Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Short Communication

Covalent Binding of Fullerene С60 to Strained Polycyclic Hydrocarbons: Promising Organic Field-effect Transistors Based on them

Author(s): Arslan R. Akhmetov, Rishat I. Aminov*, Zarema R. Sadretdinov, Renat B. Salikhov, Ilnur N. Mullagaliev and Timur R. Salikhov

Volume 27, Issue 14, 2023

Published on: 11 September, 2023

Page: [1277 - 1287] Pages: 11

DOI: 10.2174/1385272827666230911115758

Price: $65

Abstract

Hybrid molecules based on fullerene С60 and strained polycyclic hydrocarbons were synthesized for the first time using the Bingel–Hirsch reaction. The films of fullerene derivatives were deposited by centrifugation. The synthesized hybrid fullerene С60 derivatives containing one strained polycyclic hydrocarbon moiety showed better charge carrier mobility than the fullerene derivatives containing two polycyclic hydrocarbon moieties. Apart from current–voltage characteristics, the morphology of the prepared hybrid compounds was studied. The best current– voltage characteristics were found for films with lower roughness. The fullerene С60 adducts containing strained polycyclic hydrocarbon moieties were used to fabricate organic field effect transistors (OFETs) with high-quality films; owing to this, the manufacturing process is compatible with modern printed organic electronics.

« Previous
Graphical Abstract

[1]
Cravino, A.; Sariciftci, N.S. Double-cable polymers for fullerene based organic optoelectronic applications. J. Mater. Chem., 2002, 12(7), 1931-1943.
[http://dx.doi.org/10.1039/b201558g]
[2]
Chen, L.M.; Hong, Z.; Li, G.; Yang, Y. Recent progress in polymer solar cells: Manipulation of polymer:Fullerene morphology and the formation of efficient inverted polymer solar cells. Adv. Mater., 2009, 21(14-15), 1434-1449.
[http://dx.doi.org/10.1002/adma.200802854]
[3]
Brabec, C.J.; Gowrisanker, S.; Halls, J.J.M.; Laird, D.; Jia, S.; Williams, S.P. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater., 2010, 22(34), 3839-3856.
[http://dx.doi.org/10.1002/adma.200903697] [PMID: 20717982]
[4]
Nelson, J. Polymer:Fullerene bulk heterojunction solar cells. Mater. Today, 2011, 14(10), 462-470.
[http://dx.doi.org/10.1016/S1369-7021(11)70210-3]
[5]
Dang, M.T.; Hirsch, L.; Wantz, G. P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater., 2011, 23(31), 3597-3602.
[http://dx.doi.org/10.1002/adma.201100792] [PMID: 21936074]
[6]
Giacomo, B.F. Fullerene and its derivatives for organic solar cells. Top. Appl. Phys., 2015, 221-247.
[7]
Yutaka, M. CHAPTER 3: Fullerene derivatives as electron acceptors in polymer solar cells; Polymer Photovoltaics, 2016, pp. 78-100.
[http://dx.doi.org/10.1039/9781782622307-00078]
[8]
Rubio Arias, J.J.; Vieira Marques, M.F.; Marques, V.; de Fatima, M. Performance of poly(3-hexylthiophene) in bulk heterojunction solar cells: Influence of polymer size and size distribution. React. Funct. Polym., 2017, 113, 58-69.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.02.009]
[9]
Tuktarov, A.R.; Chobanov, N.M.; Budnikova, Y.H.; Dudkina, Y.B.; Dzhemilev, U.M. Synthesis and electrochemical properties of fullerenylstyrenes. J. Org. Chem., 2019, 84(24), 16333-16337.
[http://dx.doi.org/10.1021/acs.joc.9b02728] [PMID: 31769287]
[10]
Tuktarov, A.R.; Chobanov, N.M.; Sadretdinova, Z.R.; Salikhov, R.B.; Mullagaliev, I.N.; Salikhov, T.R.; Dzhemilev, U.M. New n-type semiconductor material based on styryl fullerene for organic field-effect transistors. Mendeleev Commun., 2021, 31(5), 641-643.
[http://dx.doi.org/10.1016/j.mencom.2021.09.016]
[11]
Bren’, V.A.; Dubonosov, A.D.; Minkin, V.I.; Chernoivanov, V.A. Norbornadiene–quadricyclane - An effective molecular system for the storage of solar energy. Russ. Chem. Rev., 1991, 60(5), 451-469.
[http://dx.doi.org/10.1070/RC1991v060n05ABEH001088]
[12]
Dubonosov, A.D.; Bren, V.A.; Chernoivanov, V.A. Norbornadiene–quadricyclane as an abiotic system for the storage of solar energy. Russ. Chem. Rev., 2002, 71(11), 917-927.
[http://dx.doi.org/10.1070/RC2002v071n11ABEH000745]
[13]
Lorenz, P.; Hirsch, A. Photoswitchable norbornadiene-quadricyclane interconversion mediated by covalently linked C60. Chemistry, 2020, 26(23), 5220-5230.
[http://dx.doi.org/10.1002/chem.201904679] [PMID: 31773822]
[14]
Bonfantini, E.E.; Officer, D.L. The synthesis of orbornadienes conjugatively linked to tetraphenylporphyrin ad anthracene: Towards a norbornadiene-derived molecular electronic device. J. Chem. Soc. Chem. Commun., 1994, 1445-1446(12), 1445.
[http://dx.doi.org/10.1039/c39940001445]
[15]
Lainé, P.; Marvaud, V.; Gourdon, A.; Launay, J.P.; Argazzi, R.; Bignozzi, C.A. Electron transfer through norbornadiene and quadricyclane moieties as a model for molecular switching. Inorg. Chem., 1996, 35(3), 711-714.
[http://dx.doi.org/10.1021/ic9507225]
[16]
Fraysse, S.; Coudret, C.; Launay, J.P. Synthesis and properties of dinuclear complexes with a photochromic bridge: An intervalence electron transfer switching “On” and “Off”. Eur. J. Inorg. Chem., 2000, 2000(7), 1581-1590.
[http://dx.doi.org/10.1002/1099-0682(200007)2000:7<1581:AID-EJIC1581>3.0.CO;2-2]
[17]
Morino, S.; Watanabe, T.; Magaya, Y.; Yamashita, T.; Horie, K.; Nishikubo, T. Photo-optical effect of polymers containing norbornadiene moieties. J. Photopolym. Sci. Technol., 1994, 7(1), 121-126.
[http://dx.doi.org/10.2494/photopolymer.7.121]
[18]
Takahashi, S.; Samata, K.; Muta, H.; Machida, S.; Horie, K. Refractive-index patterning using near-field scanning optical microscopy. Appl. Phys. Lett., 2001, 78(1), 13-15.
[http://dx.doi.org/10.1063/1.1336164]
[19]
Herges, R.; Reif, W. Photoresponsive carboxylic acids. Liebigs Ann. Chem., 1996, 5, 761-768.
[20]
Starck, F.; Jones, P.G.; Herges, R. Synthesis of photoresponsive polyethers. Eur. J. Org. Chem., 1998, 1998(11), 2533-2539.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199811)1998:11<2533:AID-EJOC2533>3.0.CO;2-Q]
[21]
Harada, Y.; Hatakeyama, J.; Kawai, Y.; Sasago, M.; Endo, M.; Kishimura, S.; Maeda, K.; Ootani, M.; Komoriya, H. Polymers, resist compositions and patterning process. US Patent 6824955, 2004.
[22]
Myers, H.K.; Schneider, A.; Suld, G. Synthesis of polycyclic hydrocarbons C14H20 by hydrogenation of exo-exo-, exo-endo-, endo-exo-, and endoendohexacyclo[9.2.1.02,10.03,8.04,6.05,9]tetradec-12-enes with H2SO4 and isomerization of the products to diamantane induced by ionic liquids. US Patent US4207080, 1980.
[23]
Dzhemilev, U.M.; Khusnutdinov, R.I.; Aminov, R.I.; Tomilov, Yu.V.; Nefedov, O.M.; Kurbatov, V.E.; Vinogradova, M.E.; Tupakhina, E.A. Method for producing endo-endo-hexacyclo[.2.1.02,10.03,8.04,6.05,9]tetradec-12-enes. Russian Patent RU2640204C2, 2017.
[24]
Schrauzer, G.N.; Ho, R.K.Y.; Schlesinger, G. New catalysts of stereospecific norbornadiene dimerization to “binor-s” (1,2,4:5,6,8-dimetheno-s-indacene). Tetrahedron Lett., 1970, 11(8), 543-545.
[http://dx.doi.org/10.1016/S0040-4039(01)97764-0]
[25]
Bingel, C. Cyclopropanierung von fullerenen. Chem. Ber., 1993, 126(8), 1957-1959.
[http://dx.doi.org/10.1002/cber.19931260829]
[26]
Camps, X.; Hirsch, A. Efficient cyclopropanation of C60 starting from malonates. J. Chem. Soc., Perkin Trans. 1, 1997, 1595-1596(11), 1595-1596.
[http://dx.doi.org/10.1039/a702055d]
[27]
Aminov, R.I.; Karimova, I.M.; Khusnutdinov, R.I. Reactions of binor-S with α, ω-Diols and organic acids in the presence of inorganic ionic liquids. Russ. J. Org. Chem., 2020, 56(9), 1595-1599.
[http://dx.doi.org/10.1134/S1070428020090158]
[28]
Lin, M.C.; Yeh, S.J.; Chen, I.R.; Lin, G. Stereoselective inhibition of cholesterol esterase by enantiomers of exo- and endo-2-norbornyl-N-n-butylcarbamates. Protein J., 2011, 30(3), 220-227.
[http://dx.doi.org/10.1007/s10930-011-9323-3] [PMID: 21448788]
[29]
Khusnutdinov, R.; Egorova, T.; Khalilov, L.; Meshcheriakova, E.; Dzhemilev, U. Direct and stereoselective iron-catalyzed amidation of binor-S with alkyl and aryl cyanides in water. Synthesis, 2018, 50(7), 1555-1559.
[http://dx.doi.org/10.1055/s-0036-1591881]
[30]
Hollowood, F.S.; McKervey, M.A.; Hamilton, R.; Rooney, J.J. Synthesis of triamantane. J. Org. Chem., 1980, 45(24), 4954-4958.
[http://dx.doi.org/10.1021/jo01312a026]
[31]
Khusnutdinov, R.I.; Muslimov, Z.S.; Dzhemilev, U.M.; Nefedov, O.M. Reactions of heptacyclo[8.4.0.02,12.03,8.04,6.05,9.011,13]tetradecane (binor-s) with acids and alcohols catalyzed by Pd, Rh, and Pt complexes and some transformations of the compounds formed. Russ. Chem. Bull., 1993, 42(4), 692-697.
[http://dx.doi.org/10.1007/BF00704004]
[32]
Dzhemilev, U.M.; Akhmetov, A.R.; Khuzin, A.A.; D’yakonov, V.A.; Dzhemileva, L.U.; Yunusbaeva, M.M.; Khalilov, L.M.; Tuktarov, A.R. A new original approach to the design of anticancer drugs based on energy-rich quadricyclanes. Russ. Chem. Bull., 2019, 68(5), 1036-1040.
[http://dx.doi.org/10.1007/s11172-019-2516-1]
[33]
Stockett, M.H.; Gatchell, M.; de Ruette, N.; Giacomozzi, L.; Chen, T.; Rousseau, P.; Maclot, S.; Chesnel, J.Y.; Adoui, L.; Huber, B.A. Bērziņš, U.; Schmidt, H.T.; Zettergren, H.; Cederquist, H. Isomer effects in fragmentation of polycyclic aromatic hydrocarbons. Int. J. Mass Spectrom., 2015, 392, 58-62.
[http://dx.doi.org/10.1016/j.ijms.2015.09.005]
[34]
Zhou, X.; Wang, Z.; Song, R.; Zhang, Y.; Zhu, L.; Xue, D.; Huang, L.; Chi, L. High performance gas sensors with dual response based on organic ambipolar transistors. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(5), 1584-1592.
[http://dx.doi.org/10.1039/D0TC04843G]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy