Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Research Article

Ultrasound-Assisted Catalyst-Free Knoevenagel Condensation of Carbonyl Compounds with C – H Acids in Water

Author(s): Goutam Brahmachari*, Indrajit Karmakar, Mullicka Mandal and Bhagirath Mandal

Volume 11, Issue 2, 2024

Published on: 11 October, 2023

Page: [210 - 220] Pages: 11

DOI: 10.2174/0122133461268098231004072803

Price: $65

Abstract

An ultrasound-assisted catalyst-free green protocol has been developed for the synthesis of a series of diversely substituted Knoevenagel condensation products from the reaction between functionalized aromatic aldehydes/isatin derivatives and substituted malononitriles as the C-H acids in water at ambient conditions. The method is simple, straightforward, and highly efficient. The major advantages of this newly developed protocol are expedient catalyst-free synthesis, good to excellent yields, energy efficiency, use of water as reaction medium, easy isolation of products, no need for column chromatographic purification, eco-friendliness, and operational simplicity.

Graphical Abstract

[1]
van Beurden, K.; de Koning, S.; Molendijk, D.; van Schijndel, J. The Knoevenagel reaction: A review of the unfinished treasure map to forming carbon–carbon bonds. Green Chem. Lett. Rev., 2020, 13(4), 349-364.
[http://dx.doi.org/10.1080/17518253.2020.1851398]
[2]
Brahmachari, G. Design for carbon–carbon bond forming reactions under ambient conditions. RSC Adv., 2016, 6(69), 64676-64725.
[http://dx.doi.org/10.1039/C6RA14399G]
[3]
Jones, G. The Knoevenagel Condensation (Chapter 2). Org. React., 1967, 15, 204-599.
[http://dx.doi.org/10.1002/0471264180.or015.02]
[4]
Knoevenagel, E. Emil knoevenagel. Angew. Chem., 1922, 35(5), 29-30.
[http://dx.doi.org/10.1002/ange.19220350503]
[5]
Tokala, R.; Bora, D.; Shankaraiah, N. Contribution of Knoevenagel condensation products toward the development of anticancer agents: An updated review. ChemMedChem, 2022, 17(8), e202100736.
[http://dx.doi.org/10.1002/cmdc.202100736] [PMID: 35226798]
[6]
Pandey, K.; Rangan, K.; Kumar, A. One-pot tandem amidation, Knoevenagel condensation, and palladium-catalyzed wacker type oxidation/C-O coupling: Synthesis of chromeno-annulated imidazopyridines. J. Org. Chem., 2018, 83(15), 8026-8035.
[http://dx.doi.org/10.1021/acs.joc.8b00884] [PMID: 29882672]
[7]
Zhang, L.; Wang, H.; Shen, W.; Qin, Z.; Wang, J.; Fan, W. Controlled synthesis of graphitic carbon nitride and its catalytic properties in Knoevenagel condensations. J. Catal., 2016, 344, 293-302.
[http://dx.doi.org/10.1016/j.jcat.2016.09.023]
[8]
Tuci, G.; Luconi, L.; Rossin, A.; Berretti, E.; Ba, H.; Innocenti, M.; Yakhvarov, D.; Caporali, S.; Pham-Huu, C.; Giambastiani, G. Aziridine-functionalized multiwalled carbon nanotubes: Robust and versatile catalysts for the oxygen reduction reaction and knoevenagel condensation. ACS Appl. Mater. Interfaces, 2016, 8(44), 30099-30106.
[http://dx.doi.org/10.1021/acsami.6b09033] [PMID: 27768269]
[9]
Węcławski, M.K.; Meiling, T.T.; Leniak, A.; Cywiński, P.J.; Gryko, D.T. Planar, fluorescent push-pull system that comprises benzofuran and iminocoumarin moieties. Org. Lett., 2015, 17(17), 4252-4255.
[http://dx.doi.org/10.1021/acs.orglett.5b02042] [PMID: 26313364]
[10]
Chavan, H.V.; Bandgar, B.P. Aqueous extract of acacia concinna pods: An efficient surfactant type catalyst for synthesis of 3-carboxycoumarins and cinnamic acids via Knoevenagel condensation. ACS Sustain. Chem. Eng., 2013, 1(8), 929-936.
[http://dx.doi.org/10.1021/sc4000237]
[11]
List, B. Emil Knoevenagel and the roots of aminocatalysis. Angew. Chem. Int. Ed., 2010, 49(10), 1730-1734.
[http://dx.doi.org/10.1002/anie.200906900] [PMID: 20175175]
[12]
Heravi, M.M.; Janati, F.; Zadsirjan, V. Applications of Knoevenagel condensation reaction in the total synthesis of natural products. Monatsh. Chem., 2020, 151(4), 439-482.
[http://dx.doi.org/10.1007/s00706-020-02586-6]
[13]
Diksha, D.; Naresh, K. Recent developments in knoevenagel condensation reaction: A review. Int. J. Adv. Sci. Res., 2022, 13, 17-25.
[14]
Appaturi, J.N.; Ratti, R.; Phoon, B.L.; Batagarawa, S.M.; Din, I.U.; Selvaraj, M.; Ramalingam, R.J. A review of the recent progress on heterogeneous catalysts for Knoevenagel condensation. Dalton Trans., 2021, 50(13), 4445-4469.
[http://dx.doi.org/10.1039/D1DT00456E] [PMID: 33720238]
[15]
Khaligh, N.G.; Johan, M.R. Recent advances in the nano-catalytic knoevenagel condensation. Mini Rev. Org. Chem., 2020, 17(7), 828-842.
[http://dx.doi.org/10.2174/1570193X17666200102105440]
[16]
Khare, R.; Pandey, J.; Smriti, S.; Ruchi, R. The importance and applications of Knoevenagel reaction (brief review). Orient. J. Chem., 2019, 35(1), 423-429.
[http://dx.doi.org/10.13005/ojc/350154]
[17]
Wang, W.; Luo, M.; Yao, W.; Ma, M.; Pullarkat, S.A.; Xu, L.; Leung, P.H. Catalyst-free and solvent-free cyanosilylation and Knoevenagel condensation of aldehydes. ACS Sustain. Chem.& Eng., 2019, 7(1), 1718-1722.
[http://dx.doi.org/10.1021/acssuschemeng.8b05486]
[18]
Karmakar, P.; Karmakar, I.; Pal, D.; Das, S.; Brahmachari, G. Electrochemical regioselective C(sp2)–H selenylation and sulfenylation of substituted 2-amino-1,4-naphthoquinones. J. Org. Chem., 2023, 88(2), 1049-1060.
[http://dx.doi.org/10.1021/acs.joc.2c02486] [PMID: 36599149]
[19]
Karmakar, I.; Brahmachari, G. Electrochemical and mechanochemical synthesis of dihydrofuro[3,2- c]chromenones via intramolecular C sp3 –H cross -dehydrogenative oxygenation within warfarin frameworks: an efficient and straightforward dual approach. Green Chem., 2022, 24(7), 2825-2838.
[http://dx.doi.org/10.1039/D2GC00146B]
[20]
Brahmachari, G.; Karmakar, I.; Karmakar, P. Catalyst- and solvent-free C sp2 –H functionalization of 4-hydroxycoumarins via C-3 dehydrogenative aza-coupling under ball-milling. Green Chem., 2021, 23(13), 4762-4770.
[http://dx.doi.org/10.1039/D1GC01341F]
[21]
Brahmachari, G.; Karmakar, I. Visible light-induced and singlet oxygen-mediated photochemical conversion of 4-hydroxy-alpha-benzopyrones to 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carbo-xamides/carboxylates using rose bengal as a photosensitizer. J. Org. Chem., 2020, 85(14), 8851-8864.
[http://dx.doi.org/10.1021/acs.joc.0c00726] [PMID: 32543197]
[22]
Brahmachari, G. Catalyst‐ and additive‐free decarboxylative C‐4 phosphorylation of coumarin‐3‐carboxylic acids at ambient conditions. Adv. Synth. Catal., 2020, 362(23), 5411-5421.
[http://dx.doi.org/10.1002/adsc.202001054]
[23]
Brahmachari, G.; Mandal, M.; Karmakar, I.; Nurjamal, K.; Mandal, B. Ultrasound-promoted expedient and green synthesis of diversely functionalized 6-amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl) methyl)pyrimidine-2,4(1H,3H)-diones via one-pot multicomponent reaction under sulfamic acid catalysis at ambient conditions. ACS Sustain. Chem.& Eng., 2019, 7(6), 6369-6380.
[http://dx.doi.org/10.1021/acssuschemeng.9b00133]
[24]
Brahmachari, G.; Karmakar, I.; Nurjamal, K. Ultrasound-assisted expedient and green synthesis of a new series of diversely functionalized 7-aryl/heteroarylchromeno[4,3- d]pyrido[1,2- a]pyrimidin-6(7 H)-ones via one-pot multicomponent reaction under sulfamic acid catalysis at ambient conditions. ACS Sustain. Chem. Eng., 2018, 6(8), 11018-11028.
[http://dx.doi.org/10.1021/acssuschemeng.8b02448]
[25]
Brahmachari, G. Catalyst-free organic synthesis; Royal Society of Chemistry: Cambridge, U.K., 2018.
[26]
Lupacchini, M.; Mascitti, A.; Giachi, G.; Tonucci, L.; d’Alessandro, N.; Martinez, J.; Colacino, E. Sonochemistry in non-conventional, green solvents or solvent-free reactions. Tetrahedron, 2017, 73(6), 609-653.
[http://dx.doi.org/10.1016/j.tet.2016.12.014]
[27]
Banerjee, B. Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason. Sonochem., 2017, 35(Pt A), 1-14.
[http://dx.doi.org/10.1016/j.ultsonch.2016.09.023] [PMID: 27771266]
[28]
Baig, R.B.N.; Varma, R.S. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev., 2012, 41(4), 1559-1584.
[http://dx.doi.org/10.1039/C1CS15204A] [PMID: 22076552]
[29]
Martín-Aranda, R.M.; Ortega-Cantero, E.; Rojas-Cervantes, M.L.; Vicente-Rodríguez, M.A.; Bañares-Muñoz, M.A. Ultrasound-activated Knoevenagel condensation of malononitrile with carbonylic compounds catalysed by alkaline-doped saponites. J. Chem. Technol. Biotechnol., 2005, 80(2), 234-238.
[http://dx.doi.org/10.1002/jctb.1174]
[30]
Peng, Y.; Song, G. Combined microwave and ultrasound accelerated Knoevenagel–Doebner reaction in aqueous media: A green route to 3-aryl acrylic acids. Green Chem., 2003, 5(6), 704-706.
[http://dx.doi.org/10.1039/B310388A]
[31]
McNulty, J.; Steere, J.A.; Wolf, S. The ultrasound promoted Knoevenagel condensation of aromatic aldehydes. Tetrahedron Lett., 1998, 39(44), 8013-8016.
[http://dx.doi.org/10.1016/S0040-4039(98)01789-4]
[32]
Panja, S.K.; Dwivedi, N.; Saha, S. First report of the application of simple molecular complexes as organo-catalysts for Knoevenagel condensation. RSC Advances, 2015, 5(80), 65526-65531.
[http://dx.doi.org/10.1039/C5RA09036A]
[33]
Kumar, N.S.; Reddy, M.S.; Kumar, S.T.S.; Bheeram, V.R.; Mukkamala, S.B.; Rao, L.C. A quantitative and rapid Knoevenagel condensation catalyzed by recyclable zeolite imidazole frameworks. ChemistrySelect, 2019, 4(4), 1188-1194.
[http://dx.doi.org/10.1002/slct.201803302]
[34]
Li, T.; Zhang, W.; Chen, W.; Miras, H.N.; Song, Y.F. Layered double hydroxide anchored ionic liquids as amphiphilic heterogeneous catalysts for the Knoevenagel condensation reaction. Dalton Trans., 2018, 47(9), 3059-3067.
[http://dx.doi.org/10.1039/C7DT03665E] [PMID: 29184948]
[35]
Shirini, F.; Daneshvar, N. Introduction of taurine (2-aminoethanesulfonic acid) as a green bio-organic catalyst for the promotion of organic reactions under green conditions. RSC Adv., 2016, 6(111), 110190-110205.
[http://dx.doi.org/10.1039/C6RA15432H]
[36]
Gupta, N.; Roy, T.; Ghosh, D.; Abdi, S.H.R.; Kureshy, R.I. Ordered short channel mesoporous silica modified with 1,3,5-triazine-piprazine as versatile recyclable base catalyst for crossaldol, Knoevenagel and conjugate addition reactions with isatins. RSC Advances, 2015, 5, 17843-17850.
[http://dx.doi.org/10.1039/C5RA00406C]
[37]
Gunasekar, R.; Thamaraiselvi, P.; Rathore, R.S.; Sathiyanarayanan, K.I.; Easwaramoorthi, S. Tuning the electronic properties of 2-cyano-3-phenylacrylamide derivatives. J. Org. Chem., 2015, 80(24), 12351-12358.
[http://dx.doi.org/10.1021/acs.joc.5b02226] [PMID: 26562067]
[38]
Zhuo, C.; Xian, D.; Jian-wei, W.; Hui, X. An efficient and recyclable ionic liquid-supported proline catalyzed knoevenagel condensation. ISRN Org. Chem., 2011, 2011, 1-5.
[http://dx.doi.org/10.5402/2011/676789] [PMID: 24052829]
[39]
Wang, S.; Ren, Z.; Cao, W.; Tong, W. The knoevenagel condensation of aromatic aldehydes with malononitrile or ethyl cyanoacetate in the presence of ctmab in water. Synth. Commun., 2001, 31(5), 673-677.
[http://dx.doi.org/10.1081/SCC-100103255]
[40]
Sturz, H.G.; Noller, C.R. New Compounds. Some substituted benzalmalononitriles. J. Am. Chem. Soc., 1949, 71(8), 2949.
[http://dx.doi.org/10.1021/ja01176a602]
[41]
Xu, H.; Zhang, L.X.; Xing, Y.; Yin, Y.Y.; Tang, B.; Bie, L.J. Self-assembled mononuclear complexes: open metal sites and inverse dimension-dependent catalytic activity for the Knoevenagel condensation and CO2 cycloaddition. Nanoscale, 2022, 14(42), 15897-15907.
[http://dx.doi.org/10.1039/D2NR04103K] [PMID: 36268659]
[42]
Machado, I.V.; dos Santos, J.R.N.; Januario, M.A.P.; Corrêa, A.G. Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. Ultrason. Sonochem., 2021, 78, 105704.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105704] [PMID: 34454180]
[43]
Pagadala, R.; Maddila, S.; Jonnalagadda, S.B. Ultrasonic-mediated catalyst-free rapid protocol for the multicomponent synthesis of dihydroquinoline derivatives in aqueous media. Green Chem. Lett. Rev., 2014, 7(2), 131-136.
[http://dx.doi.org/10.1080/17518253.2014.902505]
[44]
Dar, B.A.; Ahmad, S.N.; Wagay, M.A.; Hussain, A.; Ahmad, N.; Bhat, K.A.; Khuroo, M.A.; Sharma, M.; Singh, B. Ultrasound promoted expeditious, catalyst-free and solvent-free approach for the synthesis of N,N′-diarylsubstituted formamidines at room temperature. Tetrahedron Lett., 2013, 54(36), 4880-4884.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.131]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy