Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Protective Effect of Green Chiretta (Andrographis paniculata) against Methotrexate-induced Cardio and Spleen Toxicity: In-vitro and In-vivo

Author(s): Manisha Parthasarathy, Vijayadharshini Seenivasan, Sangeetha Nithiyanandam, Ramkumar Katturajan, Deepak Haraganahalli Bhasakarmurthy, Raja Ganesan, Abilash Valsala Gopalakrishnan, Sheikh F. Ahmad and Sabina Evan Prince*

Volume 14, Issue 3, 2024

Published on: 04 October, 2023

Article ID: e041023221664 Pages: 10

DOI: 10.2174/0122103155276658230928094402

Price: $65

conference banner
Abstract

Background: Methotrexate (MTX) is a widely used medication for treating various conditions, including skin infections, inflammatory diseases, autoimmune disorders, and malignancies. However, prolonged and extreme use of MTX can lead to detrimental effects on multiple organs. Green Chiretta (GC) is a traditional medicinal plant known for its anti-inflammatory, antioxidant, and immunostimulatory properties.

Objective: The objective of this study is to examine the antioxidant potential of GC through in-vitro analysis and to assess the potential protective effects of aqueous leaf extracts of GC against MTXinduced cardiac and spleen toxicity.

Methods: In-vitro antioxidant activity was assessed by measuring total phenolic content, DPPH, catalase and peroxidase activity. We divided rats into five groups (n=6), and after the study, rats were euthanized and the levels of antioxidants (SOD, CAT & GSH) and lipid peroxidase (MDA), as well as histopathology modification of the heart and spleen tissues were examined.

Results: Our study's findings highlight the superiority of the aqueous GC extract's antioxidant capacity relative to other solvents (ethanol and methanol). Moreover, the aqueous GC extract's administration to rats yielded significant progress in antioxidant levels (Superoxide dismutase, catalase, glutathione), a reduction in lipid peroxidation (MDA), and the restoration of cardiac and spleen histoarchitecture against MTX-induced toxicity. These results collectively emphasize the extract's potential as a valuable therapeutic option against oxidative stress and tissue damage.

Conclusion: The present study revealed that the aqueous GC extract demonstrated its protective efficacy against MTX-induced cardio and spleen toxicity in Wistar albino rats.

Graphical Abstract

[1]
Zakaria, ZZ; Benslimane, FM; Nasrallah, GK; Shurbaji, S; Younes, NN; Mraiche, F; Da’As, SI; Yalcin, HC Using zebrafish for investigating the molecular mechanisms of drug-induced cardiotoxicity. Biomed Res Int., 2018, 2018
[http://dx.doi.org/10.1155/2018/1642684]
[2]
Mladěnka, P; Applová, L; Patočka, J; Costa, VM; Remiao, F; Pourová, J; Mladěnka, A; Karlíčková, J; Jahodář, L; Vopršalová, M; Varner, KJ; Štěrba, M Comprehensive review of cardiovascular toxicity of drugs and related agents. Med Res Rev, 2018, 38(4), 1332.
[http://dx.doi.org/10.1002/med.21476]
[3]
Braam, S.R.; Tertoolen, L.; van de Stolpe, A.; Meyer, T.; Passier, R.; Mummery, C.L. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res., 2010, 4(2), 107-116.
[http://dx.doi.org/10.1016/j.scr.2009.11.004] [PMID: 20034863]
[4]
Varga, Z.V.; Ferdinandy, P.; Liaudet, L.; Pacher, P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol., 2015, 309(9), H1453-H1467.
[http://dx.doi.org/10.1152/ajpheart.00554.2015] [PMID: 26386112]
[5]
Jain, A.; Rani, V. Assessment of herb-drug synergy to combat doxorubicin induced cardiotoxicity. Life Sci., 2018, 205, 97-106.
[http://dx.doi.org/10.1016/j.lfs.2018.05.021] [PMID: 29752960]
[6]
Makhdoumi, P.; Hossini, H.; Ashraf, G.M.; Limoee, M. Molecular mechanism of aniline induced spleen toxicity and neuron toxicity in experimental rat exposure: A review. Curr. Neuropharmacol., 2019, 17(3), 201-213.
[http://dx.doi.org/10.2174/1570159X16666180803164238] [PMID: 30081786]
[7]
Hancock, G.E.; Farquharson, A.L. Management of splenic injury. J. R. Army Med. Corps, 2012, 158(4), 288-298.
[http://dx.doi.org/10.1136/jramc-158-04-03] [PMID: 23402064]
[8]
Elsayed, H.R.H.; Anbar, H.S.; Rabei, M.R.; Adel, M.; El-Gamal, R.; El-gamal, R. Eicosapentaenoic and docosahexaenoic acids attenuate methotrexate-induced apoptosis and suppression of splenic T, B-Lymphocytes and macrophages with modulation of expression of CD3, CD20 and CD68. Tissue Cell, 2021, 72(March), 101533.
[http://dx.doi.org/10.1016/j.tice.2021.101533] [PMID: 33838352]
[9]
Mercantepe, T.; Tümkaya, L.; Mercantepe, F. Effects of infliximab against methotrexate toxicity in splenic tissue via the regulation of CD3, CD68, and C200R in Rats. Cells Tissues Organs, 2018, 206(6), 308-316.
[http://dx.doi.org/10.1159/000500905] [PMID: 31284287]
[10]
Bedoui, Y.; Guillot, X.; Sélambarom, J.; Guiraud, P.; Giry, C.; Jaffar-Bandjee, M.C.; Ralandison, S.; Gasque, P. Methotrexate an old drug with new tricks. Int. J. Mol. Sci., 2019, 20(20), 5023.
[http://dx.doi.org/10.3390/ijms20205023] [PMID: 31658782]
[11]
Wood, G.S.; Wu, J. Methotrexate and pralatrexate. Dermatol. Clin., 2015, 33(4), 747-755.
[http://dx.doi.org/10.1016/j.det.2015.05.009] [PMID: 26433846]
[12]
Ezhilarasan, D. Hepatotoxic potentials of methotrexate: Understanding the possible toxicological molecular mechanisms. Toxicology, 2021, 458(162), 152840.
[http://dx.doi.org/10.1016/j.tox.2021.152840] [PMID: 34175381]
[13]
Maksimovic, V.; Pavlovic-Popovic, Z.; Vukmirovic, S.; Cvejic, J.; Mooranian, A.; Al-Salami, H.; Mikov, M.; Golocorbin-Kon, S. Molecular mechanism of action and pharmacokinetic properties of methotrexate. Mol. Biol. Rep., 2020, 47(6), 4699-4708.
[http://dx.doi.org/10.1007/s11033-020-05481-9] [PMID: 32415503]
[14]
Wang, W.; Zhou, H.; Liu, L. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review. Eur. J. Med. Chem., 2018, 158, 502-516.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.027] [PMID: 30243154]
[15]
Narrod, SA. Chronic toxicity of methotrexate in mice. J Natl Cancer Inst, 1977, 58(3), 735-741.
[16]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[17]
Fan, C.; Jin, H.Z.; Wu, L.; Zhang, Y.; Ye, R.D.; Zhang, W.; Zhang, Y. An exploration of traditional Chinese medicinal plants with anti-inflammatory activities. In: Evid Based Complementary Altern Med; , 2017.
[http://dx.doi.org/10.1155/2017/1231820]
[18]
Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol., 2015, 4(1), 27-30.
[PMID: 28197471]
[19]
Okhuarobo, A.; Ehizogie Falodun, J.; Erharuyi, O.; Imieje, V.; Falodun, A.; Langer, P. Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: A review of its phytochemistry and pharmacology. Asian Pac. J. Trop. Dis., 2014, 4(3), 213-222.
[http://dx.doi.org/10.1016/S2222-1808(14)60509-0]
[20]
Hossain, M.S.; Urbi, Z.; Sule, A.; Rahman, K.M.H. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. Scient. World. J., 2014, 2014, 1-28.
[http://dx.doi.org/10.1155/2014/274905] [PMID: 25950015]
[21]
Selvaraj, K.; Gayatri Devi, R.; Selvaraj, J.; Jothi Priya, A. In vitro anti-inflammatory and wound healing properties of Andrographis echioides and Andrographis paniculata. Bioinformation, 2022, 18(4), 331-336.
[http://dx.doi.org/10.6026/97320630018331] [PMID: 36909694]
[22]
Sa-ngiamsuntorn, K.; Suksatu, A.; Pewkliang, Y.; Thongsri, P.; Kanjanasirirat, P.; Manopwisedjaroen, S.; Charoensutthivarakul, S.; Wongtrakoongate, P.; Pitiporn, S.; Chaopreecha, J.; Kongsomros, S.; Jearawuttanakul, K.; Wannalo, W.; Khemawoot, P.; Chutipongtanate, S.; Borwornpinyo, S.; Thitithanyanont, A.; Hongeng, S. Anti-SARS-CoV-2 Activity of Andrographis paniculata Extract and its major component andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J. Nat. Prod., 2021, 84(4), 1261-1270.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01324] [PMID: 33844528]
[23]
Rahmi, E.P.; Kumolosasi, E.; Jalil, J.; Buang, F.; Jamal, J.A. Extracts of Andrographis paniculata (Burm.f.) nees leaves exert anti-gout effects by lowering uric acid levels and reducing monosodium urate crystal-induced inflammation. Front. Pharmacol., 2022, 12, 787125.
[http://dx.doi.org/10.3389/fphar.2021.787125] [PMID: 35095497]
[24]
Lee, D.; Baek, C.Y.; Hwang, J.H.; Kim, M.Y. Andrographis paniculata extract relieves pain and inflammation in monosodium iodoacetate-induced osteoarthritis and acetic acid-induced writhing in animal models. Processes, 2020, 8(7), 873.
[http://dx.doi.org/10.3390/pr8070873]
[25]
Rzhepakovsky, I.V.; Areshidze, D.A.; Avanesyan, S.S.; Grimm, W.D.; Filatova, N.V.; Kalinin, A.V.; Kochergin, S.G.; Kozlova, M.A.; Kurchenko, V.P.; Sizonenko, M.N.; Terentiev, A.A.; Timchenko, L.D.; Trigub, M.M.; Nagdalian, A.A.; Piskov, S.I. Phytochemical characterization, antioxidant activity, and cytotoxicity of methanolic leaf extract of Chlorophytum Comosum (Green Type) (Thunb.) Jacq. Molecules, 2022, 27(3), 762.
[http://dx.doi.org/10.3390/molecules27030762] [PMID: 35164026]
[26]
Lück, H. Method of Enzymatic Analysis; Academic Press: New York and London, 1965, pp. 885-894.
[27]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181(4617), 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[28]
Reddy, K.P.; Subhani, S.M.; Khan, P.A.; Kumar, K.B. Effect of light and benzyladenine on dark-treated growing rice (Oryza sativa) leaves II. Plant Cell Physiol., 1985, 26(6), 987-994.
[http://dx.doi.org/10.1093/oxfordjournals.pcp.a077018]
[29]
Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol., 1999, 299, 152-178.
[http://dx.doi.org/10.1016/S0076-6879(99)99017-1]
[30]
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, 47(3), 469-474.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03714.x] [PMID: 4215654]
[31]
Sinha, A.K. Colorimetric assay of catalase. Anal. Biochem., 1972, 47(2), 389-394.
[http://dx.doi.org/10.1016/0003-2697(72)90132-7] [PMID: 4556490]
[32]
Tietze, F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal. Biochem., 1969, 27(3), 502-522.
[http://dx.doi.org/10.1016/0003-2697(69)90064-5] [PMID: 4388022]
[33]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[34]
Peter, S.J.; Kumar, K.R.; Manisha, P.; Sangeetha, N.; Raj, N.A.; Kumari, U.; Sabina, E.P. Potential activity of Madhuca longifolia leaf extract: through In vitro, Pharmacological and In silico studies. Res. J. Pharm. Technol., 2020, 13(3), 1083-1091.
[http://dx.doi.org/10.5958/0974-360X.2020.00199.7]
[35]
Abifarin, T.O.; Afolayan, A.J.; Otunola, G.A. Phytochemical and antioxidant activities of Cucumis africanus L.f.: A wild vegetable of South Africa. J. Evid. Based Integr. Med., 2019, 24, 2515690X1983639.
[http://dx.doi.org/10.1177/2515690X19836391] [PMID: 30917681]
[36]
Howard, S.C.; McCormick, J.; Pui, C.H.; Buddington, R.K.; Harvey, R.D. Preventing and managing toxicities of high-dose methotrexate. Oncologist, 2016, 21(12), 1471-1482.
[http://dx.doi.org/10.1634/theoncologist.2015-0164] [PMID: 27496039]
[37]
Li, F.; Li, H.; Luo, S.; Ran, Y.; Xie, X.; Wang, Y.; Zheng, M.; Wang, M.; Zhao, Z.; Li, X. Evaluation of the effect of andrographolide and methotrexate combined therapy in complete Freundʼs adjuvant induced arthritis with reduced hepatotoxicity. Biomed. Pharmacother., 2018, 106, 637-645.
[http://dx.doi.org/10.1016/j.biopha.2018.07.001] [PMID: 29990853]
[38]
Neogy, S.; Das, S.; Mahapatra, S.K.; Mandal, N.; Roy, S. Amelioratory effect of Andrographis paniculata Nees on liver, kidney, heart, lung and spleen during nicotine induced oxidative stress. Environ. Toxicol. Pharmacol., 2008, 25(3), 321-328.
[http://dx.doi.org/10.1016/j.etap.2007.10.034] [PMID: 21783869]
[39]
Al-khawalde, A.A.A.; Abukhalil, M.H.; Jghef, M.M.; Alfwuaires, M.A.; Alaryani, F.S.; Aladaileh, S.H.; Algefare, A.I.; Karimulla, S.; Alasmari, F.; Aldal’in, H.K.; Alanezi, A.A.; Althunibat, O.Y. Punicalagin protects against the development of methotrexate-induced hepatotoxicity in mice via activating Nrf2 signaling and decreasing oxidative stress, inflammation, and cell death. Int. J. Mol. Sci., 2022, 23(20), 12334.
[http://dx.doi.org/10.3390/ijms232012334] [PMID: 36293191]
[40]
Shalaby, A.M.; Albakoush, K.M.M.; Alabiad, M.A.; Alorini, M.; Jaber, F.A.; Elkholy, M.R.; Tawfeek, S.E. Methotrexate enhances oxidative stress, apoptosis, and ultrastructural alterations in the placenta of rat. Ultrastruct. Pathol., 2022, 46(6), 531-541.
[http://dx.doi.org/10.1080/01913123.2022.2154877] [PMID: 36469756]
[41]
Khafaga, A.F.; El-Sayed, Y.S. Spirulina ameliorates methotrexate hepatotoxicity via antioxidant, immune stimulation, and proinflammatory cytokines and apoptotic proteins modulation. Life Sci., 2018, 196, 9-17.
[http://dx.doi.org/10.1016/j.lfs.2018.01.010] [PMID: 29339102]
[42]
Soliman, M.M.; Al-Osaimi, S.H.; HassanMohamed, E.; Aldhahrani, A.; Alkhedaide, A.; Althobaiti, F.; Mohamed, W.A. Protective Impacts of Moringa oleifera Leaf extract against methotrexate-induced oxidative stress and apoptosis on mouse spleen. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/6738474] [PMID: 32565869]
[43]
Hassanein, E.H.M.; Mohamed, W.R.; Hussein, R.M.; Arafa, E.S.A. Edaravone alleviates methotrexate-induced testicular injury in rats: Implications on inflammation, steroidogenesis, and Akt/p53 signaling. Int. Immunopharmacol., 2023, 117, 109969.
[http://dx.doi.org/10.1016/j.intimp.2023.109969] [PMID: 37012866]
[44]
Welbat, J.U.; Naewla, S.; Pannangrong, W.; Sirichoat, A.; Aranarochana, A.; Wigmore, P. Neuroprotective effects of hesperidin against methotrexate-induced changes in neurogenesis and oxidative stress in the adult rat. Biochem. Pharmacol., 2020, 178, 114083.
[http://dx.doi.org/10.1016/j.bcp.2020.114083] [PMID: 32522593]
[45]
Mortada, W.I.; Matter, Y.; Khater, S.M.; Barakat, N.M.; El-Tantawy, F.M. Pomegranate attenuates kidney injury in cyclosporine-induced nephrotoxicity in rats by suppressing oxidative stress. Open Chem., 2023, 21(1), 20220271.
[http://dx.doi.org/10.1515/chem-2022-0271]
[46]
Parthasarathy, M.; Prince, S.E. Andrographis paniculata (Burm.f.) nees alleviates methotrexate-induced hepatotoxicity in wistar albino rats. Life, 2023, 13(5), 1173.
[http://dx.doi.org/10.3390/life13051173] [PMID: 37240818]
[47]
Zeng, B.; Wei, A.; Zhou, Q.; Yuan, M.; Lei, K.; Liu, Y.; Song, J.; Guo, L.; Ye, Q. Andrographolide: A review of its pharmacology, pharmacokinetics, toxicity and clinical trials and pharmaceutical researches. Phytother. Res., 2022, 36(1), 336-364.
[http://dx.doi.org/10.1002/ptr.7324] [PMID: 34818697]
[48]
Loureiro Damasceno, J.P.; Silva da Rosa, H.; Silva de Araújo, L.; Jacometti Cardoso Furtado, N.A. Andrographis paniculata formulations: Impact on diterpene lactone oral bioavailability. Eur. J. Drug Metab. Pharmacokinet., 2022, 47(1), 19-30.
[http://dx.doi.org/10.1007/s13318-021-00736-7] [PMID: 34816382]
[49]
Wu, J.J.; Guérin, A.; Sundaram, M.; Dea, K.; Cloutier, M.; Mulani, P. Cardiovascular event risk assessment in psoriasis patients treated with tumor necrosis factor-α inhibitors versus methotrexate. J. Am. Acad. Dermatol., 2017, 76(1), 81-90.
[http://dx.doi.org/10.1016/j.jaad.2016.07.042] [PMID: 27894789]
[50]
Shah, S.; Haeger-Overstreet, K.; Flynn, B. Methotrexate-induced acute cardiotoxicity requiring veno-arterial extracorporeal membrane oxygenation support: A case report. J. Med. Case Reports, 2022, 16(1), 447.
[http://dx.doi.org/10.1186/s13256-022-03644-9] [PMID: 36443884]
[51]
Al-Abkal, F.; Abdel-Wahab, B.A.; El-Kareem, H.F.A.; Moustafa, Y.M.; Khodeer, D.M. Protective effect of pycnogenol against methotrexate-induced hepatic, renal, and cardiac toxicity: An In Vivo study. Pharmaceuticals, 2022, 15(6), 674.
[http://dx.doi.org/10.3390/ph15060674] [PMID: 35745592]
[52]
Some functional measures of the organism of rats at modeling of ischemic heart disease in two different ways. Entomol. Appl. Sci. Let., 2023, 4(5)
[53]
Wang, Y.; Lv, J.; Ma, X.; Wang, D.; Ma, H.; Chang, Y.; Nie, G.; Jia, L.; Duan, X.; Liang, X.J. Specific hemosiderin deposition in spleen induced by a low dose of cisplatin: Altered iron metabolism and its implication as an acute hemosiderin formation model. Curr. Drug Metab., 2010, 11(6), 507-515.
[http://dx.doi.org/10.2174/138920010791636149] [PMID: 20540689]
[54]
Zhong, S.; Liu, P.; Ding, J.; Zhou, W. Hyaluronic acid-coated MTX-PEI nanoparticles for targeted rheumatoid arthritis therapy. Crystals, 2021, 11(4), 321.
[http://dx.doi.org/10.3390/cryst11040321]
[55]
Suttie, A.W. Histopathology of the Spleen. Toxicol. Pathol., 2006, 34(5), 466-503.
[http://dx.doi.org/10.1080/01926230600867750] [PMID: 17067940]
[56]
Kanner, C.; Libman, B.; Merchand, M.; Lemos, D. Resolution of osseous sarcoidosis with methotrexate. Case Rep. Rheumatol., 2019, 2019, 1-5.
[http://dx.doi.org/10.1155/2019/4156313] [PMID: 31886004]
[57]
Waller, S.B.; Cleff, M.B.; Dalla Lana, D.F.; de Mattos, C.B.; Guterres, K.A.; Freitag, R.A.; Sallis, E.S.V.; Fuentefria, A.M.; de Mello, J.R.B.; de Faria, R.O.; Meireles, M.C.A. Can the essential oil of rosemary (Rosmarinus officinalis Linn.) protect rats infected with itraconazole-resistant Sporothrix brasiliensis from fungal spread? J. Mycol. Med., 2021, 31(4), 101199.
[http://dx.doi.org/10.1016/j.mycmed.2021.101199] [PMID: 34418685]
[58]
Tassinari, R.; Martinelli, A.; Valeri, M.; Maranghi, F. Amorphous silica nanoparticles induced spleen and liver toxicity after acute intravenous exposure in male and female rats. Toxicol. Ind. Health, 2021, 37(6), 328-335.
[http://dx.doi.org/10.1177/07482337211010579] [PMID: 33910434]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy