Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Plicatin C: A New Cinnamate Derivative from Mangrove-derived Fungus Aspergillus terreus DM62

Author(s): Danmei Tian, Mei Chen, Wenjuan Ding, Jia Li, Shi Wu*, Kui Hong* and Jinshan Tang*

Volume 14, Issue 3, 2024

Published on: 03 October, 2023

Article ID: e031023221602 Pages: 6

DOI: 10.2174/0122103155274328230926160728

Price: $65

conference banner
Abstract

Background: Marine fungi have been proven to be a new arsenal for the discovery of valuable secondary metabolites.

Method: Fungus strain Aspergillus terreus DM62 was initially fermentated using solid corn medium and PDA liquid medium. Subsequently, extensive chromatographic methods were applied to isolate the fermentation cultures of DM62, and the chemical structures of isolate compounds were elucidated by pectroscopic analyses and optical rotations comparison. Additionally, α-glucosidase and ATPcitrate lyase (ACL) inhibitory activities of isolate compounds were assessed to investigate their hypoglycemic and lipid-lowering activities.

Result: A new cinnamate derivative, plicati n C (1), together with 18 known compounds, were isolated from the solid and liquid state fermentations of A. terreus DM62. Activity evaluation showed that compounds 3, 6, and 8-10 exhibited stronger α-glucosidase inhibitory activities than acarbose at 400 μM, and butenolide 3, with an IC50 value of 21.5 μM, was discovered with significant ACL inhibitory activity for the first time.

Conclusion: This study not only discovered a new cinnamate derivative but also found butenolides with potent ACL inhibitory activity, which is favorable to clarify their pharmacological mechanism in the treatment of metabolic disease.

Graphical Abstract

[1]
Kamal, D.; Nabil, C.; Laid, B.; Heidar, N.; Nadia, B.; Juliana, M.; El-Hafid, N. economIsolation, in vitro evaluation and construction of Versatile Microbial Consortia. Cell. Mol. Biol., 2022, 68(8), 173-181.
[http://dx.doi.org/10.14715/cmb/2022.68.8.31] [PMID: 36800844]
[2]
Luo, X.W.; Lin, Y.; Lu, Y.J.; Zhou, X.F.; Liu, Y.H. Peptides and polyketides isolated from the marine sponge-derived fungus Aspergillus terreus SCSIO 41008. Chin. J. Nat. Med., 2019, 17(2), 149-154.
[http://dx.doi.org/10.1016/S1875-5364(19)30017-2] [PMID: 30797421]
[3]
Lubertozzi, D.; Keasling, J.D. Developing Aspergillus as a host for heterologous expression. Biotechnol. Adv., 2009, 27(1), 53-75.
[http://dx.doi.org/10.1016/j.biotechadv.2008.09.001] [PMID: 18840517]
[4]
Wu, L.; Zhang, L.; Li, X.; Lv, R.; Cao, W.; Gao, W.; Liu, J.; Xie, Z.; Liu, H. Effective production of kojic acid in engineered Aspergillus niger. Microb. Cell Fact., 2023, 22(1), 40.
[http://dx.doi.org/10.1186/s12934-023-02038-w] [PMID: 36843006]
[5]
Wu, H.Y.; Mortensen, U.H.; Chang, F.R.; Tsai, H.Y. Whole genome sequence characterization of Aspergillus terreus ATCC 20541 and genome comparison of the fungi A. terreus. Sci. Rep., 2023, 13(1), 194.
[6]
Gou, X.; Jia, J.; Xue, Y.; Ding, W.; Dong, Z.; Tian, D.; Chen, M.; Bi, H.; Hong, K.; Tang, J. New pyrones and their analogs from the marine mangrove-derived Aspergillus sp. DM94 with antibacterial activity against Helicobacter pylori. Appl. Microbiol. Biotechnol., 2020, 104(18), 7971-7978.
[http://dx.doi.org/10.1007/s00253-020-10792-9] [PMID: 32700088]
[7]
Ding, W.; Wang, F.; Li, Q.; Xue, Y.; Dong, Z.; Tian, D.; Chen, M.; Zhang, Y.; Hong, K.; Tang, J. Isolation and characterization of anti-inflammatory sorbicillinoids from the mangrove-derived fungus Penicillium sp. DM815. Chem. Biodivers., 2021, 18(7), e2100229.
[http://dx.doi.org/10.1002/cbdv.202100229] [PMID: 34085751]
[8]
Chen, S.; Tian, D.; Wei, J.; Li, C.; Ma, Y.; Gou, X.; Shen, Y.; Chen, M.; Zhang, S.; Li, J.; Wu, B.; Tang, J. Citrinin derivatives from Penicillium citrinum Y34 that inhibit α-glucosidase and ATP-citrate lyase. Front. Mar. Sci., 2022, 9, 961356.
[http://dx.doi.org/10.3389/fmars.2022.961356]
[9]
Zhou, P.J.; Zang, Y.; Li, C.; Yuan, L.; Zeng, H.; Li, J.; Hu, J.F.; Xiong, J. Forrestiacids C and D, unprecedented triterpene-diterpene adducts from Pseudotsuga forrestii. Chin. Chem. Lett., 2022, 33(9), 4264-4268.
[http://dx.doi.org/10.1016/j.cclet.2021.12.009]
[10]
Moriarty, R.M.; Grubjesic, S.; Surve, B.C.; Chandersekera, S.N.; Prakash, O.; Naithani, R. Synthesis of Abyssinone II and related compounds as potential chemopreventive agents. Eur. J. Med. Chem., 2006, 41(2), 263-267.
[http://dx.doi.org/10.1016/j.ejmech.2005.09.008] [PMID: 16330130]
[11]
Zhang, Y.; Zhang, Y.; Yao, Y.B.; Lei, X.L.; Qian, Z.J. Butyrolactone-I from coral-derived fungus Aspergillus terreus attenuates neuro-inflammatory response via suppression of NF-κB pathway in bv-2 cells. Mar. Drugs, 2018, 16(6), 202.
[http://dx.doi.org/10.3390/md16060202] [PMID: 29880753]
[12]
Rao, K.V.; Sadhukhan, A.K.; Veerender, M.; Ravikumar, V.; Mohan, E.V.S.; Dhanvantri, S.D.; Sitaramkumar, M.; Moses Babu, J.; Vyas, K.; Om Reddy, G. Butyrolactones from Aspergillus terreus. Chem. Pharm. Bull., 2000, 48(4), 559-562.
[http://dx.doi.org/10.1248/cpb.48.559] [PMID: 10783079]
[13]
Ibrahim, S.R.M.; Elkhayat, E.S.; Mohamed, G.A.; Khedr, A.I.M.; Fouad, M.A.; Kotb, M.H.R.; Ross, S.A. Aspernolides F and G, new butyrolactones from the endophytic fungus Aspergillus terreus. Phytochem. Lett., 2015, 14, 84-90.
[http://dx.doi.org/10.1016/j.phytol.2015.09.006]
[14]
Pal, A.; Banik, B.K. Facile synthesis of highly funtionalized butyrolactones through an unprecedented base-catalyzed condensation. Heterocycl. Lett., 2020, 10(4), 537-542.
[15]
Haritakun, R.; Rachtawee, P.; Chanthaket, R.; Boonyuen, N.; Isaka, M. Butyrolactones from the fungus Aspergillus terreus BCC 4651. Chem. Pharm. Bull., 2010, 58(11), 1545-1548.
[http://dx.doi.org/10.1248/cpb.58.1545] [PMID: 21048353]
[16]
Parvatkar, R.R.; D’Souza, C.; Tripathi, A.; Naik, C.G. Aspernolides A and B, butenolides from a marine-derived fungus Aspergillus terreus. Phytochemistry, 2009, 70(1), 128-132.
[http://dx.doi.org/10.1016/j.phytochem.2008.10.017] [PMID: 19081582]
[17]
Zhang, Y.H.; Hou, X.M.; Yu, M.L.; Wang, C.Y. Secondary metabolites and their bioactivities from the gorgonian-derived fungus Aspergillus versicolor. Chem. Nat. Compd., 2019, 55(2), 327-330.
[http://dx.doi.org/10.1007/s10600-019-02680-0]
[18]
Hargreaves, J.; Park, J.; Ghisalberti, E.L.; Sivasithamparam, K.; Skelton, B.W.; White, A.H. New chlorinated diphenyl ethers from an Aspergillus species. J. Nat. Prod., 2002, 65(1), 7-10.
[http://dx.doi.org/10.1021/np0102758] [PMID: 11809055]
[19]
Liu, D.; Yan, L.; Ma, L.; Huang, Y.; Pan, X.; Liu, W.; Lv, Z. Diphenyl derivatives from coastal saline soil fungus Aspergillus iizukae. Arch. Pharm. Res., 2015, 38(6), 1038-1043.
[http://dx.doi.org/10.1007/s12272-014-0371-z] [PMID: 24668154]
[20]
Neff, S.A.; Lee, S.U.; Asami, Y.; Ahn, J.S.; Oh, H.; Baltrusaitis, J.; Gloer, J.B.; Wicklow, D.T. Aflaquinolones A-G: Secondary metabolites from marine and fungicolous isolates of Aspergillus spp. J. Nat. Prod., 2012, 75(3), 464-472.
[http://dx.doi.org/10.1021/np200958r] [PMID: 22295903]
[21]
He, J.W.; Xu, H.S.; Yang, L.; He, W.W.; Wang, C.X.; Lin, F.; Lian, Y.Y.; Sun, B.H.; Zhong, G.Y. New isocoumarins and related metabolites from talaromyces flavus. Nat. Prod. Commun., 2016, 11(6), 1934578X1601100.
[http://dx.doi.org/10.1177/1934578X1601100627] [PMID: 27534122]
[22]
Wang, H.J.; Shi, W.S.; Zhu, H.J. A new isocoumarin compound from marine-derived fungus Hansfordia sinuosae. Nat. Prod. Res. Dev., 2016, 28(02), 179-181.
[23]
Parisot, D.; Devys, M.; Barbier, M. 5-Deoxybostrycoidin, a new metabolite produced by the fungus Nectria haematococca (Berk. and Br.) Wr. Z. Naturforsch. B. J. Chem. Sci., 1989, 44(11), 1473-1474.
[http://dx.doi.org/10.1515/znb-1989-1125]
[24]
Ishikawa, K.; Hosoe, T.; Itabashi, T.; Sato, F.; Wachi, H.; Nagase, H.; Yaguchi, T.; Kawai, K. Quinazolinobenzodiazepine derivatives, novobenzomalvins A-C: Fibronectin expression regulators from Aspergillus novofumigatus. Sci. Pharm., 2011, 79(4), 937-950.
[http://dx.doi.org/10.3797/scipharm.1106-21] [PMID: 22145116]
[25]
Hochlowski, J.; Mullally, M.M.; Spanton, S.G.; Whittern, D.N.; Hill, P.; McAlpine, J.B. 5-N-Acetylardeemin, a novel heterocyclic compound which reverses multiple drug resistance in tumor cells. II. Isolation and elucidation of the structure of 5-N-acetylardeemin and two congeners. J. Antibiot., 1993, 46(3), 380-386.
[http://dx.doi.org/10.7164/antibiotics.46.380] [PMID: 8478256]
[26]
Li, G.Y.; Li, B.G.; Yang, T.; Yin, J.H.; Qi, H.Y.; Liu, G.Y.; Zhang, G.L. Sesterterpenoids, terretonins A-D, and an alkaloid, asterrelenin, from Aspergillus terreus. J. Nat. Prod., 2005, 68(8), 1243-1246.
[http://dx.doi.org/10.1021/np0501738] [PMID: 16124769]
[27]
Yin, W.B.; Grundmann, A.; Cheng, J.; Li, S.M. Acetylaszonalenin biosynthesis in Neosartorya fischeri. Identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes by biochemical investigation. J. Biol. Chem., 2009, 284(1), 100-109.
[http://dx.doi.org/10.1074/jbc.M807606200] [PMID: 19001367]
[28]
Rasool, N.; Khan, A.Q.; Malik, A. Plicatin A and B, two phenolic cinnamates from Psoralea plicata. Phytochemistry, 1990, 29(12), 3979-3981.
[http://dx.doi.org/10.1016/0031-9422(90)85385-S]
[29]
Ley, S.V.; Diez, E.; Dixon, D.J.; Guy, R.T.; Michel, P.; Nattrass, G.L.; Sheppard, T.D. Preparation of enantiopure butane-2,3-diacetals of glycolic acid and alkylation reactions leading to α-hydroxyacid and amide derivatives. Org. Biomol. Chem., 2004, 2(24), 3608-3617.
[http://dx.doi.org/10.1039/B412788A] [PMID: 15592619]
[30]
Wu, W.; Liu, L.; Zhu, H.; Sun, Y.; Wu, Y.; Liao, H.; Gui, Y.; Li, L.; Liu, L.; Sun, F.; Lin, H. Butyrolactone‐I, an efficient α‐glucosidase inhibitor, improves type 2 diabetes with potent TNF‐α–lowering properties through modulating gut microbiota in db/db mice. FASEB J., 2019, 33(11), 12616-12629.
[http://dx.doi.org/10.1096/fj.201901061R] [PMID: 31450982]
[31]
van Dijk, J.W.A.; Guo, C.J.; Wang, C.C.C. Engineering fungal nonribosomal peptide synthetase-like enzymes by heterologous expression and domain swapping. Org. Lett., 2016, 18(24), 6236-6239.
[http://dx.doi.org/10.1021/acs.orglett.6b02821] [PMID: 27978657]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy