Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Frontiers in Copper-promoted C1-functionalization of Tetrahydroisoquinoline Using Cross-dehydrogenative Coupling

Author(s): Rachana Upadhyay and Amit B. Patel*

Volume 27, Issue 14, 2023

Published on: 04 October, 2023

Page: [1255 - 1276] Pages: 22

DOI: 10.2174/0113852728262662230922075916

Price: $65

conference banner
Abstract

The site-selective diversification of molecules is a pertinent unresolved issue within the area of organic chemistry. The functionalization of Csp3-H has changed the landscape of synthetic chemistry by enabling effective direct coupling of compounds and reducing chemical waste by avoiding the usage of pre-functionalized compounds. The 1,2,3,4- tetrahydroisoquinoline (THIQ), a molecule with potential bioactivity, has a stereoselective center at the C1 position. However, there is still a fundamental problem with the C1-functionalization of THIQs. To address this, transition metal-catalyzed cross-dehydrogenative coupling (CDC) has evolved into an essential tool because such reactions can be carried out with enantio-, regio-, and stereoselectivity. In particular, copper-promoted CDC reactions have undoubtedly made substantial progress in THIQ chemistry as a selective protocol. The α-Csp3-H bond adjacent to the N-atom of THIQs is activated using copper catalysts, followed by dehydrogenative coupling with various alkynyl, alkane, and alkene groups to form the Csp-Csp3, Csp3-Csp3, and Csp3-Csp2 bonds and produce optically active C1-substituted THIQs. The A3 coupling strategies also produce the endo-yne-THIQs with higher selectivity. This critical discussion highlights all recent advancements (between 2010 and 2022) in CDC reactions to THIQs with the substrate scope and plausible mechanistic routes. This study may be extremely useful to scientists and researchers working on copper-promoted CDC.

Graphical Abstract

[1]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[2]
Shah, S.; Das, B.G.; Singh, V.K. Recent advancement in copper-catalyzed asymmetric reactions of alkynes. Tetrahedron, 2021, 93, 132238.
[http://dx.doi.org/10.1016/j.tet.2021.132238]
[3]
Patil, M.D.; Grogan, G.; Yun, H. Biocatalyzed C−C bond formation for the production of alkaloids. ChemCatChem, 2018, 10(21), 4783-4804.
[http://dx.doi.org/10.1002/cctc.201801130]
[4]
Hitotsuyanagi, Y.; Ichihara, Y.; Takeya, K.; Itokawa, H. Synthesis of 4-Oxa-2-azapodophyllotoxin, a novel analog of the antitumor lignan podophyllotoxin. Tetrahedron Lett., 1994, 35(50), 9401-9402.
[http://dx.doi.org/10.1016/S0040-4039(00)78553-4]
[5]
Harnett, W. The anthelmintic action of praziquantel. Parasitol. Today, 1988, 4(5), 144-146.
[http://dx.doi.org/10.1016/0169-4758(88)90192-5] [PMID: 15463071]
[6]
Tomar, R.; Sahni, A.; Chandra, I.; Tomar, V.; Chandra, R. Review of noscapine and its analogues as potential anti-cancer drugs. Mini Rev. Org. Chem., 2018, 15(5), 345-363.
[http://dx.doi.org/10.2174/1570193X15666180221153911]
[7]
Faheem; Karan Kumar, B.; Chandra Sekhar, K.V.G.; Chander, S.; Kunjiappan, S.; Murugesan, S. Medicinal chemistry perspectives of 1,2,3,4-tetrahydroisoquinoline analogs - biological activities and SAR studies. RSC Adv., 2021, 11(20), 12254-12287.
[http://dx.doi.org/10.1039/D1RA01480C]
[8]
Louafi, F.; Moreau, J.; Shahane, S.; Golhen, S.; Roisnel, T.; Sinbandhit, S.; Hurvois, J.P. Electrochemical synthesis and chemistry of chiral 1-cyanotetrahydroisoquinolines. An approach to the asymmetric syntheses of the alkaloid (-)-crispine a and its natural (+)-antipode. J. Org. Chem., 2011, 76(23), 9720-9732.
[http://dx.doi.org/10.1021/jo2017982] [PMID: 22017231]
[9]
Yao, Z.; Wei, X.; Wu, X.; Katz, J.L.; Kopajtic, T.; Greig, N.H.; Sun, H. Preparation and evaluation of tetrabenazine enantiomers and all eight stereoisomers of dihydrotetrabenazine as VMAT2 inhibitors. Eur. J. Med. Chem., 2011, 46(5), 1841-1848.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.046] [PMID: 21396745]
[10]
Feinberg, A.P.; Creese, I.; Snyder, S.H. The opiate receptor: a model explaining structure-activity relationships of opiate agonists and antagonists. Proc. Natl. Acad. Sci. USA, 1976, 73(11), 4215-4219.
[http://dx.doi.org/10.1073/pnas.73.11.4215] [PMID: 186791]
[11]
Ikeda, K.; Kobayashi, S.; Suzuki, M.; Miyata, K.; Takeuchi, M.; Yamada, T.; Honda, K.M. 3 receptor antagonism by the novel antimuscarinic agent solifenacin in the urinary bladder and salivary gland. Naunyn Schmiedebergs Arch. Pharmacol., 2002, 366(2), 97-103.
[http://dx.doi.org/10.1007/s00210-002-0554-x] [PMID: 12122494]
[12]
Tashrifi, Z.; Mohammadi Khanaposhtani, M.; Larijani, B.; Mahdavi, M. C1‐Functionalization of 1,2,3,4‐Tetrahydroisoquinolines (THIQs). Asian J. Org. Chem., 2021, 10(10), 2421-2439.
[http://dx.doi.org/10.1002/ajoc.202100407]
[13]
Li, D.; Gao, W.; Chen, X. Asymmetric synthesis of C1-chiral THIQs with imines in isoquinoline rings. Synthesis, 2020, 52(22), 3337-3355.
[http://dx.doi.org/10.1055/s-0040-1707206]
[14]
Kerru, N.; Maddila, S.; Jonnalagadda, S.B. Design of carbon-carbon and carbon-heteroatom bond formation reactions under green conditions. Curr. Org. Chem., 2020, 23(28), 3154-3190.
[http://dx.doi.org/10.2174/1385272823666191202105820]
[15]
Gandhi, S. Catalytic enantioselective cross dehydrogenative coupling of sp3 C-H of heterocycles. Org. Biomol. Chem., 2019, 17(45), 9683-9692.
[http://dx.doi.org/10.1039/C9OB02113B] [PMID: 31710329]
[16]
Li, C.J. Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations. Acc. Chem. Res., 2009, 42(2), 335-344.
[http://dx.doi.org/10.1021/ar800164n] [PMID: 19220064]
[17]
Govaerts, S.; Nyuchev, A.; Noel, T. Pushing the boundaries of C-H bond functionalization chemistry using flow technology. J. Flow Chem., 2020, 10(1), 13-71.
[http://dx.doi.org/10.1007/s41981-020-00077-7]
[18]
Scheuermann, C.J. Beyond traditional cross couplings: the scope of the cross dehydrogenative coupling reaction. Chem. Asian J., 2010, 5(3), 436-451.
[http://dx.doi.org/10.1002/asia.200900487] [PMID: 20041458]
[19]
Peng, K.; Dong, Z.B. Recent advances in cross‐dehydrogenative couplings (CDC) of C−H bond in aqueous media. Adv. Synth. Catal., 2021, 363(5), 1185-1201.
[http://dx.doi.org/10.1002/adsc.202001358]
[20]
Kaur, N. Palladium catalysts: Synthesis of five-membered N-heterocycles fused with other heterocycles. Catal. Rev., Sci. Eng., 2015, 57(1), 1-78.
[http://dx.doi.org/10.1080/01614940.2014.976118]
[21]
Liu, H.; Feng, M.; Jiang, X. Unstrained carbon-carbon bond cleavage. Chem. Asian J., 2014, 9(12), 3360-3389.
[http://dx.doi.org/10.1002/asia.201402591] [PMID: 25179561]
[22]
Praveen, C. Cycloisomerization of π‐coupled heteroatom nucleophiles by gold catalysis: En route to regiochemically defined heterocycles. Chem. Rec., 2021, 21(7), 1697-1737.
[http://dx.doi.org/10.1002/tcr.202100105] [PMID: 34061426]
[23]
Raju, K.B.; Kumar, B.N.; Nagaiah, K. Copper-catalyzed acyloxylation of the C(sp3)-H bond adjacent to an oxygen by a cross-dehydrogenative coupling approach. RSC Adv., 2014, 4(92), 50795-50800.
[http://dx.doi.org/10.1039/C4RA06233G]
[24]
Chakka, S.K.; Andersson, P.G.; Maguire, G.E.M.; Kruger, H.G.; Govender, T. Synthesis and screening of C1‐substituted tetrahydroisoquinoline derivatives for asymmetric transfer hydrogenation reactions. Eur. J. Org. Chem., 2010, 2010(5), 972-980.
[http://dx.doi.org/10.1002/ejoc.200901159]
[25]
Alonso, F.; Bosque, I.; Chinchilla, R.; Gonzalez-Gomez, J.C.; Guijarro, D. Synthesis of propargylamines by cross-dehydrogenative coupling. Curr. Green Chem., 2019, 6(2), 105-126.
[http://dx.doi.org/10.2174/2213346106666190916104701]
[26]
Li, C.J. On inventing cross‐dehydrogenative coupling (CDC): Forming C-C bond from two different C-H bonds. Chin. J. Chem., 2022, 40(7), 838-845.
[http://dx.doi.org/10.1002/cjoc.202100796]
[27]
Batra, A.; Singh, K.N. Recent developments in transition metal‐free cross‐dehydrogenative coupling reactions for C-C bond formation. Eur. J. Org. Chem., 2020, 2020(43), 6676-6703.
[http://dx.doi.org/10.1002/ejoc.202000785]
[28]
Faisca Phillips, A.M.; Pombeiro, A.J.L. Recent developments in transition metal-catalyzed cross-dehydrogenative coupling reactions of ethers and thioethers. ChemCatChem, 2018, 10(16), 3354-3383.
[http://dx.doi.org/10.1002/cctc.201800582]
[29]
Ojha, N.K.; Zyryanov, G.V.; Majee, A.; Charushin, V.N.; Chupakhin, O.N.; Santra, S. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis. Coord. Chem. Rev., 2017, 353, 1-57.
[http://dx.doi.org/10.1016/j.ccr.2017.10.004]
[30]
Liu, Y.; Wang, C.; Xue, D.; Xiao, M.; Li, C.; Xiao, J. Reactions catalysed by a binuclear copper complex: Aerobic cross dehydrogenative coupling of N -aryl tetrahydroisoquinolines. Chemistry, 2017, 23(13), 3051-3061.
[http://dx.doi.org/10.1002/chem.201604749] [PMID: 27880020]
[31]
Viciano-Chumillas, M.; Liu, X.; Leyva-Pérez, A.; Armentano, D.; Ferrando-Soria, J.; Pardo, E. Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coord. Chem. Rev., 2022, 451, 214273.
[http://dx.doi.org/10.1016/j.ccr.2021.214273]
[32]
Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev., 2012, 112(2), 933-969.
[http://dx.doi.org/10.1021/cr200304e] [PMID: 22098087]
[33]
Pandey, G.; Laha, R. Visible‐light‐catalyzed direct benzylic C(sp3)-H amination reaction by cross‐dehydrogenative coupling. Angew. Chem. Int. Ed., 2015, 54(49), 14875-14879.
[http://dx.doi.org/10.1002/anie.201506990] [PMID: 26474405]
[34]
Zeitler, K. Photoredox catalysis with visible light. Angew. Chem. Int. Ed., 2009, 48(52), 9785-9789.
[http://dx.doi.org/10.1002/anie.200904056] [PMID: 19946918]
[35]
Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev., 2013, 113(7), 5322-5363.
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883]
[36]
Correia, C.A.; Li, C.J. Copper-catalyzed cross-dehydrogenative coupling (CDC) of alkynes and benzylic C-H bonds. Adv. Synth. Catal., 2010, 352(9), 1446-1450.
[http://dx.doi.org/10.1002/adsc.201000066]
[37]
Maaliki, C.; Thiery, E.; Thibonnet, J. Emergence of copper-mediated formation of C-C bonds. Eur. J. Org. Chem., 2017, 2017(2), 209-228.
[http://dx.doi.org/10.1002/ejoc.201600540]
[38]
Egorov, I.N.; Mukherjee, A.; Santra, S.; Kopchuk, D.S.; Kovalev, I.S.; Liu, Y.; Zyryanov, G.V.; Majee, A.; Chupakhin, O.N.; Ranu, B.C. Mechanochemically induced cross dehydrogenative coupling reactions under ball milling. Adv. Synth. Catal., 2022, 364(15), 2462-2478.
[http://dx.doi.org/10.1002/adsc.202200296]
[39]
Fulmer, D.A.; Shearouse, W.C.; Medonza, S.T.; Mack, J. Solvent-free Sonogashira coupling reaction via high speed ball milling. Green Chem., 2009, 11(11), 1821.
[http://dx.doi.org/10.1039/b915669k]
[40]
Girard, S.A.; Knauber, T.; Li, C.J. The cross-dehydrogenative coupling of C(sp3)-H bonds: a versatile strategy for C-C bond formations. Angew. Chem. Int. Ed., 2014, 53(1), 74-100.
[http://dx.doi.org/10.1002/anie.201304268] [PMID: 24214829]
[41]
Tang, S.; Liu, Y.; Lei, A. Electrochemical oxidative cross-coupling with hydrogen evolution: A green and sustainable way for bond formation. Chem, 2018, 4(1), 27-45.
[http://dx.doi.org/10.1016/j.chempr.2017.10.001]
[42]
Ma, C.; Fang, P.; Liu, Z.R.; Xu, S.S.; Xu, K.; Cheng, X.; Lei, A.; Xu, H.C.; Zeng, C.; Mei, T.S. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Sci. Bull. (Beijing), 2021, 66(23), 2412-2429.
[http://dx.doi.org/10.1016/j.scib.2021.07.011] [PMID: 36654127]
[43]
Anastas, P.; Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[44]
Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev., 2012, 41(21), 7108-7146.
[http://dx.doi.org/10.1039/c2cs35178a] [PMID: 22806597]
[45]
Peng, L.; Hu, Z.; Lu, Q.; Tang, Z.; Jiao, Y.; Xu, X. DESs: Green solvents for transition metal catalyzed organic reactions. Chin. Chem. Lett., 2019, 30(12), 2151-2156.
[http://dx.doi.org/10.1016/j.cclet.2019.05.063]
[46]
Bosque, I.; Chinchilla, R.; Gonzalez-Gomez, J.C.; Guijarro, D.; Alonso, F. Cross-dehydrogenative coupling involving benzylic and allylic C-H bonds. Org. Chem. Front., 2020, 7(13), 1717-1742.
[http://dx.doi.org/10.1039/D0QO00587H]
[47]
Jesin, I.; Nandi, G.C. Recent Advances in the A3 Coupling Reactions and their Applications. Eur. J. Org. Chem., 2019, 2019(16), 2704-2720.
[http://dx.doi.org/10.1002/ejoc.201900001]
[48]
Ramazani, A.; Ahankar, H.; Nafeh, Z.T.; Joo, S.W. Modern catalysts in A3- coupling reactions. Curr. Org. Chem., 2020, 23(25), 2783-2801.
[http://dx.doi.org/10.2174/1385272823666191113160643]
[49]
Su, W.; Yu, J.; Li, Z.; Jiang, Z. Solvent-free cross-dehydrogenative coupling reactions under high speed ball-milling conditions applied to the synthesis of functionalized tetrahydroisoquinolines. J. Org. Chem., 2011, 76(21), 9144-9150.
[http://dx.doi.org/10.1021/jo2015533] [PMID: 21961457]
[50]
Fu, W.; Guo, W.; Zou, G.; Xu, C. Selective trifluoromethylation and alkynylation of tetrahydroisoquinolines using visible light irradiation by Rose Bengal. J. Fluor. Chem., 2012, 140, 88-94.
[http://dx.doi.org/10.1016/j.jfluchem.2012.05.009]
[51]
Rueping, M.; Koenigs, R.M.; Poscharny, K.; Fabry, D.C.; Leonori, D.; Vila, C. Dual catalysis: combination of photocatalytic aerobic oxidation and metal catalyzed alkynylation reactions-C-C bond formation using visible light. Chemistry, 2012, 18(17), 5170-5174.
[http://dx.doi.org/10.1002/chem.201200050] [PMID: 22431393]
[52]
Singh, K.; Singh, P.; Kaur, A.; Singh, P. C-1 Alkynylation of N-methyltetrahydroisoquinolines through CDC: A direct access to phenethylisoquinoline alkaloids. Synlett, 2012, 23(5), 760-764.
[http://dx.doi.org/10.1055/s-0031-1290532]
[53]
Li, C-J.; Moores, A.; Hudson, R.; Ishikawa, S. Magnetically recoverable CuFe2O4 nanoparticles as highly active catalysts for Csp3-Csp and Csp3-Csp3 oxidative cross-dehydrogenative coupling. Synlett, 2013, 24(13), 1637-1642.
[http://dx.doi.org/10.1055/s-0033-1339278]
[54]
Yu, J.; Li, Z.; Jia, K.; Jiang, Z.; Liu, M.; Su, W. Fast, solvent-free asymmetric alkynylation of prochiral sp3 C-H bonds in a ball mill for the preparation of optically active tetrahydroisoquinoline derivatives. Tetrahedron Lett., 2013, 54(15), 2006-2009.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.007]
[55]
Alonso, F.; Arroyo, A.; Martín-García, I.; Moglie, Y. Cross‐dehydrogenative coupling of tertiary amines and terminal alkynes catalyzed by copper nanoparticles on zeolite. Adv. Synth. Catal., 2015, 357(16-17), 3549-3561.
[http://dx.doi.org/10.1002/adsc.201500787]
[56]
Perepichka, I.; Kundu, S.; Hearne, Z.; Li, C.J. Efficient merging of copper and photoredox catalysis for the asymmetric cross-dehydrogenative-coupling of alkynes and tetrahydroisoquinolines. Org. Biomol. Chem., 2015, 13(2), 447-451.
[http://dx.doi.org/10.1039/C4OB02138J] [PMID: 25372475]
[57]
Sun, S.; Li, C.; Floreancig, P.E.; Lou, H.; Liu, L. Highly enantioselective catalytic cross-dehydrogenative coupling of N-carbamoyl tetrahydroisoquinolines and terminal alkynes. Org. Lett., 2015, 17(7), 1684-1687.
[http://dx.doi.org/10.1021/acs.orglett.5b00447] [PMID: 25781505]
[58]
Marset, X.; Pérez, J.M.; Ramón, D.J. Cross-dehydrogenative coupling reaction using copper oxide impregnated on magnetite in deep eutectic solvents. Green Chem., 2016, 18(3), 826-833.
[http://dx.doi.org/10.1039/C5GC01745A]
[59]
Gröll, B.; Schaaf, P.; Schnürch, M. Improved simplicity and practicability in copper-catalyzed alkynylation of tetrahydroisoquinoline. Monatsh. Chem., 2017, 148(1), 91-104.
[http://dx.doi.org/10.1007/s00706-016-1877-5] [PMID: 28127095]
[60]
Kumar, G.; Verma, S.; Ansari, A.; Khan, N.H.; Kureshy, R.I. Enantioselective cross dehydrogenative coupling reaction catalyzed by Rose Bengal incorporated-Cu(I)-dimeric chiral complexes. Catal. Commun., 2017, 99, 94-99.
[http://dx.doi.org/10.1016/j.catcom.2017.05.026]
[61]
Guo, B.; Xu, H.C.; Electrocatalytic, C. Electrocatalytic C(sp3)-H/C(sp)-H cross-coupling in continuous flow through TEMPO/copper relay catalysis. Beilstein J. Org. Chem., 2021, 17, 2650-2656.
[http://dx.doi.org/10.3762/bjoc.17.178] [PMID: 34795802]
[62]
Gao, P.S.; Weng, X.J.; Wang, Z.H.; Zheng, C.; Sun, B.; Chen, Z.H.; You, S.L.; Mei, T.S. CuII/TEMPO‐catalyzed enantioselective C(sp3)-H alkynylation of tertiary cyclic amines through shono‐type oxidation. Angew. Chem. Int. Ed., 2020, 59(35), 15254-15259.
[http://dx.doi.org/10.1002/anie.202005099] [PMID: 32394631]
[63]
Zheng, Q.H.; Meng, W.; Jiang, G.J.; Yu, Z.X. CuI-catalyzed C1-alkynylation of tetrahydroisoquinolines (THIQs) by A3 reaction with tunable iminium ions. Org. Lett., 2013, 15(23), 5928-5931.
[http://dx.doi.org/10.1021/ol402517e] [PMID: 24237286]
[64]
Lin, W.; Cao, T.; Fan, W.; Han, Y.; Kuang, J.; Luo, H.; Miao, B.; Tang, X.; Yu, Q.; Yuan, W.; Zhang, J.; Zhu, C.; Ma, S. Enantioselective double manipulation of tetrahydroisoquinolines with terminal alkynes and aldehydes under copper(I) catalysis. Angew. Chem. Int. Ed., 2014, 53(1), 277-281.
[http://dx.doi.org/10.1002/anie.201308699] [PMID: 24375740]
[65]
Dang, G.H.; Le, D.T.; Truong, T.; Phan, N.T.S. C1-alkynylation of tetrahydroisoquinoline by A3 reaction using metal-organic framework Cu2(BPDC)2(BPY) as an efficient heterogeneous catalyst. J. Mol. Catal. Chem., 2015, 400, 162-169.
[http://dx.doi.org/10.1016/j.molcata.2015.02.008]
[66]
Zhao, H.; He, W.; Wei, L.; Cai, M. A highly efficient heterogeneous copper-catalyzed three-component coupling of tetrahydroisoquinolines, aldehydes and 1-alkynes. Catal. Sci. Technol., 2016, 6(5), 1488-1495.
[http://dx.doi.org/10.1039/C5CY01342A]
[67]
Kouznetsov, V.V.; Ortiz Villamizar, M.C.; Puerto Galvis, C.E. The A3 redox-neutral C1-alkynylation of tetrahydroisoquinolines: A comparative study between visible light photocatalysis and transition-metal catalysis. Synthesis, 2021, 53(3), 547-556.
[http://dx.doi.org/10.1055/s-0040-1707370]
[68]
Baslé, O.; Borduas, N.; Dubois, P.; Chapuzet, J.M.; Chan, T.H.; Lessard, J.; Li, C.J. Aerobic and electrochemical oxidative cross-dehydrogenative-coupling (CDC) reaction in an imidazolium-based ionic liquid. Chemistry, 2010, 16(27), 8162-8166.
[http://dx.doi.org/10.1002/chem.201000240] [PMID: 20533455]
[69]
Zhang, G.; Zhang, Y.; Wang, R. Catalytic asymmetric activation of a C(sp3)-H bond adjacent to a nitrogen atom: A versatile approach to optically active α-alkyl α-amino acids and C1-alkylated tetrahydroisoquinoline derivatives. Angew. Chem. Int. Ed., 2011, 50(44), 10429-10432.
[http://dx.doi.org/10.1002/anie.201105123] [PMID: 21915984]
[70]
Zhang, J.; Tiwari, B.; Xing, C.; Chen, X.; Chi, Y.R. Enantioselective oxidative cross-dehydrogenative coupling of tertiary amines to aldehydes. Angew. Chem. Int. Ed., 2012, 51(15), 3649-3652.
[http://dx.doi.org/10.1002/anie.201109054] [PMID: 22389195]
[71]
Li, C.; Dickson, R.; Rockstroh, N.; Rabeah, J.; Cordes, D.B.; Slawin, A.M.Z.; Hünemörder, P.; Spannenberg, A.; Bühl, M.; Mejía, E.; Zysman-Colman, E.; Kamer, P.C.J. Ligand electronic fine-tuning and its repercussion on the photocatalytic activity and mechanistic pathways of the copper-photocatalysed aza-Henry reaction. Catal. Sci. Technol., 2020, 10(22), 7745-7756.
[http://dx.doi.org/10.1039/D0CY01221A]
[72]
Wang, B.; Shelar, D.P.; Han, X.Z.; Li, T.T.; Guan, X.; Lu, W.; Liu, K.; Chen, Y.; Fu, W.F.; Che, C.M. Long-lived excited states of zwitterionic copper(I) complexes for photoinduced cross-dehydrogenative coupling reactions. Chemistry, 2015, 21(3), 1184-1190.
[http://dx.doi.org/10.1002/chem.201405356] [PMID: 25413572]
[73]
Wang, F.F.; Luo, C.P.; Deng, G.; Yang, L.C. (sp3)-C(sp3) bond formation via copper/Brønsted acid co-catalyzed C(sp3)-H bond oxidative cross-dehydrogenative-coupling (CDC) of azaarenes. Green Chem., 2014, 16(5), 2428.
[http://dx.doi.org/10.1039/c4gc00038b]
[74]
Liu, X.; Zhang, J.; Ma, S.; Ma, Y.; Wang, R. Oxidative cross-dehydrogenative coupling between N-aryl tetrahydroisoquinolins and 5H-oxazol-4-ones through two methodologies: copper catalysis or a metal-free strategy. Chem. Commun. (Camb.), 2014, 50(99), 15714-15717.
[http://dx.doi.org/10.1039/C4CC04508D] [PMID: 25364789]
[75]
Yang, X.L.; Zou, C.; He, Y.; Zhao, M.; Chen, B.; Xiang, S.; O’Keeffe, M.; Wu, C.D. A stable microporous mixed-metal metal-organic framework with highly active Cu2+ sites for efficient cross-dehydrogenative coupling reactions. Chemistry, 2014, 20(5), 1447-1452.
[http://dx.doi.org/10.1002/chem.201303615] [PMID: 24458917]
[76]
Zhu, S.L.; Ou, S.; Zhao, M.; Shen, H.; Wu, C.D. A porous metal-organic framework containing multiple active Cu2+ sites for highly efficient cross dehydrogenative coupling reaction. Dalton Trans., 2015, 44(5), 2038-2041.
[http://dx.doi.org/10.1039/C4DT03371J] [PMID: 25515613]
[77]
Zhang, W.; Yang, S.; Shen, Z. Copper-catalyzed cyanomethylation of substituted tetrahydroisoquinolines with acetonitrile. Adv. Synth. Catal., 2016, 358(15), 2392-2397.
[http://dx.doi.org/10.1002/adsc.201600050]
[78]
Zhang, Y.; Wei, B.W.; Wang, W.X.; Deng, L.L.; Nie, L.J.; Luo, H.Q.; Fan, X.L. Direct vinylogous oxidative cross-dehydrogenative coupling of 4-nitroisoxazoles with N-aryl tetrahydroisoquinolines in water under air conditions. RSC Adv., 2017, 7(3), 1229-1232.
[http://dx.doi.org/10.1039/C6RA26126D]
[79]
Martín-García, I.; Alonso, F. Synthesis of dihydroindoloisoquinolines through copper‐catalyzed cross‐dehydrogenative coupling of tetrahydroisoquinolines and nitroalkanes. Chemistry, 2018, 24(71), 18857-18862.
[http://dx.doi.org/10.1002/chem.201805137] [PMID: 30325078]
[80]
Wen, X.; Duan, Z.; Liu, J.; Lu, W.; Lu, X. On-DNA cross-dehydrogenative coupling reaction toward the synthesis of focused DNA-encoded tetrahydroisoquinoline libraries. Org. Lett., 2020, 22(15), 5721-5725.
[http://dx.doi.org/10.1021/acs.orglett.0c01565] [PMID: 32644810]
[81]
Zhou, W.; Lu, W.; Wang, H.; Xia, Z.; Zhai, S.; Zhang, Z.; Ma, Y.; He, M.; Chen, Q. CuMgAl hydrotalcite as an efficient bifunctional catalyst for the cross-dehydrogenative C-C coupling reactions under mild conditions. Appl. Catal. A Gen., 2020, 604, 117771.
[http://dx.doi.org/10.1016/j.apcata.2020.117771]
[82]
Huang, B.; Chen, Y.; Zhang, X.; Yan, M. Cross‐dehydrogenative coupling of tetrahydroisoquinolines and 2‐fluoro‐1,3‐benzodithiole‐1,1,3,3‐tetraoxide: A New synthetic approach to α‐monofluoromethyl tertiary amines. Eur. J. Org. Chem., 2021, 2021(21), 3015-3022.
[http://dx.doi.org/10.1002/ejoc.202100537]
[83]
Bjerg, E.E.; Marchán-García, J.; Buxaderas, E.; Moglie, Y.; Radivoy, G. Oxidative α-functionalization of 1,2,3,4-tetrahydroisoquinolines catalyzed by a magnetically recoverable copper nanocatalyst. Application in the Aza-Henry reaction and the synthesis of 3,4-dihydroisoquinolones. J. Org. Chem., 2022, 87(20), 13480-13493.
[http://dx.doi.org/10.1021/acs.joc.2c01782] [PMID: 36154121]
[84]
Ghobrial, M.; Schnürch, M.; Mihovilovic, M.D. Direct functionalization of (un)protected tetrahydroisoquinoline and isochroman under iron and copper catalysis: two metals, two mechanisms. J. Org. Chem., 2011, 76(21), 8781-8793.
[http://dx.doi.org/10.1021/jo201511d] [PMID: 21902275]
[85]
Yi, F.; Su, J.; Zhang, S.; Yi, W.; Zhang, L. One-step direct functionalization of tetrahydroisoquinolines under copper and acid catalysis. Eur. J. Org. Chem., 2015, 2015(33), 7360-7366.
[http://dx.doi.org/10.1002/ejoc.201501102]
[86]
Romo-Pérez, A.; Miranda, L.D.; García, A. Synthesis of N -methyl-5,6-dihydrobenzo[c]phenanthridine and its sp3 C(6)-H bond functionalization via oxidative cross-dehydrogenative coupling reactions. Tetrahedron Lett., 2015, 56(48), 6669-6673.
[http://dx.doi.org/10.1016/j.tetlet.2015.10.018]
[87]
Han, X.; He, X.; Wang, F.; Chen, J.; Xu, J.; Wang, X.; Han, X. Engineering an N-doped Cu2O@N-C interface with long-lived photo-generated carriers for efficient photoredox catalysts. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(21), 10220-10226.
[http://dx.doi.org/10.1039/C7TA01909B]
[88]
Zhou, W.; Wang, A.; Kong, Z.; Tian, X.; Xia, Z.; Zhang, Z.; He, M.; Chen, Q.; Sun, S. Construction of indoline-fused tetrahydroisoquinolines through a domino coupling reaction catalyzed by cucofe layered double hydroxide. Org. Lett., 2021, 23(16), 6321-6325.
[http://dx.doi.org/10.1021/acs.orglett.1c02059] [PMID: 34378938]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy