, S. D.; Bhanage, B. M. An efficient synthesis of quinazoline-2,4(1H,3H)-dione from CO2 and 2- aminobenzonitrile using [Hmim]OH/SiO2 as a base functionalized supported ionic liquid phase catalysT. J. CO2 Util., 2014, 8, 67-73.
[http://dx.doi.org/10.1016/j.jcou.2014.08.001]
[181]
Sarmah, B.; Srivastava, R. Activation and utilization of CO2 using ionic liquid or amine-functionalized basic nanocrystalline zeolites for the synthesis of cyclic carbonates and quinazoline-2,4(1 H, 3 H)-dione. Ind. Eng. Chem. Res., 2017, 56(29), 8202-8215.
[http://dx.doi.org/10.1021/acs.iecr.7b01406]
[182]
Lu, W.; Ma, J.; Hu, J.; Zhang, Z.; Wu, C.; Han, B. Choline hydroxide promoted chemical fixation of CO2 to quinazoline-2,4(1H,3H)-diones in water. RSC Advances, 2014, 4(92), 50993-50997.
[http://dx.doi.org/10.1039/C4RA08551E]
[183]
Zhao, G.Y.; Mu, L.L.; Ullah, L.; Wang, M.; Li, H.P.; Guan, X.X. CO2 involved synthesis of quinazoline-2,4(1 H, 3 H)-diones in water using melamine as a thermoregulated catalyst. Can. J. Chem., 2019, 97(3), 212-218.
[http://dx.doi.org/10.1139/cjc-2017-0705]
[184]
Xiao, Y.; Kong, X.; Xu, Z.; Cao, C.; Pang, G.; Shi, Y. Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 catalyzed by N-heterocyclic carbene at atmospheric pressure. RSC Advances, 2015, 5(7), 5032-5037.
[http://dx.doi.org/10.1039/C4RA13752C]
[185]
Aukland, M.H.; List, B. Organocatalysis emerging as a technology. Pure Appl. Chem., 2021, 93(12), 1371-1381.
[http://dx.doi.org/10.1515/pac-2021-0501]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy