Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Gut Microbiome and Circadian Interactions with Platelets Across Human Diseases, including Alzheimer’s Disease, Amyotrophic Lateral Sclerosis, and Cancer

Author(s): George Anderson*

Volume 23, Issue 28, 2023

Published on: 02 October, 2023

Page: [2699 - 2719] Pages: 21

DOI: 10.2174/0115680266253465230920114223

Price: $65

Abstract

Platelets have traditionally been investigated for their role in clot formation in the course of cardiovascular diseases and strokes. However, recent work indicates platelets to be an integral aspect of wider systemic processes, with relevance to the pathophysiology of a host of diverse medical conditions, including neurodegenerative disorders and cancer. This article reviews platelet function and interactions with the gut microbiome and circadian systems, highlighting the role of the platelet mitochondrial melatonergic pathway in determining platelet activation, fluxes and plasticity. This provides a number of novel conceptualizations of platelet function and mode of interaction with other cell types, including in the pathoetiology and pathophysiology of diverse medical conditions, such as cancer, Alzheimer’s disease, and amyotrophic lateral sclerosis. It is proposed that a platelet-gut axis allows platelets to contribute to many of the pathophysiological processes linked to gut dysbiosis and gut permeability. This is at least partly via platelet sphingosine- 1-phosphate release, which regulates enteric glial cells and lymphocyte chemotaxis, indicating an etiological role for platelets in a wide array of medical conditions linked to alterations in the gut microbiome. Platelets are also an important regulator of the various microenvironments that underpin most human medical conditions, including the tumor microenvironment, neurodegenerative diseases, and autoimmune disorders. Platelet serotonin release regulates the availability of the mitochondrial melatonergic pathway systemically, thereby being an important determinant of the dynamic metabolic interactions occurring across cell types that underpin the pathoetiology of many medical conditions. In addition, a number of novel and diverse future research directions and treatment implications are proposed.

« Previous
Graphical Abstract

[1]
Anderson, G. Tumour microenvironment and metabolism: Role of the mitochondrial melatonergic pathway in determining Intercellular Interactions in a new dynamic homeostasis. Int. J. Mol. Sci., 2022, 24(1), 311.
[http://dx.doi.org/10.3390/ijms24010311] [PMID: 36613754]
[2]
Goudswaard, L.J.; Williams, C.M.; Khalil, J.; Burley, K.L.; Hamilton, F.; Arnold, D.; Milne, A.; Lewis, P.A.; Heesom, K.J.; Mundell, S.J. Alterations in platelet proteome signature and impaired platelet integrin αIIbβ3 activation in patients with COVID-19. J Thromb Haemost., 2023, 21(5), 1307-1321.
[http://dx.doi.org/10.1016/j.jtha.2023.01.018]
[3]
Carbone, M.G.; Pomara, N.; Callegari, C.; Marazziti, D.; Imbimbo, B.P. Type 2 diabetes mellitus, platelet activation and alzheimer’s disease: A possible connection. Clin Neuropsychiatry, 2022, 19(6), 370-378.
[http://dx.doi.org/10.36131/cnfioritieditore20220604] [PMID: 36627944]
[4]
Sonkar, V.K.; Eustes, A.S.; Ahmed, A.; Jensen, M.; Solanki, M.V.; Swamy, J.; Kumar, R.; Fidler, T.P.; Houtman, J.C.D.; Allen, B.G.; Spitz, D.R.; Abel, E.D.; Dayal, S. Endogenous SOD2 (Superoxide Dismutase) regulates platelet-dependent thrombin generation and thrombosis during aging. Arterioscler. Thromb. Vasc. Biol., 2023, 43(1), 79-91.
[http://dx.doi.org/10.1161/ATVBAHA.121.317735] [PMID: 36325902]
[5]
Anderson, G.; Rodriguez, M.; Reiter, R.J. Multiple Sclerosis: Melatonin, Orexin, and Ceramide Interact with Platelet Activation Coagulation Factors and Gut-Microbiome-Derived Butyrate in the Circadian Dysregulation of Mitochondria in Glia and Immune Cells. Int. J. Mol. Sci., 2019, 20(21), 5500.
[http://dx.doi.org/10.3390/ijms20215500] [PMID: 31694154]
[6]
Traina, G. The connection between gut and lung microbiota, mast cells, platelets and SARS-CoV-2 in the elderly patient. Int. J. Mol. Sci., 2022, 23(23), 14898.
[http://dx.doi.org/10.3390/ijms232314898] [PMID: 36499222]
[7]
Hosseinzadeh, A.; Bagherifard, A.; Koosha, F.; Amiri, S.; Karimi-Behnagh, A.; Reiter, R.J.; Mehrzadi, S. Melatonin effect on platelets and coagulation: Implications for a prophylactic indication in COVID-19. Life Sci., 2022, 307, 120866.
[http://dx.doi.org/10.1016/j.lfs.2022.120866] [PMID: 35944663]
[8]
Guo, Q.; Jiang, X.; Ni, C.; Li, L.; Chen, L.; Wang, Y.; Li, M.; Wang, C.; Gao, L.; Zhu, H.; Song, J. Gut microbiota-related effects of tanhuo decoction in acute ischemic stroke. Oxid. Med. Cell. Longev., 2021, 2021, 1-18.
[http://dx.doi.org/10.1155/2021/5596924] [PMID: 34136066]
[9]
Vadaq, N.; Schirmer, M.; Tunjungputri, R.N.; Vlamakis, H.; Chiriac, C.; Ardiansyah, E.; Gasem, M.H.; Joosten, L.A.B.; de Groot, P.G.; Xavier, R.J.; Netea, M.G.; van der Ven, A.J.; de Mast, Q. Untargeted plasma metabolomics and gut microbiome profiling provide novel insights into the regulation of platelet reactivity in healthy individuals. Thromb. Haemost., 2022, 122(4), 529-539.
[http://dx.doi.org/10.1055/a-1541-3706] [PMID: 34192775]
[10]
Bode, C.; Duerschmied, D.; Al Said, S. Anticoagulation in atherosclerotic disease. Hamostaseologie, 2018, 38(4), 240-246.
[http://dx.doi.org/10.1055/s-0038-1673412] [PMID: 30332694]
[11]
Cornelius, D.C.; Travis, O.K.; Tramel, R.W.; Borges-Rodriguez, M.; Baik, C.H.; Greer, M.; Giachelli, C.A.; Tardo, G.A.; Williams, J.M. NLRP3 inflammasome inhibition attenuates sepsis-induced platelet activation and prevents multi-organ injury in cecal-ligation puncture. PLoS One, 2020, 15(6), e0234039.
[http://dx.doi.org/10.1371/journal.pone.0234039] [PMID: 32555710]
[12]
Ponomarev, E.D. Fresh evidence for platelets as neuronal and innate immune cells: their role in the activation, differentiation, and deactivation of Th1, Th17, and tregs during tissue inflammation. Front. Immunol., 2018, 9, 406.
[http://dx.doi.org/10.3389/fimmu.2018.00406] [PMID: 29599771]
[13]
Gardin, C.; Ferroni, L.; Leo, S.; Tremoli, E.; Zavan, B. Platelet-derived exosomes in atherosclerosis. Int. J. Mol. Sci., 2022, 23(20), 12546.
[http://dx.doi.org/10.3390/ijms232012546] [PMID: 36293399]
[14]
Kim, S.; Kim, Y.; Yu, S.H.; Lee, S.E.; Park, J.H.; Cho, G.; Choi, C.; Han, K.; Kim, C.H.; Kang, Y.C. Platelet-derived mitochondria transfer facilitates wound-closure by modulating ROS levels in dermal fibroblasts. Platelets, 2023, 34(1), 2151996.
[http://dx.doi.org/10.1080/09537104.2022.2151996] [PMID: 36529914]
[15]
Kulkarni, P.P.; Ekhlak, M.; Singh, V.; Kailashiya, V.; Singh, N.; Dash, D. Fatty acid oxidation fuels agonist-induced platelet activation and thrombus formation: Targeting β-oxidation of fatty acids as an effective anti-platelet strategy. FASEB J., 2023, 37(2), e22768.
[http://dx.doi.org/10.1096/fj.202201321RR] [PMID: 36624703]
[16]
Delaney, M.K.; Kim, K.; Estevez, B.; Xu, Z.; Stojanovic-Terpo, A.; Shen, B.; Ushio-Fukai, M.; Cho, J.; Du, X. Differential roles of the NADPH-Oxidase 1 and 2 in platelet activation and thrombosis. Arterioscler. Thromb. Vasc. Biol., 2016, 36(5), 846-854.
[http://dx.doi.org/10.1161/ATVBAHA.116.307308] [PMID: 26988594]
[17]
Münzer, P.; Borst, O.; Walker, B.; Schmid, E.; Feijge, M.A.H.; Cosemans, J.M.E.M.; Chatterjee, M.; Schmidt, E.M.; Schmidt, S.; Towhid, S.T.; Leibrock, C.; Elvers, M.; Schaller, M.; Seizer, P.; Ferlinz, K.; May, A.E.; Gulbins, E.; Heemskerk, J.W.M.; Gawaz, M.; Lang, F. Acid sphingomyelinase regulates platelet cell membrane scrambling, secretion, and thrombus formation. Arterioscler. Thromb. Vasc. Biol., 2014, 34(1), 61-71.
[http://dx.doi.org/10.1161/ATVBAHA.112.300210] [PMID: 24233488]
[18]
Dayal, S.; Wilson, K.M.; Motto, D.G.; Miller, F.J., Jr; Chauhan, A.K.; Lentz, S.R. Hydrogen peroxide promotes aging-related platelet hyperactivation and thrombosis. Circulation, 2013, 127(12), 1308-1316.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.000966] [PMID: 23426106]
[19]
Davizon-Castillo, P.; McMahon, B.; Aguila, S.; Bark, D.; Ashworth, K.; Allawzi, A.; Campbell, R.A.; Montenont, E.; Nemkov, T.; D’Alessandro, A.; Clendenen, N.; Shih, L.; Sanders, N.A.; Higa, K.; Cox, A.; Padilla-Romo, Z.; Hernandez, G.; Wartchow, E.; Trahan, G.D.; Nozik-Grayck, E.; Jones, K.; Pietras, E.M.; DeGregori, J.; Rondina, M.T.; Di Paola, J. TNF-α–driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging. Blood, 2019, 134(9), 727-740.
[http://dx.doi.org/10.1182/blood.2019000200] [PMID: 31311815]
[20]
Jain, K.; Tyagi, T.; Patell, K.; Xie, Y.; Kadado, A.J.; Lee, S.H.; Yarovinsky, T.; Du, J.; Hwang, J.; Martin, K.A.; Testani, J.; Ionescu, C.N.; Hwa, J. Age associated non-linear regulation of redox homeostasis in the anucleate platelet: Implications for CVD risk patients. EBioMedicine, 2019, 44, 28-40.
[http://dx.doi.org/10.1016/j.ebiom.2019.05.022] [PMID: 31130473]
[21]
Klimczak-Tomaniak, D.; Haponiuk-Skwarlińska, J.; Kuch, M.; Pączek, L. Crosstalk between microRNA and Oxidative Stress in Heart Failure: A Systematic Review. Int. J. Mol. Sci., 2022, 23(23), 15013.
[http://dx.doi.org/10.3390/ijms232315013] [PMID: 36499336]
[22]
Krammer, T.L.; Kollars, M.; Kyrle, P.A.; Hackl, M.; Eichinger, S.; Traby, L. Plasma levels of platelet-enriched microRNAs change during antiplatelet therapy in healthy subjects. Front. Pharmacol., 2022, 13, 1078722.
[http://dx.doi.org/10.3389/fphar.2022.1078722] [PMID: 36578552]
[23]
Palacka, P.; Gvozdjáková, A.; Rausová, Z.; Kucharská, J.; Slopovský, J.; Obertová, J.; Furka, D.; Furka, S.; Singh, K.K.; Sumbalová, Z. Platelet mitochondrial bioenergetics reprogramming in patients with urothelial carcinoma. Int. J. Mol. Sci., 2021, 23(1), 388.
[http://dx.doi.org/10.3390/ijms23010388] [PMID: 35008814]
[24]
Fišar, Z.; Hroudová, J.; Hansíková, H.; Spáčilová, J.; Lelková, P.; Wenchich, L.; Jirák, R.; Zvěřová, M.; Zeman, J.; Martásek, P.; Raboch, J. Mitochondrial respiration in the platelets of patients with alzheimer’s disease. Curr. Alzheimer Res., 2016, 13(8), 930-941.
[http://dx.doi.org/10.2174/1567205013666160314150856] [PMID: 26971932]
[25]
Rezin, G.T.; Amboni, G.; Zugno, A.I.; Quevedo, J.; Streck, E.L. Mitochondrial dysfunction and psychiatric disorders. Neurochem. Res., 2009, 34(6), 1021-1029.
[http://dx.doi.org/10.1007/s11064-008-9865-8] [PMID: 18979198]
[26]
Giridharan, V.V.; Barichello De Quevedo, C.E.; Petronilho, F. Microbiota-gut-brain axis in the Alzheimer’s disease pathology - an overview. Neurosci. Res., 2022, 181, 17-21.
[http://dx.doi.org/10.1016/j.neures.2022.05.003] [PMID: 35577241]
[27]
Galley, J.D.; Chen, H.J.; Antonson, A.M.; Gur, T.L. Prenatal stress-induced disruptions in microbial and host tryptophan metabolism and transport. Behav. Brain Res., 2021, 414, 113471.
[http://dx.doi.org/10.1016/j.bbr.2021.113471] [PMID: 34280459]
[28]
Anderson, G.; Maes, M. Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: assessment, treatment and classification implications. Curr. Top. Med. Chem., 2020, 20(7), 524-539.
[http://dx.doi.org/10.2174/1568026620666200131094445] [PMID: 32003689]
[29]
Zhao, L.; Wang, C.; Peng, S.; Zhu, X.; Zhang, Z.; Zhao, Y.; Zhang, J.; Zhao, G.; Zhang, T.; Heng, X.; Zhang, L. Pivotal interplays between fecal metabolome and gut microbiome reveal functional signatures in cerebral ischemic stroke. J. Transl. Med., 2022, 20(1), 459.
[http://dx.doi.org/10.1186/s12967-022-03669-0] [PMID: 36209079]
[30]
Chen, Z.; Liu, C.; Jiang, Y.; Liu, H.; Shao, L.; Zhang, K.; Cheng, D.; Zhou, Y.; Chong, W. HDAC inhibitor attenuated NETs formation induced by activated platelets in vitro, partially through downregulating platelet secretion. Shock, 2020, 54(3), 321-329.
[http://dx.doi.org/10.1097/SHK.0000000000001518] [PMID: 32044829]
[31]
Jin, C.J.; Engstler, A.J.; Sellmann, C.; Ziegenhardt, D.; Landmann, M.; Kanuri, G.; Lounis, H.; Schröder, M.; Vetter, W.; Bergheim, I. Sodium butyrate protects mice from the development of the early signs of non-alcoholic fatty liver disease: role of melatonin and lipid peroxidation. Br. J. Nutr., 2016, 116(10), 1682-1693.
[http://dx.doi.org/10.1017/S0007114516004025] [PMID: 27876107]
[32]
Niklaus, M.; Klingler, P.; Weber, K.; Koessler, A.; Boeck, M.; Kobsar, A.; Koessler, J. The involvement of toll-like receptors 2 and 4 in human platelet signalling pathways. Cell. Signal., 2020, 76, 109817.
[http://dx.doi.org/10.1016/j.cellsig.2020.109817] [PMID: 33132157]
[33]
Wang, M.; Zhang, L.; Chang, W.; Zhang, Y. The crosstalk between the gut microbiota and tumor immunity: Implications for cancer progression and treatment outcomes. Front. Immunol., 2023, 13, 1096551.
[http://dx.doi.org/10.3389/fimmu.2022.1096551] [PMID: 36726985]
[34]
Andrioaie, I.M.; Duhaniuc, A.; Nastase, E.V.; Iancu, L.S.; Luncă, C.; Trofin, F.; Anton-Păduraru, D.T.; Dorneanu, O.S. The role of the gut microbiome in psychiatric disorders. Microorganisms, 2022, 10(12), 2436.
[http://dx.doi.org/10.3390/microorganisms10122436] [PMID: 36557689]
[35]
Kumari, S.; Chaurasia, S.N.; Nayak, M.K.; Mallick, R.L.; Dash, D. Sirtuin inhibition induces apoptosis-like changes in platelets and thrombocytopenia. J. Biol. Chem., 2015, 290(19), 12290-12299.
[http://dx.doi.org/10.1074/jbc.M114.615948] [PMID: 25829495]
[36]
Fan, X.; Wang, Y.; Cai, X.; Shen, Y.; Xu, T.; Xu, Y.; Cheng, J.; Wang, X.; Zhang, L.; Dai, J.; Lin, S.; Liu, J. CPT2 K79 acetylation regulates platelet life span. Blood Adv., 2022, 6(17), 4924-4935.
[http://dx.doi.org/10.1182/bloodadvances.2021006687] [PMID: 35728063]
[37]
Miyazawa, B.; Trivedi, A.; Vivona, L.; Lin, M.; Potter, D.; Nair, A.; Barry, M.; Cap, A.P.; Pati, S. Histone deacetylase-6 modulates the effects of 4°C platelets on vascular endothelial permeability. Blood Adv., 2023, 7(7), 1241-1257.
[http://dx.doi.org/10.1182/bloodadvances.2022007409] [PMID: 36375044]
[38]
Josefsson, E.C. Platelet intrinsic apoptosis., Thromb Res, 2022, 12(22), 00473.
[http://dx.doi.org/10.1016/j.thromres.2022.11.024]
[39]
Qiao, J.; Liu, Y.; Li, D.; Wu, Y.; Li, X.; Yao, Y.; Niu, M.; Fu, C.; Li, H.; Ma, P.; Li, Z.; Xu, K.; Zeng, L. Imbalanced expression of Bcl-xL and Bax in platelets treated with plasma from immune thrombocytopenia. Immunol. Res., 2016, 64(2), 604-609.
[http://dx.doi.org/10.1007/s12026-015-8760-z] [PMID: 26712345]
[40]
Revenstorff, J.; Ludwig, N.; Hilger, A.; Mersmann, S.; Lehmann, M.; Grenzheuser, J.C.; Kardell, M.; Bone, J.; Kötting, N.M.; Marx, N.C.; Roth, J.; Vogl, T.; Rossaint, J. Role of S100A8/A9 in platelet–neutrophil complex formation during Acute Inflammation. Cells, 2022, 11(23), 3944.
[http://dx.doi.org/10.3390/cells11233944] [PMID: 36497202]
[41]
Liu, Y.; Diamond, S.L. Activation of most toll-like receptors in whole human blood attenuates platelet deposition on collagen under flow. J. Immunol. Res., 2023, 2023, 1-9.
[http://dx.doi.org/10.1155/2023/1884439] [PMID: 36703865]
[42]
Pagan, C.; Goubran-Botros, H.; Delorme, R.; Benabou, M.; Lemière, N.; Murray, K.; Amsellem, F.; Callebert, J.; Chaste, P.; Jamain, S.; Fauchereau, F.; Huguet, G.; Maronde, E.; Leboyer, M.; Launay, J.M.; Bourgeron, T. Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Sci. Rep., 2017, 7(1), 2096.
[http://dx.doi.org/10.1038/s41598-017-02152-x] [PMID: 28522826]
[43]
Pagan, C.; Delorme, R.; Callebert, J.; Goubran-Botros, H.; Amsellem, F.; Drouot, X.; Boudebesse, C.; Le Dudal, K.; Ngo-Nguyen, N.; Laouamri, H.; Gillberg, C.; Leboyer, M.; Bourgeron, T.; Launay, J-M. The serotonin-N-acetylserotonin–melatonin pathway as a biomarker for autism spectrum disorders. Transl. Psychiatry, 2014, 4(11), e479.
[http://dx.doi.org/10.1038/tp.2014.120] [PMID: 25386956]
[44]
Benabou, M.; Rolland, T.; Leblond, C.S.; Millot, G.A.; Huguet, G.; Delorme, R.; Leboyer, M.; Pagan, C.; Callebert, J.; Maronde, E.; Bourgeron, T. Heritability of the melatonin synthesis variability in autism spectrum disorders. Sci. Rep., 2017, 7(1), 17746.
[http://dx.doi.org/10.1038/s41598-017-18016-3] [PMID: 29255243]
[45]
Maes, M.; Anderson, G.; Betancort Medina, S.R.; Seo, M.; Ojala, J.O. Integrating Autism Spectrum Disorder Pathophysiology: Mitochondria, Vitamin A, CD38, Oxytocin, Serotonin and Melatonergic Alterations in the Placenta and Gut. Curr. Pharm. Des., 2020, 25(41), 4405-4420.
[http://dx.doi.org/10.2174/1381612825666191102165459] [PMID: 31682209]
[46]
Anderson, G. Why do anti-amyloid beta antibodies not work? Time to reconceptualize dementia pathophysiology by incorporating astrocyte melatonergic pathway desynchronization from amyloid-beta production. Rev. Bras. Psiquiatr., 2023, 45(2), 89-92.
[http://dx.doi.org/10.47626/1516-4446-2022-2949] [PMID: 36571832]
[47]
Anderson, G. Depression pathophysiology: Astrocyte mitochondrial melatonergic pathway as crucial hub. Int. J. Mol. Sci., 2022, 24(1), 350.
[http://dx.doi.org/10.3390/ijms24010350] [PMID: 36613794]
[48]
Yang, S.Y.; Hong, K.S.; Cho, Y.; Cho, E.Y.; Choi, Y.; Kim, Y.; Park, T.; Ha, K.; Baek, J.H. Association between the Arylalkylamine N-Acetyltransferase (AANAT) Gene and Seasonality in Patients with Bipolar Disorder. Psychiatry Investig., 2021, 18(5), 453-462.
[http://dx.doi.org/10.30773/pi.2020.0436] [PMID: 33993688]
[49]
Anderson, G. Amyotrophic lateral sclerosis pathoetiology and pathophysiology: Roles of astrocytes, gut microbiome and muscle interactions via the mitochondrial melatonergic pathway, with disruption by glyphosate-based herbicides. Int. J. Mol. Sci., 2022, 24(1), 587.
[http://dx.doi.org/10.3390/ijms24010587] [PMID: 36614029]
[50]
Mesnage, R.; Antoniou, M.N. Computational modelling provides insight into the effects of glyphosate on the shikimate pathway in the human gut microbiome. Current Research in Toxicology, 2020, 1, 25-33.
[http://dx.doi.org/10.1016/j.crtox.2020.04.001] [PMID: 34345834]
[51]
Karcher, N.; Nigro, E.; Punčochář, M.; Blanco-Míguez, A.; Ciciani, M.; Manghi, P.; Zolfo, M.; Cumbo, F.; Manara, S.; Golzato, D.; Cereseto, A.; Arumugam, M.; Bui, T.P.N.; Tytgat, H.L.P.; Valles-Colomer, M.; de Vos, W.M.; Segata, N. Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly. Genome Biol., 2021, 22(1), 209.
[http://dx.doi.org/10.1186/s13059-021-02427-7] [PMID: 34261503]
[52]
Williams, B.B.; Van Benschoten, A.H.; Cimermancic, P.; Donia, M.S.; Zimmermann, M.; Taketani, M.; Ishihara, A.; Kashyap, P.C.; Fraser, J.S.; Fischbach, M.A. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe, 2014, 16(4), 495-503.
[http://dx.doi.org/10.1016/j.chom.2014.09.001] [PMID: 25263219]
[53]
Winge, I.; Mckinney, J.A.; Ying, M.; D’Santos, C.S.; Kleppe, R.; Knappskog, P.M.; Haavik, J. Activation and stabilization of human tryptophan hydroxylase 2 by phosphorylation and 14-3-3 binding. Biochem. J., 2008, 410(1), 195-204.
[http://dx.doi.org/10.1042/BJ20071033] [PMID: 17973628]
[54]
Baik, S.Y.; Jung, K.H.; Choi, M.R.; Yang, B.H.; Kim, S.H.; Lee, J.S.; Oh, D.Y.; Choi, I.G.; Chung, H.; Chai, Y.G. Fluoxetine-induced up-regulation of 14-3-3zeta and tryptophan hydroxylase levels in RBL-2H3 cells. Neurosci. Lett., 2005, 374(1), 53-57.
[http://dx.doi.org/10.1016/j.neulet.2004.10.047] [PMID: 15631896]
[55]
Aleshin, V.A.; Artiukhov, A.V.; Kaehne, T.; Graf, A.V.; Bunik, V.I. Daytime dependence of the activity of the rat brain pyruvate dehydrogenase corresponds to the mitochondrial sirtuin 3 level and acetylation of brain proteins, all regulated by thiamine administration decreasing phosphorylation of PDHA Ser293. Int. J. Mol. Sci., 2021, 22(15), 8006.
[http://dx.doi.org/10.3390/ijms22158006] [PMID: 34360775]
[56]
Ma, X.; Idle, J.R.; Krausz, K.W.; Gonzalez, F.J. Metabolism of melatonin by human cytochromes p450. Drug Metab. Dispos., 2005, 33(4), 489-494.
[http://dx.doi.org/10.1124/dmd.104.002410] [PMID: 15616152]
[57]
Souza-Teodoro, L.H.; Dargenio-Garcia, L.; Petrilli-Lapa, C.L.; Souza, E.S.; Fernandes, P.A.C.M.; Markus, R.P.; Ferreira, Z.S. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland. J. Pineal Res., 2016, 60(2), 242-249.
[http://dx.doi.org/10.1111/jpi.12309] [PMID: 26732366]
[58]
Anderson, G.; Reiter, R.J. Glioblastoma: Role of mitochondria N-acetylserotonin/Melatonin ratio in mediating effects of mir-451 and aryl hydrocarbon receptor and in coordinating wider biochemical changes. Int. J. Tryptophan Res., 2019, 12(1)
[http://dx.doi.org/10.1177/1178646919855942] [PMID: 31244524]
[59]
Jang, S.W.; Liu, X.; Pradoldej, S.; Tosini, G.; Chang, Q.; Iuvone, P.M.; Ye, K. N -acetylserotonin activates TrkB receptor in a circadian rhythm. Proc. Natl. Acad. Sci. USA, 2010, 107(8), 3876-3881.
[http://dx.doi.org/10.1073/pnas.0912531107] [PMID: 20133677]
[60]
Maussion, G.; Yang, J.; Yerko, V.; Barker, P.; Mechawar, N.; Ernst, C.; Turecki, G. Regulation of a truncated form of tropomyosin-related kinase B (TrkB) by Hsa-miR-185* in frontal cortex of suicide completers. PLoS One, 2012, 7(6), e39301.
[http://dx.doi.org/10.1371/journal.pone.0039301] [PMID: 22802923]
[61]
Kang, L.L.; Zhang, D.M.; Jiao, R.Q.; Pan, S.M.; Zhao, X.J.; Zheng, Y.J.; Chen, T.Y.; Kong, L.D. Pterostilbene attenuates fructose-induced myocardial fibrosis by inhibiting ROS-Driven Pitx2c/miR-15b pathway. Oxid. Med. Cell. Longev., 2019, 2019, 1-25.
[http://dx.doi.org/10.1155/2019/1243215] [PMID: 31871537]
[62]
Leach, C.M.; Thorburn, G.D. A comparison of the inhibitory effects of melatonin and indomethacin on platelet aggregation and thromboxane release. Prostaglandins, 1980, 20(1), 51-56.
[http://dx.doi.org/10.1016/0090-6980(80)90005-2] [PMID: 7403573]
[63]
Del Zar, M.D.M.; Martinuzzo, M.; Falcón, C.; Cardinali, D.P.; Carreras, L.O.; Vacas, M. Inhibition of human platelet aggregation and thromboxane-B2 production by melatonin: Evidence for a diurnal variation. J. Clin. Endocrinol. Metab., 1990, 70(1), 246-251.
[http://dx.doi.org/10.1210/jcem-70-1-246] [PMID: 2294133]
[64]
Anderson, G.; Carbone, A.; Mazzoccoli, G. Aryl Hydrocarbon receptor role in co-ordinating SARS-CoV-2 entry and symptomatology: Linking cytotoxicity changes in COVID-19 and cancers; modulation by racial discrimination stress. Biology (Basel), 2020, 9(9), 249.
[http://dx.doi.org/10.3390/biology9090249] [PMID: 32867244]
[65]
Esmaeili, A.; Nassiri Toosi, M.; Taher, M.; Bayani, J.; Namazi, S. Melatonin effect on platelet count in patients with liver disease. Gastroenterol. Hepatol. Bed Bench, 2021, 14(4), 356-361.
[http://dx.doi.org/10.22037/ghfbb.v14i4.2168] [PMID: 34659664]
[66]
Yang, M.; Li, L.; Chen, S.; Li, S.; Wang, B.; Zhang, C.; Chen, Y.; Yang, L.; Xin, H.; Chen, C.; Xu, X.; Zhang, Q.; He, Y.; Ye, J. Melatonin protects against apoptosis of megakaryocytic cells via its receptors and the AKT/mitochondrial/caspase pathway. Aging, 2020, 12(13), 13633-13646.
[http://dx.doi.org/10.18632/aging.103483] [PMID: 32651992]
[67]
Poirault-Chassac, S.; Nivet-Antoine, V.; Houvert, A.; Kauskot, A.; Lauret, E.; Lai-Kuen, R.; Dusanter-Fourt, I.; Baruch, D. Mitochondrial dynamics and reactive oxygen species initiate thrombopoiesis from mature megakaryocytes. Blood Adv., 2021, 5(6), 1706-1718.
[http://dx.doi.org/10.1182/bloodadvances.2020002847] [PMID: 33720340]
[68]
Launay, J.M.; Lemaître, B.J.; Husson, H.P.; Dreux, C.; Hartmann, L.; Da Prada, M. Melatonin synthesis by rabbit platelets. Life Sci., 1982, 31(14), 1487-1494.
[http://dx.doi.org/10.1016/0024-3205(82)90010-8] [PMID: 7144437]
[69]
Champier, J.; Claustrat, B.; Besançon, R.; Eymin, C.; Killer, C.; Jouvet, A.; Chamba, G.; Fèvre-Montange, M. Evidence for tryptophan hydroxylase and hydroxy-indol-o-methyl-transferase mRNAs in human blood platelets. Life Sci., 1997, 60(24), 2191-2197.
[http://dx.doi.org/10.1016/S0024-3205(97)00234-8] [PMID: 9188762]
[70]
Boukhatem, I.; Fleury, S.; Welman, M.; Le Blanc, J.; Thys, C.; Freson, K.; Best, M.G.; Würdinger, T.; Allen, B.G.; Lordkipanidzé, M. The brain-derived neurotrophic factor prompts platelet aggregation and secretion. Blood Adv., 2021, 5(18), 3568-3580.
[http://dx.doi.org/10.1182/bloodadvances.2020004098] [PMID: 34546355]
[71]
Yoo, D.Y.; Nam, S.M.; Kim, W.; Lee, C.H.; Won, M.H.; Hwang, I.K.; Yoon, Y.S. N-acetylserotonin increases cell proliferation and differentiating neuroblasts with tertiary dendrites through upregulation of brain-derived neurotrophic factor in the mouse dentate gyrus. J. Vet. Med. Sci., 2011, 73(11), 1411-1416.
[http://dx.doi.org/10.1292/jvms.11-0123] [PMID: 21712640]
[72]
Fulgenzi, G.; Hong, Z.; Tomassoni-Ardori, F.; Barella, L.F.; Becker, J.; Barrick, C.; Swing, D.; Yanpallewar, S.; Croix, B.S.; Wess, J.; Gavrilova, O.; Tessarollo, L. Novel metabolic role for BDNF in pancreatic β-cell insulin secretion. Nat. Commun., 2020, 11(1), 1950.
[http://dx.doi.org/10.1038/s41467-020-15833-5] [PMID: 32327658]
[73]
Sousa, K.S.; Quiles, C.L.; Muxel, S.M.; Trevisan, I.L.; Ferreira, Z.S.; Markus, R.P. Brain Damage-linked ATP Promotes P2X7 Receptors Mediated Pineal N-acetylserotonin Release. Neuroscience, 2022, 499, 12-22.
[http://dx.doi.org/10.1016/j.neuroscience.2022.06.039] [PMID: 35798261]
[74]
Chen, Z.; Luo, X.; Liu, M.; Jiang, J.; Li, Y.; Huang, Z.; Wang, L.; Cao, J.; He, L.; Huang, S.; Hu, H.; Li, L.; Chen, L. Elabela-apelin-12, 17, 36/APJ system promotes platelet aggregation and thrombosis via activating the PANX1-P2X7 signaling pathway. J. Cell. Biochem., 2023, 124(4), 586-605.
[http://dx.doi.org/10.1002/jcb.30392] [PMID: 36855998]
[75]
Wang, W.; Hu, D.; Feng, Y.; Wu, C.; Song, Y.; Liu, W.; Li, A.; Wang, Y.; Chen, K.; Tian, M.; Xiao, F.; Zhang, Q.; Chen, W.; Pan, P.; Wan, P.; Liu, Y.; Lan, H.; Wu, K.; Wu, J. Paxillin mediates ATP-induced activation of P2X7 receptor and NLRP3 inflammasome. BMC Biol., 2020, 18(1), 182.
[http://dx.doi.org/10.1186/s12915-020-00918-w] [PMID: 33243234]
[76]
Di, L.; Zha, C.; Liu, Y. Platelet-derived microparticles stimulated by anti-β 2 GPI/β 2 GPI complexes induce pyroptosis of endothelial cells in antiphospholipid syndrome. Platelets, 2023, 34(1), 2156492.
[http://dx.doi.org/10.1080/09537104.2022.2156492] [PMID: 36550078]
[77]
Rawish, E.; Langer, H.F. Platelets and the role of P2X receptors in nociception, pain, neuronal toxicity and thromboinflammation. Int. J. Mol. Sci., 2022, 23(12), 6585.
[http://dx.doi.org/10.3390/ijms23126585] [PMID: 35743029]
[78]
Li, M.; Yang, C.; Wang, Y.; Song, W.; Jia, L.; Peng, X.; Zhao, R. The Expression of P2X7 Receptor on Th1, Th17, and Regulatory T Cells in patients with systemic lupus erythematosus or rheumatoid arthritis and its correlations with active disease. J. Immunol., 2020, 205(7), 1752-1762.
[http://dx.doi.org/10.4049/jimmunol.2000222] [PMID: 32868411]
[79]
Ming, Y.; Xin, G.; Ji, B.; Ji, C.; Wei, Z.; Zhang, B.; Zhang, J.; Yu, K.; Zhang, X.; Li, S.; Li, Y.; Xing, Z.; Niu, H.; Huang, W. Entecavir as a P2X7R antagonist ameliorates platelet activation and thrombus formation. J. Pharmacol. Sci., 2020, 144(1), 43-51.
[http://dx.doi.org/10.1016/j.jphs.2020.07.002] [PMID: 32653340]
[80]
Lindsey, S.; Jiang, J.; Woulfe, D.; Papoutsakis, E.T. Platelets from mice lacking the aryl hydrocarbon receptor exhibit defective collagen-dependent signaling. J. Thromb. Haemost., 2014, 12(3), 383-394.
[http://dx.doi.org/10.1111/jth.12490] [PMID: 24410994]
[81]
Pombo, M.; Lamé, M.W.; Walker, N.J.; Huynh, D.H.; Tablin, F. TCDD and omeprazole prime platelets through the aryl hydrocarbon receptor (AhR) non-genomic pathway. Toxicol. Lett., 2015, 235(1), 28-36.
[http://dx.doi.org/10.1016/j.toxlet.2015.03.005] [PMID: 25797602]
[82]
Grytting, V.S.; Chand, P.; Låg, M.; Øvrevik, J.; Refsnes, M. The pro-inflammatory effects of combined exposure to diesel exhaust particles and mineral particles in human bronchial epithelial cells. Part. Fibre Toxicol., 2022, 19(1), 14.
[http://dx.doi.org/10.1186/s12989-022-00455-0] [PMID: 35189914]
[83]
Guo, L.; Wang, Y.; Yang, X.; Wang, T.; Yin, J.; Zhao, L.; Lin, Y.; Dai, Y.; Hou, S.; Duan, H. Aberrant mitochondrial DNA methylation and declined pulmonary function in a population with polycyclic aromatic hydrocarbon composition in particulate matter. Environ. Res., 2022, 214(Pt 1), 113797.
[http://dx.doi.org/10.1016/j.envres.2022.113797] [PMID: 35779619]
[84]
Perepechaeva, M.L.; Stefanova, N.A.; Grishanova, A.Y. Expression of genes for AhR and Nrf2 signal pathways in the retina of OXYS rats during the development of retinopathy and melatonin-induced changes in this process. Bull. Exp. Biol. Med., 2014, 157(4), 424-429.
[http://dx.doi.org/10.1007/s10517-014-2582-1] [PMID: 25110076]
[85]
Jin, J.; Kunapuli, S.P. Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc. Natl. Acad. Sci. USA, 1998, 95(14), 8070-8074.
[http://dx.doi.org/10.1073/pnas.95.14.8070] [PMID: 9653141]
[86]
Jin, J.; Daniel, J.L.; Kunapuli, S.P. Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J. Biol. Chem., 1998, 273(4), 2030-2034.
[http://dx.doi.org/10.1074/jbc.273.4.2030] [PMID: 9442040]
[87]
Ribes, A.; Garcia, C.; Gratacap, M.P.; Kostenis, E.; Martinez, L.O.; Payrastre, B.; Sénard, J.M.; Galés, C.; Pons, V. Platelet P2Y1 receptor exhibits constitutive G protein signaling and β-arrestin 2 recruitment. BMC Biol., 2023, 21(1), 14.
[http://dx.doi.org/10.1186/s12915-023-01528-y] [PMID: 36721118]
[88]
Selvarajah, A.; Tavenier, A.H.; Fabris, E.; van Leeuwen, M.A.H.; Hermanides, R.S. Current and future insights for optimizing antithrombotic therapy to reduce the burden of cardiovascular ischemic events in patients with acute coronary syndrome. J. Clin. Med., 2022, 11(19), 5605.
[http://dx.doi.org/10.3390/jcm11195605] [PMID: 36233469]
[89]
Sharma, D.; Barhwal, K.K.; Biswal, S.N.; Srivastava, A.K.; Bhardwaj, P.; Kumar, A.; Chaurasia, O.P.; Hota, S.K. Hypoxia-mediated alteration in cholesterol oxidation and raft dynamics regulates BDNF signalling and neurodegeneration in hippocampus. J. Neurochem., 2019, 148(2), 238-251.
[http://dx.doi.org/10.1111/jnc.14609] [PMID: 30308090]
[90]
Tekpli, X.; Rissel, M.; Huc, L.; Catheline, D.; Sergent, O.; Rioux, V.; Legrand, P.; Holme, J.A.; Dimanche-Boitrel, M.T.; Lagadic-Gossmann, D. Membrane remodeling, an early event in benzo[α]pyrene-induced apoptosis. Toxicol. Appl. Pharmacol., 2010, 243(1), 68-76.
[http://dx.doi.org/10.1016/j.taap.2009.11.014] [PMID: 19931295]
[91]
Ottolina, J.; Bartiromo, L.; Dolci, C.; Salmeri, N.; Schimberni, M.; Villanacci, R.; Viganò, P.; Candiani, M. Assessment of coagulation parameters in women affected by endometriosis: Validation study and systematic review of the literature. Diagnostics, 2020, 10(8), 567.
[http://dx.doi.org/10.3390/diagnostics10080567] [PMID: 32784640]
[92]
Sloan, A.R.; Lee-Poturalski, C.; Hoffman, H.C.; Harris, P.L.; Elder, T.E.; Richardson, B.; Kerstetter-Fogle, A.; Cioffi, G.; Schroer, J.; Desai, A.; Cameron, M.; Barnholtz-Sloan, J.; Rich, J.; Jankowsky, E.; Sen Gupta, A.; Sloan, A.E. Glioma stem cells activate platelets by plasma-independent thrombin production to promote glioblastoma tumorigenesis. Neurooncol. Adv., 2022, 4(1), vdac172.
[http://dx.doi.org/10.1093/noajnl/vdac172] [PMID: 36452274]
[93]
Wei, Y.; Feng, J.; Ma, J.; Chen, D.; Xu, H.; Yin, L.; Chen, J. Characteristics of platelet-associated parameters and their predictive values in Chinese patients with affective disorders. BMC Psychiatry, 2022, 22(1), 150.
[http://dx.doi.org/10.1186/s12888-022-03775-9] [PMID: 35216557]
[94]
Shi, Q.; Ji, T.; Tang, X.; Guo, W. The role of tumor-platelet interplay and micro tumor thrombi during hematogenous tumor metastasis. Cell Oncol., 2023, 46(3), 521-532.
[http://dx.doi.org/10.1007/s13402-023-00773-1] [PMID: 36652166]
[95]
El Filaly, H.; Mabrouk, M.; Atifi, F.; Guessous, F.; Akarid, K.; Merhi, Y.; Zaid, Y. Dissecting Platelet’s role in viral infection: A double-edged effector of the immune system. Int. J. Mol. Sci., 2023, 24(3), 2009.
[http://dx.doi.org/10.3390/ijms24032009] [PMID: 36768333]
[96]
Abbadessa, G.; Mainero, C.; Bonavita, S. Hemostasis components as therapeutic targets in autoimmune demyelination. Clin. Pharmacol. Ther., 2022, 111(4), 807-816.
[http://dx.doi.org/10.1002/cpt.2532] [PMID: 35064575]
[97]
Chen, M.; Inestrosa, N.C.; Ross, G.S.; Fernandez, H.L. Platelets are the primary source of amyloid beta-peptide in human blood. Biochem. Biophys. Res. Commun., 1995, 213(1), 96-103.
[http://dx.doi.org/10.1006/bbrc.1995.2103] [PMID: 7639768]
[98]
Li, Q.X.; Whyte, S.; Tanner, J.E.; Evin, G.; Beyreuther, K.; Masters, C.L. Secretion of Alzheimer’s disease Abeta amyloid peptide by activated human platelets. Lab. Invest., 1998, 78(4), 461-469.
[PMID: 9564890]
[99]
Wu, T.; Chen, L.; Zhou, L.; Xu, J.; Guo, K. Platelets transport β-amyloid from the peripheral blood into the brain by destroying the blood-brain barrier to accelerate the process of Alzheimer’s disease in mouse models. Aging, 2021, 13(5), 7644-7659.
[http://dx.doi.org/10.18632/aging.202662] [PMID: 33668038]
[100]
Donner, L.; Feige, T.; Freiburg, C.; Toska, L.M.; Reichert, A.S.; Chatterjee, M.; Elvers, M. Impact of Amyloid-β on platelet mitochondrial function and platelet–mediated amyloid aggregation in Alzheimer’s Disease. Int. J. Mol. Sci., 2021, 22(17), 9633.
[http://dx.doi.org/10.3390/ijms22179633] [PMID: 34502546]
[101]
Inyushin, M.; Zayas-Santiago, A.; Rojas, L.; Kucheryavykh, L. On the role of platelet-generated amyloid beta peptides in certain amyloidosis health complications. Front. Immunol., 2020, 11, 571083.
[http://dx.doi.org/10.3389/fimmu.2020.571083] [PMID: 33123145]
[102]
de Sousa, D.M.B.; Benedetti, A.; Altendorfer, B.; Mrowetz, H.; Unger, M.S.; Schallmoser, K.; Aigner, L.; Kniewallner, K.M. Immune-mediated platelet depletion augments Alzheimer’s disease neuropathological hallmarks in APP-PS1 mice. Aging, 2023, 15(3), 630-649.
[http://dx.doi.org/10.18632/aging.204502] [PMID: 36734880]
[103]
Kopeikina, E.; Dukhinova, M.; Yung, A.W.Y.; Veremeyko, T.; Kuznetsova, I.S.; Lau, T.Y.B.; Levchuk, K.; Ponomarev, E.D. Platelets promote epileptic seizures by modulating brain serotonin level, enhancing neuronal electric activity, and contributing to neuroinflammation and oxidative stress. Prog. Neurobiol., 2020, 188, 101783.
[http://dx.doi.org/10.1016/j.pneurobio.2020.101783] [PMID: 32142857]
[104]
Anderson, G.; Ojala, J.O. Alzheimer’s and seizures: Interleukin-18, indoleamine 2,3-dioxygenase and quinolinic Acid. Int. J. Tryptophan Res., 2010, 3, IJTR.S4603.
[http://dx.doi.org/10.4137/IJTR.S4603] [PMID: 22084597]
[105]
Anderson, G.; Rodriguez, M. Multiple sclerosis, seizures, and antiepileptics: Role of IL-18, IDO, and melatonin. Eur. J. Neurol., 2011, 18(5), 680-685.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03257.x] [PMID: 21118329]
[106]
Vojtechova, I.; Machacek, T.; Kristofikova, Z.; Stuchlik, A.; Petrasek, T. Infectious origin of Alzheimer’s disease: Amyloid beta as a component of brain antimicrobial immunity. PLoS Pathog., 2022, 18(11), e1010929.
[http://dx.doi.org/10.1371/journal.ppat.1010929] [PMID: 36395147]
[107]
Markus, R.P.; Fernandes, P.A.; Kinker, G.S.; da Silveira Cruz-Machado, S.; Marçola, M. Immune-pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br. J. Pharmacol., 2018, 175(16), 3239-3250.
[http://dx.doi.org/10.1111/bph.14083] [PMID: 29105727]
[108]
Muxel, S.M.; Pires-Lapa, M.A.; Monteiro, A.W.A.; Cecon, E.; Tamura, E.K.; Floeter-Winter, L.M.; Markus, R.P. NF-κB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N-acetyltransferase (AA-NAT) gene. PLoS One, 2012, 7(12), e52010.
[http://dx.doi.org/10.1371/journal.pone.0052010] [PMID: 23284853]
[109]
Bernard, M.; Voisin, P. Photoreceptor-specific expression, light-dependent localization, and transcriptional targets of the zinc-finger protein Yin Yang 1 in the chicken retina. J. Neurochem., 2008, 105(3), 595-604.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05150.x] [PMID: 18047560]
[110]
Anderson, G. Glioblastoma chemoresistance: Roles of the mitochondrial melatonergic pathway. Cancer Drug Resist., 2020, 3(3), 334-355.
[http://dx.doi.org/10.20517/cdr.2020.17] [PMID: 35582450]
[111]
Zhai, K.; Huang, Z.; Huang, Q.; Tao, W.; Fang, X.; Zhang, A.; Li, X.; Stark, G.R.; Hamilton, T.A.; Bao, S. Pharmacological inhibition of BACE1 suppresses glioblastoma growth by stimulating macrophage phagocytosis of tumor cells. Nat. Can., 2021, 2(11), 1136-1151.
[http://dx.doi.org/10.1038/s43018-021-00267-9] [PMID: 35122055]
[112]
Calingasan, N.Y.; Chen, J.; Kiaei, M.; Beal, M.F. β-amyloid 42 accumulation in the lumbar spinal cord motor neurons of amyotrophic lateral sclerosis patients. Neurobiol. Dis., 2005, 19(1-2), 340-347.
[http://dx.doi.org/10.1016/j.nbd.2005.01.012] [PMID: 15837590]
[113]
Li, Y.; Yu, Y.; Ma, G. Modulation Effects of Fe3+, Zn2+, and Cu2+ Ions on the Amyloid Fibrillation of α-Synuclein: Insights from a FTIR Investigation. Molecules, 2022, 27(23), 8383.
[http://dx.doi.org/10.3390/molecules27238383] [PMID: 36500474]
[114]
Zayas-Santiago, A.; Martínez-Montemayor, M.M.; Colón-Vázquez, J.; Ortiz-Soto, G.; Cirino-Simonet, J.G.; Inyushin, M. Accumulation of amyloid beta (Aβ) and amyloid precursor protein (APP) in tumors formed by a mouse xenograft model of inflammatory breast cancer. FEBS Open Bio, 2022, 12(1), 95-105.
[http://dx.doi.org/10.1002/2211-5463.13308] [PMID: 34592066]
[115]
Anderson, G. Type I diabetes pathoetiology and pathophysiology: Roles of the gut microbiome, pancreatic cellular interactions, and the ‘bystander’ activation of memory CD8+ T cells. Int. J. Mol. Sci., 2023, 24(4), 3300.
[http://dx.doi.org/10.3390/ijms24043300] [PMID: 36834709]
[116]
Pickering, J.; Wong, R.; Al-Salami, H.; Lam, V.; Takechi, R. Cognitive Deficits in Type-1 Diabetes: Aspects of glucose, cerebrovascular and amyloid involvement. Pharm. Res., 2021, 38(9), 1477-1484.
[http://dx.doi.org/10.1007/s11095-021-03100-1] [PMID: 34480263]
[117]
Anderson, G.; Almulla, A.F.; Maes, M.; Reiter, R.J. Mitochondrial melatonergic pathway: Role in regulating autoimmune processes across diverse medical conditions, including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, cancer, type 1 diabetes mellitus, and neuropsychiatric disorders. Cells, 2023, 12(9), 1237.
[http://dx.doi.org/10.3390/cells12091237] [PMID: 37174637]
[118]
Gaweda-Walerych, K.; Sitek, E.J.; Borczyk, M.; Berdyński, M.; Narożańska, E.; Brockhuis, B.; Korostyński, M.; Sławek, J.; Zekanowski, C. Two rare variants in PLAU and BACE1 Genes—Do They contribute to semantic dementia clinical phenotype? Genes, 2021, 12(11), 1806.
[http://dx.doi.org/10.3390/genes12111806] [PMID: 34828412]
[119]
Liang, M.; Soomro, A.U.; Tasneem, S.; Abatti, L.E.; Alizada, A.; Yuan, X.; Uusküla-Reimand, L.; Antounians, L.; Alvi, S.A.; Paterson, A.D.; Rivard, G.E.; Scott, I.C.; Mitchell, J.A.; Hayward, C.P.M.; Wilson, M.D. Enhancer-gene rewiring in the pathogenesis of Quebec Platelet Disorder. Blood, 2020, 136(23), blood.2020005394.
[http://dx.doi.org/10.1182/blood.2020005394] [PMID: 32663239]
[120]
Bennett, R.E.; Robbins, A.B.; Hu, M.; Cao, X.; Betensky, R.A.; Clark, T.; Das, S.; Hyman, B.T. Tau induces blood vessel abnormalities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer’s disease. Proc. Natl. Acad. Sci., 2018, 115(6), E1289-E1298.
[http://dx.doi.org/10.1073/pnas.1710329115] [PMID: 29358399]
[121]
Ertekin-Taner, N.; Ronald, J.; Feuk, L.; Prince, J.; Tucker, M.; Younkin, L.; Hella, M.; Jain, S.; Hackett, A.; Scanlin, L.; Kelly, J.; Kihiko-Ehman, M.; Neltner, M.; Hersh, L.; Kindy, M.; Markesbery, W.; Hutton, M.; Andrade, M.; Petersen, R.C.; Graff-Radford, N.; Estus, S.; Brookes, A.J.; Younkin, S.G. Elevated amyloid β protein (Aβ42) and late onset Alzheimer’s disease are associated with single nucleotide polymorphisms in the urokinase-type plasminogen activator gene. Hum. Mol. Genet., 2005, 14(3), 447-460.
[http://dx.doi.org/10.1093/hmg/ddi041] [PMID: 15615772]
[122]
Wu, W.; Jiang, H.; Wang, M.; Zhang, D. Meta-analysis of the association between urokinase-plasminogen activator gene rs2227564 polymorphism and Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2013, 28(5), 517-523.
[http://dx.doi.org/10.1177/1533317513494450] [PMID: 23813610]
[123]
Bartl, M.; Dakna, M.; Schade, S.; Otte, B.; Wicke, T.; Lang, E.; Starke, M.; Ebentheuer, J.; Weber, S.; Toischer, K.; Schnelle, M.; Sixel-Döring, F.; Trenkwalder, C.; Mollenhauer, B. Blood markers of inflammation, neurodegeneration, and cardiovascular risk in early parkinson’s Disease. Mov. Disord., 2023, 38(1), 68-81.
[http://dx.doi.org/10.1002/mds.29257] [PMID: 36267007]
[124]
Glas, M.; Popp, B.; Angele, B.; Koedel, U.; Chahli, C.; Schmalix, W.A.; Anneser, J.M.; Pfister, H.W.; Lorenzl, S. A role for the urokinase-type plasminogen activator system in amyotrophic lateral sclerosis. Exp. Neurol., 2007, 207(2), 350-356.
[http://dx.doi.org/10.1016/j.expneurol.2007.07.007] [PMID: 17716658]
[125]
Yepes, M.; Woo, Y.; Martin-Jimenez, C. Plasminogen activators in neurovascular and neurodegenerative disorders. Int. J. Mol. Sci., 2021, 22(9), 4380.
[http://dx.doi.org/10.3390/ijms22094380] [PMID: 33922229]
[126]
Diaz, A.; Martin-Jimenez, C.; Xu, Y.; Merino, P.; Woo, Y.; Torre, E.; Yepes, M. Urokinase-type plasminogen activator-mediated crosstalk between N-cadherin and β-catenin promotes wound healing. J. Cell Sci., 2021, 134(11), jcs255919.
[http://dx.doi.org/10.1242/jcs.255919] [PMID: 34085693]
[127]
Yepes, M. Urokinase-type plasminogen activator is a modulator of synaptic plasticity in the central nervous system: Implications for neurorepair in the ischemic brain. Neural Regen. Res., 2020, 15(4), 620-624.
[http://dx.doi.org/10.4103/1673-5374.266904] [PMID: 31638083]
[128]
Peteri, U.K.; Pitkonen, J.; Toma, I.; Nieminen, O.; Utami, K.H.; Strandin, T.M.; Corcoran, P.; Roybon, L.; Vaheri, A.; Ethell, I.; Casarotto, P.; Pouladi, M.A.; Castrén, M.L. Urokinase plasminogen activator mediates changes in human astrocytes modeling fragile X syndrome. Glia, 2021, 69(12), 2947-2962.
[http://dx.doi.org/10.1002/glia.24080] [PMID: 34427356]
[129]
Tsunoda, K.; Kitange, G.; Anda, T.; Shabani, H.K.; Kaminogo, M.; Shibata, S.; Nagata, I. Expression of the constitutively activated RelA/NF-κB in human astrocytic tumors and the in vitro implication in the regulation of urokinase-type plasminogen activator, migration, and invasion. Brain Tumor Pathol., 2005, 22(2), 79-87.
[http://dx.doi.org/10.1007/s10014-005-0186-1] [PMID: 18095109]
[130]
Chou, C.H.; Lu, K.H.; Yang, J.S.; Hsieh, Y.H.; Lin, C.W.; Yang, S.F. Dihydromyricetin suppresses cell metastasis in human osteosarcoma through SP-1- and NF-κB-modulated urokinase plasminogen activator inhibition. Phytomedicine, 2021, 90, 153642.
[http://dx.doi.org/10.1016/j.phymed.2021.153642] [PMID: 34265701]
[131]
Gao, Y.; Ma, X.; Lu, H.; Xu, P.; Xu, C. PLAU is associated with cell migration and invasion and is regulated by transcription factor YY1 in cervical cancer. Oncol. Rep., 2022, 49(2), 25.
[http://dx.doi.org/10.3892/or.2022.8462] [PMID: 36524374]
[132]
Oh, B.S.; Im, E.; Lee, H.J.; Sim, D.Y.; Park, J.E.; Park, W.Y.; Park, Y.; Koo, J.; Pak, J.N.; Kim, D.H.; Shim, B.S.; Kim, S.H. Inhibition of TMPRSS4 mediated epithelial-mesenchymal transition is critically involved in antimetastatic effect of melatonin in colorectal cancers. Phytother. Res., 2021, 35(8), 4538-4546.
[http://dx.doi.org/10.1002/ptr.7156] [PMID: 34114707]
[133]
Paul, S.; Bhattacharya, P.; Mahapatra, P.D.; Swarnakar, S. Melatonin protects against endometriosis via regulation of matrix metalloproteinase-3 and an apoptotic pathway. J. Pineal Res., 2010, 49(2), no.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00780.x] [PMID: 20609072]
[134]
Nakatani; Nakatani, K.; Nishioka, J.; Sakamoto, Y.; Jinda, S.; Wada, H.; Nobori, T. Neurotrophic receptor tyrosine kinase B sxinduces c-fos-associated cell survival. Int. J. Mol. Med., 2009, 24(6), 807-811.
[http://dx.doi.org/10.3892/ijmm_00000296] [PMID: 19885622]
[135]
Hecht, M.; Schulte, J.H.; Eggert, A.; Wilting, J.; Schweigerer, L. The neurotrophin receptor TrkB cooperates with c-Met in enhancing neuroblastoma invasiveness. Carcinogenesis, 2005, 26(12), 2105-2115.
[http://dx.doi.org/10.1093/carcin/bgi192] [PMID: 16051641]
[136]
Cooper, J.M.; Rastogi, A.; Krizo, J.A.; Mintz, E.M.; Prosser, R.A. Urokinase-type plasminogen activator modulates mammalian circadian clock phase regulation in tissue-type plasminogen activator knockout mice. Eur. J. Neurosci., 2017, 45(6), 805-815.
[http://dx.doi.org/10.1111/ejn.13511] [PMID: 27992087]
[137]
Zhang, T.; Yu, H.; Bai, Y.; Song, J.; Chen, J.; Li, Y.; Cui, Y. Extracellular vesicle-derived LINC00511 promotes glycolysis and mitochondrial oxidative phosphorylation of pancreatic cancer through macrophage polarization by microRNA-193a-3p-dependent regulation of plasminogen activator urokinase. Immunopharmacol. Immunotoxicol., 2022, •••, 1-15.
[http://dx.doi.org/10.1080/08923973.2022.2145968] [PMID: 36476048]
[138]
Biagioni, A.; Laurenzana, A.; Chillà, A.; Del Rosso, M.; Andreucci, E.; Poteti, M.; Bani, D.; Guasti, D.; Fibbi, G.; Margheri, F. uPAR knockout results in a deep glycolytic and OXPHOS reprogramming in melanoma and colon carcinoma cell lines. Cells, 2020, 9(2), 308.
[http://dx.doi.org/10.3390/cells9020308] [PMID: 32012858]
[139]
Dinesh, P.; Rasool, M. uPA/uPAR signaling in rheumatoid arthritis: Shedding light on its mechanism of action. Pharmacol. Res., 2018, 134, 31-39.
[http://dx.doi.org/10.1016/j.phrs.2018.05.016] [PMID: 29859810]
[140]
Burcsár, S.; Toldi, G.; Kovács, L.; Szalay, B.; Vásárhelyi, B.; Balog, A. Urine soluble urokinase plasminogen activator receptor as a potential biomarker of lupus nephritis activity. Biomarkers, 2021, 26(5), 443-449.
[http://dx.doi.org/10.1080/1354750X.2021.1910343] [PMID: 33825610]
[141]
Sherif, E.M.; El Maksood, A.A.A.; Youssef, O.I.; Salah El-Din, N.Y.; Khater, O.K.M. Soluble urokinase plasminogen activator receptor in type 1 diabetic children, relation to vascular complications. J. Diabetes Complications, 2019, 33(9), 628-633.
[http://dx.doi.org/10.1016/j.jdiacomp.2019.06.001] [PMID: 31301955]
[142]
Islam, I.; Yuan, S.; West, C.W.; Adler, M.; Bothe, U.; Bryant, J.; Chang, Z.; Chu, K.; Emayan, K.; Gualtieri, G.; Ho, E.; Light, D.; Mallari, C.; Morser, J.; Phillips, G.; Schaefer, C.; Sukovich, D.; Whitlow, M.; Chen, D.; Buckman, B.O. Discovery of selective urokinase plasminogen activator (uPA) inhibitors as a potential treatment for multiple sclerosis. Bioorg. Med. Chem. Lett., 2018, 28(20), 3372-3375.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.001] [PMID: 30201291]
[143]
Weaver, D.F. Alzheimer’s disease as an innate autoimmune disease (AD2 ): A new molecular paradigm. Alzheimers Dement., 2022.
[http://dx.doi.org/10.1002/alz.12789] [PMID: 36165334]
[144]
Zheng, Z.; Zhang, S.; Zhang, H.; Gao, Z.; Wang, X.; Liu, X.; Xue, C.; Yao, L.; Lu, G. Mechanisms of autoimmune cell in DA neuron apoptosis of parkinson’s disease: Recent advancement. Oxid. Med. Cell. Longev., 2022, 2022, 1-20.
[http://dx.doi.org/10.1155/2022/7965433] [PMID: 36567855]
[145]
Lu, G-H.; Zhang, S-Z.; Wang, B-Y.; Ye, Y-Y.; Qian, C.; Zhang, H-B.; Mao, H-X.; Yao, L-P.; Sun, X. Stress increases MHC-I expression in dopaminergic neurons and induces autoimmune activation in Parkinson’s disease. Neural Regen. Res., 2021, 16(12), 2521-2527.
[http://dx.doi.org/10.4103/1673-5374.313057] [PMID: 33907043]
[146]
Yoon, Y.M.; Go, G.; Yoon, S.; Lim, J.H.; Lee, G.; Lee, J.H.; Lee, S.H. Melatonin treatment improves renal fibrosis via miR-4516/SIAH3/PINK1 Axis. Cells, 2021, 10(7), 1682.
[http://dx.doi.org/10.3390/cells10071682] [PMID: 34359852]
[147]
Anderson, G. Endometriosis pathoetiology and pathophysiology: Roles of Vitamin A, estrogen, immunity, adipocytes, gut microbiome and melatonergic pathway on mitochondria regulation. Biomol. Concepts, 2019, 10(1), 133-149.
[http://dx.doi.org/10.1515/bmc-2019-0017] [PMID: 31339848]
[148]
Mokkawes, T.; de Visser, S.P. Melatonin Activation by Cytochrome P450 Isozymes: How Does CYP1A2 Compare to CYP1A1? Int. J. Mol. Sci., 2023, 24(4), 3651.
[http://dx.doi.org/10.3390/ijms24043651] [PMID: 36835057]
[149]
García, J.J.; Piñol-Ripoll, G.; Martínez-Ballarín, E.; Fuentes-Broto, L.; Miana-Mena, F.J.; Venegas, C.; Caballero, B.; Escames, G.; Coto-Montes, A.; Acuña-Castroviejo, D. Melatonin reduces membrane rigidity and oxidative damage in the brain of SAMP8 mice. Neurobiol. Aging, 2011, 32(11), 2045-2054.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.12.013] [PMID: 20096480]
[150]
Assaife-Lopes, N.; Sousa, V.C.; Pereira, D.B.; Ribeiro, J.A.; Sebastião, A.M. Regulation of TrkB receptor translocation to lipid rafts by adenosine A2A receptors and its functional implications for BDNF-induced regulation of synaptic plasticity. Purinergic Signal., 2014, 10(2), 251-267.
[http://dx.doi.org/10.1007/s11302-013-9383-2] [PMID: 24271058]
[151]
Wolska, N.; Rozalski, M. Blood platelet adenosine receptors as potential targets for anti-platelet therapy. Int. J. Mol. Sci., 2019, 20(21), 5475.
[http://dx.doi.org/10.3390/ijms20215475] [PMID: 31684173]
[152]
Chen, Y.; Liu, Z.; An, N.; Zhang, J.; Meng, W.; Wang, W.; Wu, X.; Hu, X.; Chen, Y.; Yin, W. Platelet-derived mitochondria attenuate 5-FU-Induced injury to bone-associated mesenchymal stem cells. Stem Cells Int., 2023, 2023, 1-20.
[http://dx.doi.org/10.1155/2023/7482546] [PMID: 36756493]
[153]
Oizumi, H.; Sugimura, Y.; Totsune, T.; Kawasaki, I.; Ohshiro, S.; Baba, T.; Kimpara, T.; Sakuma, H.; Hasegawa, T.; Kawahata, I.; Fukunaga, K.; Takeda, A. Plasma sphingolipid abnormalities in neurodegenerative diseases. PLoS One, 2022, 17(12), e0279315.
[http://dx.doi.org/10.1371/journal.pone.0279315] [PMID: 36525454]
[154]
Marx, S.; Xiao, Y.; Baschin, M.; Splittstöhser, M.; Altmann, R.; Moritz, E.; Jedlitschky, G.; Bien-Möller, S.; Schroeder, H.W.S.; Rauch, B.H. The role of platelets in cancer pathophysiology: Focus on malignant glioma. Cancers, 2019, 11(4), 569.
[http://dx.doi.org/10.3390/cancers11040569] [PMID: 31013620]
[155]
Dahm, F.; Nocito, A.; Bielawska, A.; Lang, K.S.; Georgiev, P.; Asmis, L.M.; Bielawski, J.; Madon, J.; Hannun, Y.A.; Clavien, P.A. Distribution and dynamic changes of sphingolipids in blood in response to platelet activation. J. Thromb. Haemost., 2006, 4(12), 2704-2709.
[http://dx.doi.org/10.1111/j.1538-7836.2006.02241.x] [PMID: 17010150]
[156]
Brunkhorst, R.; Pfeilschifter, W.; Rajkovic, N.; Pfeffer, M.; Fischer, C.; Korf, H.W.; Christoffersen, C.; Trautmann, S.; Thomas, D.; Pfeilschifter, J.; Koch, A. Diurnal regulation of sphingolipids in blood. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2019, 1864(3), 304-311.
[http://dx.doi.org/10.1016/j.bbalip.2018.12.001] [PMID: 30557628]
[157]
Anderson, G.; Maes, M. Reconceptualizing adult neurogenesis: role for sphingosine-1-phosphate and fibroblast growth factor-1 in co-ordinating astrocyte-neuronal precursor interactions. CNS Neurol. Disord. Drug Targets, 2014, 13(1), 126-136.
[http://dx.doi.org/10.2174/18715273113126660132] [PMID: 24040808]
[158]
Singh, S.K.; Kordula, T.; Spiegel, S. Neuronal contact upregulates astrocytic sphingosine-1-phosphate receptor 1 to coordinate astrocyte-neuron cross communication. Glia, 2022, 70(4), 712-727.
[http://dx.doi.org/10.1002/glia.24135] [PMID: 34958493]
[159]
Duan, M.; Gao, P.; Chen, S.; Novák, P.; Yin, K.; Zhu, X. Sphingosine-1-phosphate in mitochondrial function and metabolic diseases. Obes. Rev., 2022, 23(6), e13426.
[http://dx.doi.org/10.1111/obr.13426] [PMID: 35122459]
[160]
Silva, G.; B Coeli-Lacchini, F.; Leopoldino, A.M. How do sphingolipids play a role in epigenetic mechanisms and gene expression? Epigenomics, 2022, 14(5), 219-222.
[http://dx.doi.org/10.2217/epi-2021-0425] [PMID: 34905958]
[161]
Langness, S.; Kojima, M.; Coimbra, R.; Eliceiri, B.P.; Costantini, T.W. Enteric glia cells are critical to limiting the intestinal inflammatory response after injury. Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 312(3), G274-G282.
[http://dx.doi.org/10.1152/ajpgi.00371.2016] [PMID: 28082286]
[162]
Cheng, B.; Du, M.; He, S.; Yang, L.; Wang, X.; Gao, H.; Chang, H.; Gao, W.; Li, Y.; Wang, Q.; Li, Y. Inhibition of platelet activation suppresses reactive enteric glia and mitigates intestinal barrier dysfunction during sepsis. Mol. Med., 2022, 28(1), 137.
[http://dx.doi.org/10.1186/s10020-022-00562-w] [PMID: 36401163]
[163]
Sukocheva, O.A.; Furuya, H.; Ng, M.L.; Friedemann, M.; Menschikowski, M.; Tarasov, V.V.; Chubarev, V.N.; Klochkov, S.G.; Neganova, M.E.; Mangoni, A.A.; Aliev, G.; Bishayee, A. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Pharmacol. Ther., 2020, 207, 107464.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107464] [PMID: 31863815]
[164]
Don-Doncow, N.; Vanherle, L.; Zhang, Y.; Meissner, A. T-Cell accumulation in the hypertensive brain: A role for sphingosine-1-Phosphate-mediated chemotaxis. Int. J. Mol. Sci., 2019, 20(3), 537.
[http://dx.doi.org/10.3390/ijms20030537] [PMID: 30695999]
[165]
Strandwitz, P.; Kim, K.H.; Terekhova, D.; Liu, J.K.; Sharma, A.; Levering, J.; McDonald, D.; Dietrich, D.; Ramadhar, T.R.; Lekbua, A.; Mroue, N.; Liston, C.; Stewart, E.J.; Dubin, M.J.; Zengler, K.; Knight, R.; Gilbert, J.A.; Clardy, J.; Lewis, K. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol., 2018, 4(3), 396-403.
[http://dx.doi.org/10.1038/s41564-018-0307-3] [PMID: 30531975]
[166]
Rainesalo, S.; Keränen, T.; Saransaari, P.; Honkaniemi, J. GABA and glutamate transporters are expressed in human platelets. Brain Res. Mol. Brain Res., 2005, 141(2), 161-165.
[http://dx.doi.org/10.1016/j.molbrainres.2005.08.013] [PMID: 16198020]
[167]
Liu, J.B.; Chen, K.; Li, Z.F.; Wang, Z.Y.; Wang, L. Glyphosate-induced gut microbiota dysbiosis facilitates male reproductive toxicity in rats. Sci. Total Environ., 2022, 805, 150368.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150368] [PMID: 34543792]
[168]
Naraine, A.S.; Aker, R.; Sweeney, I.; Kalvey, M.; Surtel, A.; Shanbhag, V.; Dawson-Scully, K. Roundup and glyphosate’s impact on GABA to elicit extended proconvulsant behavior in Caenorhabditis elegans. Sci. Rep., 2022, 12(1), 13655.
[http://dx.doi.org/10.1038/s41598-022-17537-w] [PMID: 35999230]
[169]
van Kessel, S.P.; Frye, A.K.; El-Gendy, A.O.; Castejon, M.; Keshavarzian, A.; van Dijk, G.; El Aidy, S. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat. Commun., 2019, 10(1), 310.
[http://dx.doi.org/10.1038/s41467-019-08294-y] [PMID: 30659181]
[170]
Venugopal, S.; Ghulam-Jelani, Z.; Ahn, I.S.; Yang, X.; Wiedau, M.; Simmons, D.; Chandler, S.H. Early deficits in GABA inhibition parallels an increase in L-type Ca2+ currents in the jaw motor neurons of SOD1G93A mouse model for ALS. Neurobiol. Dis., 2023, 177, 105992.
[http://dx.doi.org/10.1016/j.nbd.2023.105992] [PMID: 36623607]
[171]
Neiva, T.J.C.; Moraes, A.C.R.; Schwyzer, R.; Vituri, C.L.; Rocha, T.R.F.; Fries, D.M.; Silva, M.A.; Benedetti, A.L. in vitro effect of the herbicide glyphosate on human blood platelet aggregation and coagulation. Rev. Bras. Hematol. Hemoter., 2010, 32(4), 291-294.
[http://dx.doi.org/10.1590/S1516-84842010005000087]
[172]
Hishizawa, M.; Yamashita, H.; Akizuki, M.; Urushitani, M.; Takahashi, R. TDP-43 levels are higher in platelets from patients with sporadic amyotrophic lateral sclerosis than in healthy controls. Neurochem. Int., 2019, 124, 41-45.
[http://dx.doi.org/10.1016/j.neuint.2018.12.009] [PMID: 30578840]
[173]
Ngatuni, D.; Wairagu, P.; Jillani, N.; Isaac, A.O.; Nyariki, J.N. A glyphosate-based herbicide disrupted hematopoiesis and induced organ toxicities, ameliorated by vitamin B12 in a mouse model. Saudi J. Biol. Sci., 2022, 29(6), 103278.
[http://dx.doi.org/10.1016/j.sjbs.2022.03.028] [PMID: 35401022]
[174]
Ji-He, K.; Xu-Dong, G.; Yi-Dian, W.; Xue-Wen, K. Neuroprotective effects of N-acetylserotonin and its derivative. Neuroscience, 2023, 517, 18-25.
[http://dx.doi.org/10.1016/j.neuroscience.2023.02.017]
[175]
Yung, K.C.; Xu, C.W.; Zhang, Z.W.; Yu, W.J.; Li, Q.; Xu, X.R.; Han, Y.F.; Wang, X.J.; Yin, J. Investigation on glucocorticoid receptors within platelets from adult patients with immune thrombocytopenia. Hematology, 2020, 25(1), 37-42.
[http://dx.doi.org/10.1080/16078454.2019.1710025] [PMID: 31905108]
[176]
Karolczak, K.; Konieczna, L.; Soltysik, B.; Kostka, T.; Witas, P.J.; Kostanek, J.; Baczek, T.; Watala, C. Plasma concentration of cortisol negatively associates with platelet reactivity in older subjects. Int. J. Mol. Sci., 2022, 24(1), 717.
[http://dx.doi.org/10.3390/ijms24010717] [PMID: 36614157]
[177]
Kokkinopoulou, I.; Moutsatsou, P. Mitochondrial glucocorticoid receptors and their actions. Int. J. Mol. Sci., 2021, 22(11), 6054.
[http://dx.doi.org/10.3390/ijms22116054] [PMID: 34205227]
[178]
Anderson, G. Why are aging and stress associated with dementia, cancer, and other diverse medical conditions? Role of pineal melatonin interactions with the HPA axis in mitochondrial regulation via BAG-1. Melatonin Res., 2023, 63, 345-371.
[http://dx.doi.org/10.32794/mr112500158]
[179]
Barrachina, M.N.; Pernes, G.; Becker, I.C.; Allaeys, I.; Hirsch, T.I.; Groeneveld, D.J.; Khan, A.O.; Freire, D.; Guo, K.; Carminita, E. Efficient megakaryopoiesis and platelet production require phospholipid remodeling and PUFA uptake through CD36. bioRxiv, 2023, 2023.02.12.527706.
[180]
Yamaguchi, A.; van Hoorebeke, C.; Tourdot, B.E.; Perry, S.C.; Lee, G.; Rhoads, N.; Rickenberg, A.; Green, A.R.; Sorrentino, J.; Yeung, J.; Freedman, J.C.; Holman, T.R.; Holinstat, M. Fatty acids negatively regulate platelet function through formation of noncanonical 15-lipoxygenase-derived eicosanoids. Pharmacol. Res. Perspect., 2023, 11(1), e01056.
[http://dx.doi.org/10.1002/prp2.1056] [PMID: 36708179]
[181]
Gheorghe, A.S.; Negru, Ș.M.; Preda, M.; Mihăilă, R.I.; Komporaly, I.A.; Dumitrescu, E.A.; Lungulescu, C.V.; Kajanto, L.A.; Georgescu, B.; Radu, E.A.; Stănculeanu, D.L. Biochemical and metabolical pathways associated with microbiota-derived butyrate in colorectal cancer and omega-3 fatty acids implications: A narrative review. Nutrients, 2022, 14(6), 1152.
[http://dx.doi.org/10.3390/nu14061152] [PMID: 35334808]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy