Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis

Author(s): Runting Yin*, Hongyu Lu, Yixin Cao, Jia Zhang, Geng Liu, Qian Guo, Xinyu Kai, Jiemin Zhao and Yuan Wei*

Volume 31, Issue 35, 2024

Published on: 02 October, 2023

Page: [5779 - 5804] Pages: 26

DOI: 10.2174/0109298673253678230920054220

Price: $65

Abstract

miRNAs are crucial regulators in a variety of physiological and pathological processes, while their regulation mechanisms were usually described as negatively regulating gene expression by targeting the 3’-untranslated region(3’-UTR) of target gene miRNAs through seed sequence in tremendous studies. However, recent evidence indicated the existence of non-canonical mechanisms mediated by binding other molecules besides mRNAs. Additionally, accumulating evidence showed that functions of intracellular and intercellular miRNAs exhibited spatiotemporal patterns. Considering that detailed knowledge of the miRNA regulating mechanism is essential for understanding the roles and further clinical applications associated with their dysfunction and dysregulation, which is complicated and not fully clarified. Based on that, we summarized the recently reported regulation mechanisms of miRNAs, including recognitions, patterns of actions, and chemical modifications. And we also highlight the novel findings of miRNAs in atherosclerosis progression researches to provide new insights for non-coding RNA-based therapy in intractable diseases.

[1]
Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet., 2010, 11(9), 597-610.
[http://dx.doi.org/10.1038/nrg2843] [PMID: 20661255]
[2]
O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol., 2018, 9, 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[3]
Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol., 2019, 234(5), 5451-5465.
[http://dx.doi.org/10.1002/jcp.27486] [PMID: 30471116]
[4]
Rivera, J.; Gangwani, L.; Kumar, S. Mitochondria localized microRNAs: An unexplored miRNA niche in Alzheimer’s disease and aging. Cells, 2023, 12(5), 742.
[http://dx.doi.org/10.3390/cells12050742] [PMID: 36899879]
[5]
Duarte, F.V.; Palmeira, C.M.; Rolo, A.P. The emerging role of MitomiRs in the pathophysiology of human disease. Adv. Exp. Med. Biol., 2015, 888, 123-154.
[http://dx.doi.org/10.1007/978-3-319-22671-2_8] [PMID: 26663182]
[6]
Gibcus, J.H.; Tan, L.P.; Harms, G.; Schakel, R.N.; de Jong, D.; Blokzijl, T.; Möller, P.; Poppema, S.; Kroesen, B.J.; van den Berg, A. Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile. Neoplasia, 2009, 11(2), 167-IN9.
[http://dx.doi.org/10.1593/neo.08980] [PMID: 19177201]
[7]
Dezfuli, N.K.; Alipoor, S.D.; Dalil Roofchayee, N.; Seyfi, S.; Salimi, B.; Adcock, I.M.; Mortaz, E. Evaluation expression of miR-146a and miR-155 in non-small-cell lung cancer patients. Front. Oncol., 2021, 11, 715677.
[http://dx.doi.org/10.3389/fonc.2021.715677] [PMID: 34790566]
[8]
He, Q.; Wang, F.; Honda, T.; Greis, K.D.; Redington, A.N. Ablation of miR-144 increases vimentin expression and atherosclerotic plaque formation. Sci. Rep., 2020, 10(1), 6127.
[http://dx.doi.org/10.1038/s41598-020-63335-7] [PMID: 32273567]
[9]
Wang, H.; Song, Y.; Wu, Y.; Kumar, V.; Mahato, R.I.; Su, Q. Activation of dsRNA-dependent protein kinase R by miR-378 sustains metabolic inflammation in hepatic insulin resistance. Diabetes, 2021, 70(3), 710-719.
[http://dx.doi.org/10.2337/db20-0181] [PMID: 33419758]
[10]
Juźwik, C.A.; S Drake, S.; Zhang, Y.; Paradis-Isler, N.; Sylvester, A.; Amar-Zifkin, A.; Douglas, C.; Morquette, B.; Moore, C.S.; Fournier, A.E. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog. Neurobiol., 2019, 182, 101664.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101664] [PMID: 31356849]
[11]
Reinsborough, C.W.; Ipas, H.; Abell, N.S.; Nottingham, R.M.; Yao, J.; Devanathan, S.K.; Shelton, S.B.; Lambowitz, A.M.; Xhemalçe, B. BCDIN3D regulates tRNAHis 3′ fragment processing. PLoS Genet., 2019, 15(7), e1008273.
[http://dx.doi.org/10.1371/journal.pgen.1008273] [PMID: 31329584]
[12]
Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[13]
van der Kwast, R.V.C.T.; Woudenberg, T.; Quax, P.H.A.; Nossent, A.Y. MicroRNA-411 and Its 5′-IsomiR have distinct targets and functions and are differentially regulated in the vasculature under ischemia. Mol. Ther., 2020, 28(1), 157-170.
[http://dx.doi.org/10.1016/j.ymthe.2019.10.002] [PMID: 31636041]
[14]
Helwak, A.; Kudla, G.; Dudnakova, T.; Tollervey, D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell, 2013, 153(3), 654-665.
[http://dx.doi.org/10.1016/j.cell.2013.03.043] [PMID: 23622248]
[15]
McGeary, S.E.; Lin, K.S.; Shi, C.Y.; Pham, T.M.; Bisaria, N.; Kelley, G.M.; Bartel, D.P. The biochemical basis of microRNA targeting efficacy. SCIENCE, 2019, 366(6472)
[http://dx.doi.org/10.1126/science.aav1741]
[16]
Kudla, G.; Granneman, S.; Hahn, D.; Beggs, J.D.; Tollervey, D. Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast. Proc. Natl. Acad. Sci., 2011, 108(24), 10010-10015.
[http://dx.doi.org/10.1073/pnas.1017386108] [PMID: 21610164]
[17]
Talukder, A.; Li, X.; Hu, H. Position-wise binding preference is important for miRNA target site prediction. Bioinformatics, 2020, 36(12), 3680-3686.
[http://dx.doi.org/10.1093/bioinformatics/btaa195] [PMID: 32186709]
[18]
Polioudakis, D.; Abell, N.S.; Iyer, V.R. miR-503 represses human cell proliferation and directly targets the oncogene DDHD2 by non-canonical target pairing. BMC Genomics, 2015, 16(1), 40.
[http://dx.doi.org/10.1186/s12864-015-1279-9] [PMID: 25653011]
[19]
Yang, A.; Bofill-De Ros, X.; Shao, T.J.; Jiang, M.; Li, K.; Villanueva, P.; Dai, L.; Gu, S. 3′ uridylation confers miRNAs with non-canonical target repertoires. Mol. Cell, 2019, 75(3), 511-522.e4.
[http://dx.doi.org/10.1016/j.molcel.2019.05.014] [PMID: 31178353]
[20]
Sheu-Gruttadauria, J.; Xiao, Y.; Gebert, L.F.R.; MacRae, I.J. Beyond the seed: structural basis for supplementary micro RNA targeting by human Argonaute2. EMBO J., 2019, 38(13), e101153.
[http://dx.doi.org/10.15252/embj.2018101153] [PMID: 31268608]
[21]
Kim, H.; Kim, J.; Yu, S.; Lee, Y.Y.; Park, J.; Choi, R.J.; Yoon, S.J.; Kang, S.G.; Kim, V.N. A mechanism for microRNA arm switching regulated by uridylation. Mol. Cell, 2020, 78(6), 1224-1236.e5.
[http://dx.doi.org/10.1016/j.molcel.2020.04.030] [PMID: 32442398]
[22]
Yang, A.; Shao, T.J.; Bofill-De Ros, X.; Lian, C.; Villanueva, P.; Dai, L.; Gu, S. AGO-bound mature miRNAs are oligouridylated by TUTs and subsequently degraded by DIS3L2. Nat. Commun., 2020, 11(1), 2765.
[http://dx.doi.org/10.1038/s41467-020-16533-w] [PMID: 32488030]
[23]
Vieux, K.F.; Prothro, K.P.; Kelley, L.H.; Palmer, C.; Maine, E.M.; Veksler-Lublinsky, I.; McJunkin, K. Screening by deep sequencing reveals mediators of microRNA tailing in C. elegans. Nucleic Acids Res., 2021, 49(19), 11167-11180.
[http://dx.doi.org/10.1093/nar/gkab840] [PMID: 34586415]
[24]
Burroughs, A.M.; Ando, Y.; de Hoon, M.J.L.; Tomaru, Y.; Nishibu, T.; Ukekawa, R.; Funakoshi, T.; Kurokawa, T.; Suzuki, H.; Hayashizaki, Y.; Daub, C.O. A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Res., 2010, 20(10), 1398-1410.
[http://dx.doi.org/10.1101/gr.106054.110] [PMID: 20719920]
[25]
Boele, J.; Persson, H.; Shin, J.W.; Ishizu, Y.; Newie, I.S.; Søkilde, R.; Hawkins, S.M.; Coarfa, C.; Ikeda, K.; Takayama, K.; Horie-Inoue, K.; Ando, Y.; Burroughs, A.M.; Sasaki, C.; Suzuki, C.; Sakai, M.; Aoki, S.; Ogawa, A.; Hasegawa, A.; Lizio, M.; Kaida, K.; Teusink, B.; Carninci, P.; Suzuki, H.; Inoue, S.; Gunaratne, P.H.; Rovira, C.; Hayashizaki, Y.; de Hoon, M.J.L. PAPD5-mediated 3′ adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proc. Natl. Acad. Sci., 2014, 111(31), 11467-11472.
[http://dx.doi.org/10.1073/pnas.1317751111] [PMID: 25049417]
[26]
D’Ambrogio, A.; Gu, W.; Udagawa, T.; Mello, C.C.; Richter, J.D. Specific miRNA stabilization by Gld2-catalyzed monoadenylation. Cell Rep., 2012, 2(6), 1537-1545.
[http://dx.doi.org/10.1016/j.celrep.2012.10.023] [PMID: 23200856]
[27]
Morsiani, C.; Terlecki-Zaniewicz, L.; Skalicky, S.; Bacalini, M.G.; Collura, S.; Conte, M.; Sevini, F.; Garagnani, P.; Salvioli, S.; Hackl, M.; Grillari, J.; Franceschi, C.; Capri, M. Circulating miR-19a-3p and miR-19b-3p characterize the human aging process and their isomiRs associate with healthy status at extreme ages. Aging Cell, 2021, 20(7), e13409.
[http://dx.doi.org/10.1111/acel.13409] [PMID: 34160893]
[28]
Ibuki, Y.; Nishiyama, Y.; Tsutani, Y.; Emi, M.; Hamai, Y.; Okada, M.; Tahara, H. Circulating microRNA/isomiRs as novel biomarkers of esophageal squamous cell carcinoma. PLoS One, 2020, 15(4), e0231116.
[http://dx.doi.org/10.1371/journal.pone.0231116] [PMID: 32251457]
[29]
Dika, E.; Broseghini, E.; Porcellini, E.; Lambertini, M.; Riefolo, M.; Durante, G.; Loher, P.; Roncarati, R.; Bassi, C.; Misciali, C.; Negrini, M.; Rigoutsos, I.; Londin, E.; Patrizi, A.; Ferracin, M. Unraveling the role of microRNA/isomiR network in multiple primary melanoma pathogenesis. Cell Death Dis., 2021, 12(5), 473.
[http://dx.doi.org/10.1038/s41419-021-03764-y] [PMID: 33980826]
[30]
Natarelli, L.; Weber, C. A non-canonical link between non-coding RNAs and cardiovascular diseases. Biomedicines, 2022, 10(2), 445.
[http://dx.doi.org/10.3390/biomedicines10020445] [PMID: 35203652]
[31]
Mayr, C. Regulation by 3′-untranslated regions. Annu. Rev. Genet., 2017, 51(1), 171-194.
[http://dx.doi.org/10.1146/annurev-genet-120116-024704] [PMID: 28853924]
[32]
Gu, S.; Jin, L.; Zhang, F.; Sarnow, P.; Kay, M.A. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat. Struct. Mol. Biol., 2009, 16(2), 144-150.
[http://dx.doi.org/10.1038/nsmb.1552] [PMID: 19182800]
[33]
Jia, Q.; Xie, B.; Zhao, Z.; Huang, L.; Wei, G.; Ni, T. Lung cancer cells expressing a shortened CDK16 3′UTR escape senescence through impaired miR-485-5p targeting. Mol. Oncol., 2022, 16(6), 1347-1364.
[http://dx.doi.org/10.1002/1878-0261.13125] [PMID: 34687270]
[34]
Urena, F.; Ma, C.; Hoffmann, F.W.; Nunes, L.G.A.; Urschitz, J.; Moisyadi, S.; Khadka, V.S.; Deng, Y.; Hoffmann, P.R. T-cell activation decreases miRNA-15a/16 levels to promote MEK1–ERK1/2–Elk1 signaling and proliferative capacity. J. Biol. Chem., 2022, 298(3), 101634.
[http://dx.doi.org/10.1016/j.jbc.2022.101634] [PMID: 35085550]
[35]
Liu, S.; Hu, C.; Li, M.; An, J.; Zhou, W.; Guo, J.; Xiao, Y. Estrogen receptor beta promotes lung cancer invasion via increasing CXCR4 expression. Cell Death Dis., 2022, 13(1), 70.
[http://dx.doi.org/10.1038/s41419-022-04514-4] [PMID: 35064116]
[36]
Fang, Z.; Rajewsky, N. The impact of miRNA target sites in coding sequences and in 3'UTRs. PLoS One, 2011, 6(3), e18067.
[http://dx.doi.org/10.1371/journal.pone.0018067] [PMID: 21445367]
[37]
Hausser, J.; Syed, A.P.; Bilen, B.; Zavolan, M. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res., 2013, 23(4), 604-615.
[http://dx.doi.org/10.1101/gr.139758.112] [PMID: 23335364]
[38]
Besnier, M.; Shantikumar, S.; Anwar, M.; Dixit, P.; Chamorro-Jorganes, A.; Sweaad, W.; Sala-Newby, G.; Madeddu, P.; Thomas, A.C.; Howard, L.; Mushtaq, S.; Petretto, E.; Caporali, A.; Emanueli, C. MiR-15a/-16 Inhibit angiogenesis by targeting the Tie2 coding sequence: therapeutic potential of a miR-15a/16 decoy system in limb ischemia. Mol. Ther. Nucleic Acids, 2019, 17, 49-62.
[http://dx.doi.org/10.1016/j.omtn.2019.05.002] [PMID: 31220779]
[39]
Shin, E.; Jin, H.; Suh, D.S.; Luo, Y.; Ha, H.J.; Kim, T.H.; Hahn, Y.; Hyun, S.; Lee, K.; Bae, J. An alternative miRISC targets a cancer-associated coding sequence mutation in FOXL2. EMBO J., 2020, 39(24), e104719.
[http://dx.doi.org/10.15252/embj.2020104719] [PMID: 33215742]
[40]
Tonouchi, E.; Gen, Y.; Muramatsu, T.; Hiramoto, H.; Tanimoto, K.; Inoue, J.; Inazawa, J. miR-3140 suppresses tumor cell growth by targeting BRD4 via its coding sequence and downregulates the BRD4-NUT fusion oncoprotein. Sci. Rep., 2018, 8(1), 4482.
[http://dx.doi.org/10.1038/s41598-018-22767-y] [PMID: 29540837]
[41]
Friedrich, M.; Vaxevanis, C.K.; Biehl, K.; Mueller, A.; Seliger, B. Targeting the coding sequence: Opposing roles in regulating classical and non-classical MHC class I molecules by miR-16 and miR-744. J. Immunother. Cancer, 2020, 8(1), e000396.
[http://dx.doi.org/10.1136/jitc-2019-000396] [PMID: 32571994]
[42]
Mayr, C.; Bartel, D.P. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 2009, 138(4), 673-684.
[http://dx.doi.org/10.1016/j.cell.2009.06.016] [PMID: 19703394]
[43]
Desi, N.; Teh, V.; Tong, Q.Y.; Lim, C.Y.; Tabatabaeian, H.; Chew, X.H.; Sanchez-Mejias, A.; Chan, J.J.; Zhang, B.; Pitcheshwar, P.; Siew, B.E.; Wang, S.; Lee, K.C.; Chong, C.S.; Cheong, W.K.; Lieske, B.; Tan, I.J.W.; Tan, K.K.; Tay, Y. MiR-138 is a potent regulator of the heterogenous MYC transcript population in cancers. Oncogene, 2022, 41(8), 1178-1189.
[http://dx.doi.org/10.1038/s41388-021-02084-x] [PMID: 34937878]
[44]
Lytle, J.R., Jr; Yario, T.A.; Steitz, J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl. Acad. Sci., 2007, 104(23), 9667-9672.
[http://dx.doi.org/10.1073/pnas.0703820104] [PMID: 17535905]
[45]
Meng, W.; Xiao, T.; Liang, X.; Wen, J.; Peng, X.; Wang, J.; Zou, Y.; Liu, J.; Bialowas, C.; Luo, H.; Zhang, Y.; Liu, B.; Zhang, J.; Hu, F.; Liu, M.; Dong, L.Q.; Zhou, Z.; Liu, F.; Bai, J. The miR-182-5p/FGF21/acetylcholine axis mediates the crosstalk between adipocytes and macrophages to promote beige fat thermogenesis. JCI Insight, 2021, 6(17), e150249.
[http://dx.doi.org/10.1172/jci.insight.150249] [PMID: 34264867]
[46]
Xu, K.; Han, B.; Bai, Y.; Ma, X.Y.; Ji, Z.N.; Xiong, Y.; Miao, S.K.; Zhang, Y.Y.; Zhou, L.M. MiR-451a suppressing BAP31 can inhibit proliferation and increase apoptosis through inducing ER stress in colorectal cancer. Cell Death Dis., 2019, 10(3), 152.
[http://dx.doi.org/10.1038/s41419-019-1403-x] [PMID: 30770794]
[47]
Kamenova, S.; Aralbayeva, A.; Kondybayeva, A.; Akimniyazova, A.; Pyrkova, A.; Ivashchenko, A. Evolutionary changes in the interaction of miRNA With mRNA of candidate genes for Parkinson’s disease. Front. Genet., 2021, 12, 647288.
[http://dx.doi.org/10.3389/fgene.2021.647288] [PMID: 33859673]
[48]
Liu, H.; Bi, J.; Dong, W.; Yang, M.; Shi, J.; Jiang, N.; Lin, T.; Huang, J. Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Mol. Cancer, 2018, 17(1), 161.
[http://dx.doi.org/10.1186/s12943-018-0908-8] [PMID: 30458784]
[49]
Long, J.M.; Maloney, B.; Rogers, J.T.; Lahiri, D.K. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5′-untranslated region: Implications in Alzheimer’s disease. Mol. Psychiatry, 2019, 24(3), 345-363.
[http://dx.doi.org/10.1038/s41380-018-0266-3] [PMID: 30470799]
[50]
Machlin, E.S.; Sarnow, P.; Sagan, S.M. Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc. Natl. Acad. Sci., 2011, 108(8), 3193-3198.
[http://dx.doi.org/10.1073/pnas.1012464108] [PMID: 21220300]
[51]
Ono, C.; Fukuhara, T.; Li, S.; Wang, J.; Sato, A.; Izumi, T.; Fauzyah, Y.; Yamamoto, T.; Morioka, Y.; Dokholyan, N.V.; Standley, D.M.; Matsuura, Y. Various miRNAs compensate the role of miR-122 on HCV replication. PLoS Pathog., 2020, 16(6), e1008308.
[http://dx.doi.org/10.1371/journal.ppat.1008308] [PMID: 32574204]
[52]
Sakamoto, A.; Terui, Y.; Uemura, T.; Igarashi, K.; Kashiwagi, K. Polyamines regulate gene expression by stimulating translation of histone acetyltransferase mRNAs. J. Biol. Chem., 2020, 295(26), 8736-8745.
[http://dx.doi.org/10.1074/jbc.RA120.013833] [PMID: 32376690]
[53]
Baldassarre, A.; Paolini, A.; Bruno, S.P.; Felli, C.; Tozzi, A.E.; Masotti, A. Potential use of noncoding RNAs and innovative therapeutic strategies to target the 5’UTR of SARS-CoV-2. Epigenomics, 2020, 12(15), 1349-1361.
[http://dx.doi.org/10.2217/epi-2020-0162] [PMID: 32875809]
[54]
Grimson, A.; Farh, K.K.H.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell, 2007, 27(1), 91-105.
[http://dx.doi.org/10.1016/j.molcel.2007.06.017] [PMID: 17612493]
[55]
Sætrom, P.; Heale, B.S.E.; Snøve, O., Jr; Aagaard, L.; Alluin, J.; Rossi, J.J. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res., 2007, 35(7), 2333-2342.
[http://dx.doi.org/10.1093/nar/gkm133] [PMID: 17389647]
[56]
Briskin, D.; Wang, P.Y.; Bartel, D.P. The biochemical basis for the cooperative action of microRNAs. Proc. Natl. Acad. Sci., 2020, 117(30), 17764-17774.
[http://dx.doi.org/10.1073/pnas.1920404117] [PMID: 32661162]
[57]
Shao, S.; Hu, Q.; Wu, W.; Wang, M.; Huang, J.; Zhao, X.; Tang, G.; Liang, T. Tumor-triggered personalized microRNA cocktail therapy for hepatocellular carcinoma. Biomater. Sci., 2020, 8(23), 6579-6591.
[http://dx.doi.org/10.1039/D0BM00794C] [PMID: 33231584]
[58]
Feinberg, M.W.; Moore, K.J. MicroRNA regulation of atherosclerosis. Circ. Res., 2016, 118(4), 703-720.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306300] [PMID: 26892968]
[59]
Rossi, J.J. A novel nuclear miRNA mediated modulation of a non-coding antisense RNA and its cognate sense coding mRNA. EMBO J., 2011, 30(21), 4340-4341.
[http://dx.doi.org/10.1038/emboj.2011.373] [PMID: 22048334]
[60]
Chen, B.; Zhang, B.; Luo, H.; Yuan, J.; Skogerbø, G.; Chen, R. Distinct microRNA subcellular size and expression patterns in human cancer cells. Int. J. Cell Biol., 2012, 2012, 1-9.
[http://dx.doi.org/10.1155/2012/672462] [PMID: 22505932]
[61]
Das, S.; Ferlito, M.; Kent, O.A.; Fox-Talbot, K.; Wang, R.; Liu, D.; Raghavachari, N.; Yang, Y.; Wheelan, S.J.; Murphy, E.; Steenbergen, C. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ. Res., 2012, 110(12), 1596-1603.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.267732] [PMID: 22518031]
[62]
Khan, A.W. Nuclear functions of microRNAs relevant to the cardiovascular system. Transl. Res., 2021, 230, 151-163.
[http://dx.doi.org/10.1016/j.trsl.2020.11.004] [PMID: 33186782]
[63]
Akiyoshi, K.; Boersma, G.J.; Johnson, M.D.; Velasquez, F.C.; Dunkerly-Eyring, B.; O’Brien, S.; Yamaguchi, A.; Steenbergen, C.; Tamashiro, K.L.K.; Das, S. Role of miR-181c in diet-induced obesity through regulation of lipid synthesis in liver. PLoS One, 2021, 16(12), e0256973.
[http://dx.doi.org/10.1371/journal.pone.0256973] [PMID: 34879063]
[64]
Wu, C.; Liu, X.; Zheng, Y.; He, W.; Yang, G.; Wu, P.; Cai, C. Fluorescence activation imaging of localization, distribution, and level of miRNA in various organelles inside cells. Talanta, 2018, 186, 406-412.
[http://dx.doi.org/10.1016/j.talanta.2018.04.080] [PMID: 29784380]
[65]
Hu, J.F.; Yim, D.; Ma, D.; Huber, S.M.; Davis, N.; Bacusmo, J.M.; Vermeulen, S.; Zhou, J.; Begley, T.J.; DeMott, M.S.; Levine, S.S.; de Crécy-Lagard, V.; Dedon, P.C.; Cao, B. Quantitative mapping of the cellular small RNA landscape with AQRNA-seq. Nat. Biotechnol., 2021, 39(8), 978-988.
[http://dx.doi.org/10.1038/s41587-021-00874-y] [PMID: 33859402]
[66]
Borralho, P.M.; Rodrigues, C.M.P.; Steer, C.J. microRNAs in mitochondria: An unexplored niche. Adv. Exp. Med. Biol., 2015, 887, 31-51.
[http://dx.doi.org/10.1007/978-3-319-22380-3_3] [PMID: 26662985]
[67]
Fan, S.; Tian, T.; Chen, W.; Lv, X.; Lei, X.; Zhang, H.; Sun, S.; Cai, L.; Pan, G.; He, L.; Ou, Z.; Lin, X.; Wang, X.; Perez, M.F.; Tu, Z.; Ferrone, S.; Tannous, B.A.; Li, J. Mitochondrial miRNA determines chemoresistance by reprogramming metabolism and regulating mitochondrial transcription. Cancer Res., 2019, 79(6), 1069-1084.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2505] [PMID: 30659020]
[68]
Liao, J.; Li, Q.; Hu, Z.; Yu, W.; Zhang, K.; Ma, F.; Han, Q.; Zhang, H.; Guo, J.; Hu, L.; Pan, J.; Li, Y.; Tang, Z. Mitochondrial miR-1285 regulates copper-induced mitochondrial dysfunction and mitophagy by impairing IDH2 in pig jejunal epithelial cells. J. Hazard. Mater., 2022, 422, 126899.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126899] [PMID: 34418838]
[69]
Hu, Z.; Linn, N.; Li, Q.; Zhang, K.; Liao, J.; Han, Q.; Zhang, H.; Guo, J.; Hu, L.; Pan, J.; Li, Y.; Tang, Z. MitomiR-504 alleviates the copper-induced mitochondria-mediated apoptosis by suppressing Bak1 expression in porcine jejunal epithelial cells. Sci. Total Environ., 2023, 858(Pt 3), 160157.
[http://dx.doi.org/10.1016/j.scitotenv.2022.160157] [PMID: 36379340]
[70]
Wang, W.X.; Prajapati, P.; Nelson, P.T.; Springer, J.E. The mitochondria-associated ER membranes are novel subcellular locations enriched for inflammatory-responsive microRNAs. Mol. Neurobiol., 2020, 57(7), 2996-3013.
[http://dx.doi.org/10.1007/s12035-020-01937-y] [PMID: 32451872]
[71]
Wang, W.X.; Springer, J.E.; Prajapati, P.; Vekaria, H.J.; Spry, M.; Cloud, A.L.; Sullivan, P.G. Temporal changes in inflammatory mitochondria-enriched microRNAs following traumatic brain injury and effects of miR-146a nanoparticle delivery. Neural Regen. Res., 2021, 16(3), 514-522.
[http://dx.doi.org/10.4103/1673-5374.293149] [PMID: 32985480]
[72]
Guo, Q.Q.; Gao, J.; Wang, X.W.; Yin, X.L.; Zhang, S.C.; Li, X.; Chi, L.L.; Zhou, X.M.; Wang, Z.; Zhang, Q.Y. RNA-binding protein MSI2 binds to miR-301a-3p and facilitates its distribution in mitochondria of endothelial cells. Front. Mol. Biosci., 2021, 7, 609828.
[http://dx.doi.org/10.3389/fmolb.2020.609828] [PMID: 33553241]
[73]
Guo, Q.; Yin, X.; Gao, J.; Wang, X.; Zhang, S.; Zhou, X.; Wang, Z.; Zhang, Q. MiR-381-3p redistributes between cytosol and mitochondria and aggravates endothelial cell injury induced by reactive oxygen species. Tissue Cell, 2020, 67, 101451.
[http://dx.doi.org/10.1016/j.tice.2020.101451] [PMID: 33137708]
[74]
Li, J.; Kong, D.; Gao, X.; Tian, Z.; Wang, X.; Guo, Q.; Wang, Z.; Zhang, Q. TSH attenuates fatty acid oxidation in hepatocytes by reducing the mitochondrial distribution of miR-449a/449b-5p/5194. Mol. Cell. Endocrinol., 2021, 530, 111280.
[http://dx.doi.org/10.1016/j.mce.2021.111280] [PMID: 33862186]
[75]
Zhang, X.; Zuo, X.; Yang, B.; Li, Z.; Xue, Y.; Zhou, Y.; Huang, J.; Zhao, X.; Zhou, J.; Yan, Y.; Zhang, H.; Guo, P.; Sun, H.; Guo, L.; Zhang, Y.; Fu, X.D. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell, 2014, 158(3), 607-619.
[http://dx.doi.org/10.1016/j.cell.2014.05.047] [PMID: 25083871]
[76]
Bukong, T.N.; Hou, W.; Kodys, K.; Szabo, G. Ethanol facilitates hepatitis C virus replication via up-regulation of GW182 and heat shock protein 90 in human hepatoma cells. Hepatology, 2013, 57(1), 70-80.
[http://dx.doi.org/10.1002/hep.26010] [PMID: 22898980]
[77]
Turunen, T.A.; Roberts, T.C.; Laitinen, P.; Väänänen, M.A.; Korhonen, P.; Malm, T.; Ylä-Herttuala, S.; Turunen, M.P. Changes in nuclear and cytoplasmic microRNA distribution in response to hypoxic stress. Sci. Rep., 2019, 9(1), 10332.
[http://dx.doi.org/10.1038/s41598-019-46841-1] [PMID: 31316122]
[78]
Zaccagnini, G.; Greco, S.; Longo, M.; Maimone, B.; Voellenkle, C.; Fuschi, P.; Carrara, M.; Creo, P.; Maselli, D.; Tirone, M.; Mazzone, M.; Gaetano, C.; Spinetti, G.; Martelli, F. Hypoxia-induced miR-210 modulates the inflammatory response and fibrosis upon acute ischemia. Cell Death Dis., 2021, 12(5), 435.
[http://dx.doi.org/10.1038/s41419-021-03713-9] [PMID: 33934122]
[79]
Santovito, D.; Egea, V.; Bidzhekov, K.; Natarelli, L.; Mourão, A.; Blanchet, X.; Wichapong, K.; Aslani, M.; Brunßen, C.; Horckmans, M.; Hristov, M.; Geerlof, A.; Lutgens, E.; Daemen, M.J.A.P.; Hackeng, T.; Ries, C.; Chavakis, T.; Morawietz, H.; Naumann, R.; von Hundelshausen, P.; Steffens, S.; Duchêne, J.; Megens, R.T.A.; Sattler, M.; Weber, C. Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis. Sci. Transl. Med., 2020, 12(546), eaaz2294.
[http://dx.doi.org/10.1126/scitranslmed.aaz2294] [PMID: 32493793]
[80]
Bologna, N.G.; Iselin, R.; Abriata, L.A.; Sarazin, A.; Pumplin, N.; Jay, F.; Grentzinger, T.; Dal Peraro, M.; Voinnet, O. Nucleo-cytosolic shuttling of argonaute1 prompts a revised model of the plant MicroRNA pathway. Mol. Cell, 2018, 69(4), 709-719.e5.
[http://dx.doi.org/10.1016/j.molcel.2018.01.007] [PMID: 29398448]
[81]
Wei, Y.; Li, L.; Wang, D.; Zhang, C.Y.; Zen, K. Importin 8 regulates the transport of mature microRNAs into the cell nucleus. J. Biol. Chem., 2014, 289(15), 10270-10275.
[http://dx.doi.org/10.1074/jbc.C113.541417] [PMID: 24596094]
[82]
Schraivogel, D.; Schindler, S.G.; Danner, J.; Kremmer, E.; Pfaff, J.; Hannus, S.; Depping, R.; Meister, G. Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels. Nucleic Acids Res., 2015, 43(15), 7447-7461.
[http://dx.doi.org/10.1093/nar/gkv705] [PMID: 26170235]
[83]
Castanotto, D.; Zhang, X.; Alluin, J.; Zhang, X.; Rüger, J.; Armstrong, B.; Rossi, J.; Riggs, A.; Stein, C.A. A stress-induced response complex (SIRC) shuttles miRNAs, siRNAs, and oligonucleotides to the nucleus. Proc. Natl. Acad. Sci., 2018, 115(25), E5756-E5765.
[http://dx.doi.org/10.1073/pnas.1721346115] [PMID: 29866826]
[84]
Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; Tait, J.F.; Tewari, M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci., 2011, 108(12), 5003-5008.
[http://dx.doi.org/10.1073/pnas.1019055108] [PMID: 21383194]
[85]
Garcia-Martin, R.; Wang, G.; Brandão, B.B.; Zanotto, T.M.; Shah, S.; Kumar Patel, S.; Schilling, B.; Kahn, C.R. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature, 2022, 601(7893), 446-451.
[http://dx.doi.org/10.1038/s41586-021-04234-3] [PMID: 34937935]
[86]
Robinson, H.; Ruelcke, J.E.; Lewis, A.; Bond, C.S.; Fox, A.H.; Bharti, V.; Wani, S.; Cloonan, N.; Lai, A.; Margolin, D.; Li, L.; Salomon, C.; Richards, R.S.; Farrell, A.; Gardiner, R.A.; Parton, R.G.; Cristino, A.S.; Hill, M.M. Caveolin-1-driven membrane remodelling regulates hnRNPK-mediated exosomal microRNA sorting in cancer. Clin. Transl. Med., 2021, 11(4), e381.
[http://dx.doi.org/10.1002/ctm2.381] [PMID: 33931969]
[87]
Liu, D.; Liu, F.; Li, Z.; Pan, S.; Xie, J.; Zhao, Z.; Liu, Z.; Zhang, J.; Liu, Z. HNRNPA1-mediated exosomal sorting of miR-483-5p out of renal tubular epithelial cells promotes the progression of diabetic nephropathy-induced renal interstitial fibrosis. Cell Death Dis., 2021, 12(3), 255.
[http://dx.doi.org/10.1038/s41419-021-03460-x] [PMID: 33692334]
[88]
Zhang, H.; Deng, T.; Liu, R.; Ning, T.; Yang, H.; Liu, D.; Zhang, Q.; Lin, D.; Ge, S.; Bai, M.; Wang, X.; Zhang, L.; Li, H.; Yang, Y.; Ji, Z.; Wang, H.; Ying, G.; Ba, Y. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol. Cancer, 2020, 19(1), 43.
[http://dx.doi.org/10.1186/s12943-020-01168-8] [PMID: 32106859]
[89]
Qiu, W.; Guo, X.; Li, B.; Wang, J.; Qi, Y.; Chen, Z.; Zhao, R.; Deng, L.; Qian, M.; Wang, S.; Zhang, Z.; Guo, Q.; Zhang, S.; Pan, Z.; Zhao, S.; Xue, H.; Li, G. Exosomal miR-1246 from glioma patient body fluids drives the differentiation and activation of myeloid-derived suppressor cells. Mol. Ther., 2021, 29(12), 3449-3464.
[http://dx.doi.org/10.1016/j.ymthe.2021.06.023] [PMID: 34217892]
[90]
Pérez-Boza, J.; Boeckx, A.; Lion, M.; Dequiedt, F.; Struman, I. hnRNPA2B1 inhibits the exosomal export of miR-503 in endothelial cells. Cell. Mol. Life Sci., 2020, 77(21), 4413-4428.
[http://dx.doi.org/10.1007/s00018-019-03425-6] [PMID: 31894362]
[91]
Schreiner, S.; Didio, A.; Hung, L.H.; Bindereif, A. Design and application of circular RNAs with protein-sponge function. Nucleic Acids Res., 2020, 48(21), 12326-12335.
[http://dx.doi.org/10.1093/nar/gkaa1085] [PMID: 33231682]
[92]
Xue, Y.C.; Ng, C.S.; Xiang, P.; Liu, H.; Zhang, K.; Mohamud, Y.; Luo, H. Dysregulation of RNA-binding proteins in amyotrophic lateral sclerosis. Front. Mol. Neurosci., 2020, 13, 78.
[http://dx.doi.org/10.3389/fnmol.2020.00078] [PMID: 32547363]
[93]
Choi, S.Y.; Hong, S.H.; Lee, H.J. Differential expression and sorting of exosomal microRNAs upon activation of the human monocyte-like cell line U937. Biochem. Biophys. Res. Commun., 2022, 610, 147-153.
[http://dx.doi.org/10.1016/j.bbrc.2022.04.048] [PMID: 35462096]
[94]
Fu, C.; Zhang, Q.; Wang, A.; Yang, S.; Jiang, Y.; Bai, L.; Wei, Q. EWI-2 controls nucleocytoplasmic shuttling of EGFR signaling molecules and miRNA sorting in exosomes to inhibit prostate cancer cell metastasis. Mol. Oncol., 2021, 15(5), 1543-1565.
[http://dx.doi.org/10.1002/1878-0261.12930] [PMID: 33605506]
[95]
Zhou, C.; Bei, J.; Qiu, Y.; Chang, Q.; Nyong, E.; Vasilakis, N.; Yang, J.; Krishnan, B.; Khanipov, K.; Jin, Y.; Fang, X.; Gaitas, A.; Gong, B. Exosomally targeting microRNA23a ameliorates microvascular endothelial barrier dysfunction following rickettsial infection. Front. Immunol., 2022, 13, 904679.
[http://dx.doi.org/10.3389/fimmu.2022.904679] [PMID: 35812423]
[96]
Li, T.; Liang, Y.; Li, J.; Yu, Y.; Xiao, M.M.; Ni, W.; Zhang, Z.; Zhang, G.J. Carbon nanotube field-effect transistor biosensor for ultrasensitive and label-free detection of breast cancer exosomal miRNA21. Anal. Chem., 2021, 93(46), 15501-15507.
[http://dx.doi.org/10.1021/acs.analchem.1c03573] [PMID: 34747596]
[97]
Aday, S.; Hazan-Halevy, I.; Chamorro-Jorganes, A.; Anwar, M.; Goldsmith, M.; Beazley-Long, N.; Sahoo, S.; Dogra, N.; Sweaad, W.; Catapano, F.; Ozaki-Tan, S.; Angelini, G.D.; Madeddu, P.; Benest, A.V.; Peer, D.; Emanueli, C. Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis in vitro and in vivo. Mol. Ther., 2021, 29(7), 2239-2252.
[http://dx.doi.org/10.1016/j.ymthe.2021.03.015] [PMID: 33744469]
[98]
Li, Y.J.; Wu, J.Y.; Liu, J.; Xu, W.; Qiu, X.; Huang, S.; Hu, X.B.; Xiang, D.X. Artificial exosomes for translational nanomedicine. J. Nanobiotechnology, 2021, 19(1), 242.
[http://dx.doi.org/10.1186/s12951-021-00986-2] [PMID: 34384440]
[99]
Stavast, C.; Erkeland, S. The non-canonical aspects of microRNAs: Many roads to gene gegulation. Cells, 2019, 8(11), 1465.
[http://dx.doi.org/10.3390/cells8111465] [PMID: 31752361]
[100]
Müller, V.; Oliveira-Ferrer, L.; Steinbach, B.; Pantel, K.; Schwarzenbach, H. Interplay of lncRNA H19/miR-675 and lncRNA NEAT1/miR-204 in breast cancer. Mol. Oncol., 2019, 13(5), 1137-1149.
[http://dx.doi.org/10.1002/1878-0261.12472] [PMID: 30803129]
[101]
Li, H.; Zhan, J.; Zhao, Y.; Fan, J.; Yuan, S.; Yin, Z.; Dai, B.; Chen, C.; Wang, D.W. Identification of ncRNA-mediated functions of nucleus-localized miR-320 in cardiomyocytes. Mol. Ther. Nucleic Acids, 2020, 19, 132-143.
[http://dx.doi.org/10.1016/j.omtn.2019.11.006] [PMID: 31837603]
[102]
Luo, Y.; Liang, C.; Xu, Y.; Zhang, T. MiR-466h-5p induces expression of myocardin with complementary promoter sequences. Biochem. Biophys. Res. Commun., 2019, 514(1), 187-193.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.133] [PMID: 31029421]
[103]
Xiao, M.; Li, J.; Li, W.; Wang, Y.; Wu, F.; Xi, Y.; Zhang, L.; Ding, C.; Luo, H.; Li, Y.; Peng, L.; Zhao, L.; Peng, S.; Xiao, Y.; Dong, S.; Cao, J.; Yu, W. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol., 2017, 14(10), 1326-1334.
[http://dx.doi.org/10.1080/15476286.2015.1112487] [PMID: 26853707]
[104]
Liang, Y.; Lu, Q.; Li, W.; Zhang, D.; Zhang, F.; Zou, Q.; Chen, L.; Tong, Y.; Liu, M.; Wang, S.; Li, W.; Ren, X.; Xu, P.; Yang, Z.; Dong, S.; Zhang, B.; Huang, Y.; Li, D.; Wang, H.; Yu, W. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res., 2021, 49(15), 8556-8572.
[http://dx.doi.org/10.1093/nar/gkab626] [PMID: 34329471]
[105]
Bai, Y.; Pan, B.; Zhan, X.; Silver, H.; Li, J. MicroRNA 195-5p targets Foxo3 promoter region to regulate its expression in granulosa cells. Int. J. Mol. Sci., 2021, 22(13), 6721.
[http://dx.doi.org/10.3390/ijms22136721] [PMID: 34201585]
[106]
Fan, J.; Zhang, X.; Nie, X.; Li, H.; Yuan, S.; Dai, B.; Zhan, J.; Wen, Z.; Jiang, J.; Chen, C.; Wang, D. Nuclear miR-665 aggravates heart failure via suppressing phosphatase and tensin homolog transcription. Sci. China Life Sci., 2020, 63(5), 724-736.
[http://dx.doi.org/10.1007/s11427-018-9515-1] [PMID: 31664601]
[107]
Zhou, C.; Wei, W.; Ma, J.; Yang, Y.; Liang, L.; Zhang, Y.; Wang, Z.; Chen, X.; Huang, L.; Wang, W.; Wu, S. Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels. Mol. Ther., 2021, 29(4), 1512-1528.
[http://dx.doi.org/10.1016/j.ymthe.2020.12.034] [PMID: 33388421]
[108]
Di Mauro, V.; Crasto, S.; Colombo, F.S.; Di Pasquale, E.; Catalucci, D. Wnt signalling mediates miR-133a nuclear re-localization for the transcriptional control of Dnmt3b in cardiac cells. Sci. Rep., 2019, 9(1), 9320.
[http://dx.doi.org/10.1038/s41598-019-45818-4] [PMID: 31249372]
[109]
Sardiello, M. A gene network regulating lysosomal biogenesis and function. Science, 2009, 325(5939), 473-477.
[110]
Guo, H.; Pu, M.; Tai, Y.; Chen, Y.; Lu, H.; Qiao, J.; Wang, G.; Chen, J.; Qi, X.; Huang, R.; Tao, Z.; Ren, J. Nuclear miR-30b-5p suppresses TFEB-mediated lysosomal biogenesis and autophagy. Cell Death Differ., 2021, 28(1), 320-336.
[http://dx.doi.org/10.1038/s41418-020-0602-4] [PMID: 32764647]
[111]
Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta stone of a hidden RNA language? Cell, 2011, 146(3), 353-358.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[112]
Thomson, D.W.; Dinger, M.E. Endogenous microRNA sponges: Evidence and controversy. Nat. Rev. Genet., 2016, 17(5), 272-283.
[http://dx.doi.org/10.1038/nrg.2016.20] [PMID: 27040487]
[113]
Qi, X.; Zhang, D.H.; Wu, N.; Xiao, J.H.; Wang, X.; Ma, W. ceRNA in cancer: Possible functions and clinical implications. J. Med. Genet., 2015, 52(10), 710-718.
[http://dx.doi.org/10.1136/jmedgenet-2015-103334] [PMID: 26358722]
[114]
Zheng, L.; Li, X.; Gu, Y.; Lv, X.; Xi, T. The 3′UTR of the pseudogene CYP4Z2P promotes tumor angiogenesis in breast cancer by acting as a ceRNA for CYP4Z1. Breast Cancer Res. Treat., 2015, 150(1), 105-118.
[http://dx.doi.org/10.1007/s10549-015-3298-2] [PMID: 25701119]
[115]
Chu, Y.; Kilikevicius, A.; Liu, J.; Johnson, K.C.; Yokota, S.; Corey, D.R. Argonaute binding within 3′-untranslated regions poorly predicts gene repression. Nucleic Acids Res., 2020, 48(13), gkaa478.
[http://dx.doi.org/10.1093/nar/gkaa478] [PMID: 32501500]
[116]
Fan, Z.; Kim, S.; Bai, Y.; Diergaarde, B.; Park, H.J. 3′-UTR shortening contributes to subtype-specific cancer growth by breaking stable ceRNA crosstalk of housekeeping genes. Front. Bioeng. Biotechnol., 2020, 8, 334.
[http://dx.doi.org/10.3389/fbioe.2020.00334] [PMID: 32411683]
[117]
Kristensen, L.S.; Ebbesen, K.K.; Sokol, M.; Jakobsen, T.; Korsgaard, U.; Eriksen, A.C.; Hansen, T.B.; Kjems, J.; Hager, H. Spatial expression analyses of the putative oncogene ciRS-7 in cancer reshape the microRNA sponge theory. Nat. Commun., 2020, 11(1), 4551.
[http://dx.doi.org/10.1038/s41467-020-18355-2] [PMID: 32917870]
[118]
Martens-de Kemp, S.R.; Komor, M.A.; Hegi, R.; Bolijn, A.S.; Tijssen, M.; de Groen, F.L.M.; Depla, A.; van Leerdam, M.; Meijer, G.A.; Fijneman, R.J.A.; Carvalho, B. Overexpression of the miR-17-92 cluster in colorectal adenoma organoids causes a carcinoma-like gene expression signature. Neoplasia, 2022, 32, 100820.
[http://dx.doi.org/10.1016/j.neo.2022.100820] [PMID: 35872559]
[119]
Lee, W.J.; Ji, H.; Jeong, S.D.; Pandey, P.R.; Gorospe, M.; Kim, H.H. LINC00162 regulates cell proliferation and apoptosis by sponging PAQR4 -targeting miR-485-5p. J. Cell. Physiol., 2022, 237(7), 2943-2960.
[http://dx.doi.org/10.1002/jcp.30758] [PMID: 35491694]
[120]
Lavenniah, A.; Luu, T.D.A.; Li, Y.P.; Lim, T.B.; Jiang, J.; Ackers-Johnson, M.; Foo, R.S.Y. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy. Mol. Ther., 2020, 28(6), 1506-1517.
[http://dx.doi.org/10.1016/j.ymthe.2020.04.006] [PMID: 32304667]
[121]
Wang, Z.; Ma, K.; Cheng, Y.; Abraham, J.M.; Liu, X.; Ke, X.; Wang, Z.; Meltzer, S.J. Synthetic circular multi-miR sponge simultaneously inhibits miR-21 and miR-93 in esophageal carcinoma. Lab. Invest., 2019, 99(10), 1442-1453.
[http://dx.doi.org/10.1038/s41374-019-0273-2] [PMID: 31217510]
[122]
Konno, M.; Koseki, J.; Asai, A.; Yamagata, A.; Shimamura, T.; Motooka, D.; Okuzaki, D.; Kawamoto, K.; Mizushima, T.; Eguchi, H.; Takiguchi, S.; Satoh, T.; Mimori, K.; Ochiya, T.; Doki, Y.; Ofusa, K.; Mori, M.; Ishii, H. Distinct methylation levels of mature microRNAs in gastrointestinal cancers. Nat. Commun., 2019, 10(1), 3888.
[http://dx.doi.org/10.1038/s41467-019-11826-1] [PMID: 31467274]
[123]
Ji, L.; Chen, X. Regulation of small RNA stability: Methylation and beyond. Cell Res., 2012, 22(4), 624-636.
[http://dx.doi.org/10.1038/cr.2012.36] [PMID: 22410795]
[124]
Liang, H.; Jiao, Z.; Rong, W.; Qu, S.; Liao, Z.; Sun, X.; Wei, Y.; Zhao, Q.; Wang, J.; Liu, Y.; Chen, X.; Wang, T.; Zhang, C.Y.; Zen, K. 3′-Terminal 2′-O-methylation of lung cancer miR-21-5p enhances its stability and association with Argonaute 2. Nucleic Acids Res., 2020, 48(13), gkaa504.
[http://dx.doi.org/10.1093/nar/gkaa504] [PMID: 32542340]
[125]
Backes, S.; Shapiro, J.S.; Sabin, L.R.; Pham, A.M.; Reyes, I.; Moss, B.; Cherry, S.; tenOever, B.R. Degradation of host microRNAs by poxvirus poly(A) polymerase reveals terminal RNA methylation as a protective antiviral mechanism. Cell Host Microbe, 2012, 12(2), 200-210.
[http://dx.doi.org/10.1016/j.chom.2012.05.019] [PMID: 22901540]
[126]
Abe, M.; Naqvi, A.; Hendriks, G.J.; Feltzin, V.; Zhu, Y.; Grigoriev, A.; Bonini, N.M. Impact of age-associated increase in 2′- O -methylation of miRNAs on aging and neurodegeneration in Drosophila. Genes Dev., 2014, 28(1), 44-57.
[http://dx.doi.org/10.1101/gad.226654.113] [PMID: 24395246]
[127]
Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.; Amariglio, N.; Kupiec, M.; Sorek, R.; Rechavi, G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012, 485(7397), 201-206.
[http://dx.doi.org/10.1038/nature11112] [PMID: 22575960]
[128]
Carissimi, C.; Laudadio, I.; Lorefice, E.; Azzalin, G.; De Paolis, V.; Fulci, V. Bisulphite miRNA-seq reveals widespread CpG and non-CpG 5-(hydroxy)methyl-Cytosine in human microRNAs. RNA Biol., 2021, 18(12), 2226-2235.
[http://dx.doi.org/10.1080/15476286.2021.1927423] [PMID: 33980133]
[129]
Pandolfini, L.; Barbieri, I.; Bannister, A.J.; Hendrick, A.; Andrews, B.; Webster, N.; Murat, P.; Mach, P.; Brandi, R.; Robson, S.C.; Migliori, V.; Alendar, A.; d’Onofrio, M.; Balasubramanian, S.; Kouzarides, T. METTL1 promotes let-7 MicroRNA processing via m7G methylation. Mol. Cell, 2019, 74(6), 1278-1290.e9.
[http://dx.doi.org/10.1016/j.molcel.2019.03.040] [PMID: 31031083]
[130]
Wong, J.M.; Eirin-Lopez, J.M. Evolution of methyltransferase-like (METTL) proteins in metazoa: A complex gene family involved in epitranscriptomic regulation and other epigenetic processes. Mol. Biol. Evol., 2021, 38(12), 5309-5327.
[http://dx.doi.org/10.1093/molbev/msab267] [PMID: 34480573]
[131]
Liu, N.; Dai, Q.; Zheng, G.; He, C.; Parisien, M.; Pan, T. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature, 2015, 518(7540), 560-564.
[http://dx.doi.org/10.1038/nature14234] [PMID: 25719671]
[132]
Han, J.; Wang, J.; Yang, X.; Yu, H.; Zhou, R.; Lu, H.C.; Yuan, W.B.; Lu, J.; Zhou, Z.; Lu, Q.; Wei, J.F.; Yang, H. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol. Cancer, 2019, 18(1), 110.
[http://dx.doi.org/10.1186/s12943-019-1036-9] [PMID: 31228940]
[133]
Zhang, J.; Bai, R.; Li, M.; Ye, H.; Wu, C.; Wang, C.; Li, S.; Tan, L.; Mai, D.; Li, G.; Pan, L.; Zheng, Y.; Su, J.; Ye, Y.; Fu, Z.; Zheng, S.; Zuo, Z.; Liu, Z.; Zhao, Q.; Che, X.; Xie, D.; Jia, W.; Zeng, M.S.; Tan, W.; Chen, R.; Xu, R.H.; Zheng, J.; Lin, D. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat. Commun., 2019, 10(1), 1858.
[http://dx.doi.org/10.1038/s41467-019-09712-x] [PMID: 31015415]
[134]
Sun, L.; Wan, A.; Zhou, Z.; Chen, D.; Liang, H.; Liu, C.; Yan, S.; Niu, Y.; Lin, Z.; Zhan, S.; Wang, S.; Bu, X.; He, W.; Lu, X.; Xu, A.; Wan, G. RNA-binding protein RALY reprogrammes mitochondrial metabolism via mediating miRNA processing in colorectal cancer. Gut, 2021, 70(9), 1698-1712.
[http://dx.doi.org/10.1136/gutjnl-2020-320652] [PMID: 33219048]
[135]
Liu, Y.; Yang, C.; Zhao, Y.; Chi, Q.; Wang, Z.; Sun, B. Overexpressed methyltransferase-like 1 (METTL1) increased chemosensitivity of colon cancer cells to cisplatin by regulating miR-149-3p/S100A4/p53 axis. Aging., 2019, 11(24), 12328-12344.
[http://dx.doi.org/10.18632/aging.102575] [PMID: 31866582]
[136]
Lee, J.H.; Wang, R.; Xiong, F.; Krakowiak, J.; Liao, Z.; Nguyen, P.T.; Moroz-Omori, E.V.; Shao, J.; Zhu, X.; Bolt, M.J.; Wu, H.; Singh, P.K.; Bi, M.; Shi, C.J.; Jamal, N.; Li, G.; Mistry, R.; Jung, S.Y.; Tsai, K.L.; Ferreon, J.C.; Stossi, F.; Caflisch, A.; Liu, Z.; Mancini, M.A.; Li, W. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol. Cell, 2021, 81(16), 3368-3385.e9.
[http://dx.doi.org/10.1016/j.molcel.2021.07.024] [PMID: 34375583]
[137]
Cheray, M.; Etcheverry, A.; Jacques, C.; Pacaud, R.; Bougras-Cartron, G.; Aubry, M.; Denoual, F.; Peterlongo, P.; Nadaradjane, A.; Briand, J.; Akcha, F.; Heymann, D.; Vallette, F.M.; Mosser, J.; Ory, B.; Cartron, P.F. Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol. Cancer, 2020, 19(1), 36.
[http://dx.doi.org/10.1186/s12943-020-01155-z] [PMID: 32098627]
[138]
Seok, H.; Lee, H.; Lee, S.; Ahn, S.H.; Lee, H.S.; Kim, G.W.D.; Peak, J.; Park, J.; Cho, Y.K.; Jeong, Y.; Gu, D.; Jeong, Y.; Eom, S.; Jang, E.S.; Chi, S.W. Position-specific oxidation of miR-1 encodes cardiac hypertrophy. Nature, 2020, 584(7820), 279-285.
[http://dx.doi.org/10.1038/s41586-020-2586-0] [PMID: 32760005]
[139]
van den Homberg, D.A.L.; van der Kwast, R.V.C.T.; Quax, P.H.A.; Nossent, A.Y. N-6-Methyladenosine in vasoactive microRNAs during Hypoxia; A novel role for METTL4. Int. J. Mol. Sci., 2022, 23(3), 1057.
[http://dx.doi.org/10.3390/ijms23031057] [PMID: 35162982]
[140]
Nance, K.D.; Meier, J.L. Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent. Sci., 2021, 7(5), 748-756.
[http://dx.doi.org/10.1021/acscentsci.1c00197] [PMID: 34075344]
[141]
Parr, C.J.C.; Wada, S.; Kotake, K.; Kameda, S.; Matsuura, S.; Sakashita, S.; Park, S.; Sugiyama, H.; Kuang, Y.; Saito, H. N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells. Nucleic Acids Res., 2020, 48(6), e35.
[http://dx.doi.org/10.1093/nar/gkaa070] [PMID: 32090264]
[142]
Luo, X.; Li, H.; Liang, J.; Zhao, Q.; Xie, Y.; Ren, J.; Zuo, Z. RMVar: An updated database of functional variants involved in RNA modifications. Nucleic Acids Res., 2021, 49(D1), D1405-D1412.
[http://dx.doi.org/10.1093/nar/gkaa811] [PMID: 33021671]
[143]
Hansson, G.K.; Libby, P.; Tabas, I. Inflammation and plaque vulnerability. J. Intern. Med., 2015, 278(5), 483-493.
[http://dx.doi.org/10.1111/joim.12406] [PMID: 26260307]
[144]
Mushenkova, N.V.; Summerhill, V.I.; Zhang, D.; Romanenko, E.B.; Grechko, A.V.; Orekhov, A.N. Current advances in the diagnostic imaging of atherosclerosis: Insights into the pathophysiology of vulnerable plaque. Int. J. Mol. Sci., 2020, 21(8), 2992.
[http://dx.doi.org/10.3390/ijms21082992] [PMID: 32340284]
[145]
Shaukat, A.; Levin, T.R. Current and future colorectal cancer screening strategies. Nat. Rev. Gastroenterol. Hepatol., 2022, 19(8), 521-531.
[http://dx.doi.org/10.1038/s41575-022-00612-y] [PMID: 35505243]
[146]
Brown, W.V. Cholesterol lowering in atherosclerosis. Am. J. Cardiol., 2000, 86(4), 29H-34H.
[http://dx.doi.org/10.1016/S0002-9149(00)01097-3] [PMID: 11021253]
[147]
Almeida, S.O.; Budoff, M. Effect of statins on atherosclerotic plaque. Trends Cardiovasc. Med., 2019, 29(8), 451-455.
[http://dx.doi.org/10.1016/j.tcm.2019.01.001] [PMID: 30642643]
[148]
Hansson, G.K.; Robertson, A.K.L.; Söderberg-Nauclér, C. Inflammation and atherosclerosis. Annu. Rev. Pathol., 2006, 1(1), 297-329.
[http://dx.doi.org/10.1146/annurev.pathol.1.110304.100100] [PMID: 18039117]
[149]
Zhang, S.; Liu, Y.; Cao, Y.; Zhang, S.; Sun, J.; Wang, Y.; Song, S.; Zhang, H. Targeting the microenvironment of vulnerable atherosclerotic plaques: An emerging diagnosis and therapy strategy for atherosclerosis. Adv. Mater., 2022, 34(29), 2110660.
[http://dx.doi.org/10.1002/adma.202110660] [PMID: 35238081]
[150]
Meng, H.; Ruan, J.; Yan, Z.; Chen, Y.; Liu, J.; Li, X.; Meng, F. New progress in early diagnosis of atherosclerosis. Int. J. Mol. Sci., 2022, 23(16), 8939.
[http://dx.doi.org/10.3390/ijms23168939] [PMID: 36012202]
[151]
Chen, J.; Zhang, X.; Millican, R.; Sherwood, J.; Martin, S.; Jo, H.; Yoon, Y.; Brott, B.C.; Jun, H.W. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv. Drug Deliv. Rev., 2021, 170, 142-199.
[http://dx.doi.org/10.1016/j.addr.2021.01.005] [PMID: 33428994]
[152]
Libby, P. The changing landscape of atherosclerosis. Nature, 2021, 592(7855), 524-533.
[http://dx.doi.org/10.1038/s41586-021-03392-8] [PMID: 33883728]
[153]
de Yébenes, V.G.; Briones, A.M.; Martos-Folgado, I.; Mur, S.M.; Oller, J.; Bilal, F.; González-Amor, M.; Méndez-Barbero, N.; Silla-Castro, J.C.; Were, F.; Jiménez-Borreguero, L.J.; Sánchez-Cabo, F.; Bueno, H.; Salaices, M.; Redondo, J.M.; Ramiro, A.R. Aging-associated miR-217 aggravates atherosclerosis and promotes cardiovascular dysfunction. Arterioscler. Thromb. Vasc. Biol., 2020, 40(10), 2408-2424.
[http://dx.doi.org/10.1161/ATVBAHA.120.314333] [PMID: 32847388]
[154]
Escate, R.; Padró, T.; Suades, R.; Camino, S.; Muñiz, O.; Diaz-Diaz, J.L.; Sionis, A.; Mata, P.; Badimon, L. High miR-133a levels in the circulation anticipates presentation of clinical events in familial hypercholesterolaemia patients. Cardiovasc. Res., 2021, 117(1), 109-122.
[http://dx.doi.org/10.1093/cvr/cvaa039] [PMID: 32061123]
[155]
Linna-Kuosmanen, S.; Tomas Bosch, V.; Moreau, P.R.; Bouvy-Liivrand, M.; Niskanen, H.; Kansanen, E.; Kivelä, A.; Hartikainen, J.; Hippeläinen, M.; Kokki, H.; Tavi, P.; Levonen, A.L.; Kaikkonen, M.U. NRF2 is a key regulator of endothelial microRNA expression under proatherogenic stimuli. Cardiovasc. Res., 2021, 117(5), 1339-1357.
[http://dx.doi.org/10.1093/cvr/cvaa219] [PMID: 32683448]
[156]
Zhelankin, A.V.; Stonogina, D.A.; Vasiliev, S.V.; Babalyan, K.A.; Sharova, E.I.; Doludin, Y.V.; Shchekochikhin, D.Y.; Generozov, E.V.; Akselrod, A.S. Circulating extracellular miRNA analysis in patients with stable CAD and acute coronary syndromes. Biomolecules, 2021, 11(7), 962.
[http://dx.doi.org/10.3390/biom11070962] [PMID: 34209965]
[157]
Ma, X.; Liao, X.; Liu, J.; Wang, Y.; Wang, X.; Chen, Y.; Yin, X.; Pan, Q. Circulating endothelial microvesicles and their carried miR-125a-5p: Potential biomarkers for ischaemic stroke. Stroke Vasc. Neurol., 2023, 8(2), 89-102.
[http://dx.doi.org/10.1136/svn-2021-001476] [PMID: 36109098]
[158]
Niu, M.; Li, H.; Li, X.; Yan, X.; Ma, A.; Pan, X.; Zhu, X. Circulating exosomal miRNAs as novel biomarkers perform superior diagnostic efficiency compared with plasma miRNAs for large-artery atherosclerosis stroke. Front. Pharmacol., 2021, 12, 791644.
[http://dx.doi.org/10.3389/fphar.2021.791644] [PMID: 34899352]
[159]
Guo, W.; Li, X.N.; Li, J.; Lu, J.; Wu, J.; Zhu, W.F.; Qin, P.; Xu, N.Z.; Zhang, Q. Increased plasma miR-146a levels are associated with subclinical atherosclerosis in newly diagnosed type 2 diabetes mellitus. J. Diabetes Complications, 2020, 34(12), 107725.
[http://dx.doi.org/10.1016/j.jdiacomp.2020.107725] [PMID: 32981813]
[160]
Xu, Y.; Gao, J.; Gong, Y.; Chen, M.; Chen, J.; Zhao, W.; Tan, S. Hsa-miR-140-5p down-regulates LDL receptor and attenuates LDL-C uptake in human hepatocytes. Atherosclerosis, 2020, 297, 111-119.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.02.004] [PMID: 32109664]
[161]
Dong, J.; He, M.; Li, J.; Pessentheiner, A.; Wang, C.; Zhang, J.; Sun, Y.; Wang, W.T.; Zhang, Y.; Liu, J.; Wang, S.C.; Huang, P.H.; Gordts, P.L.S.M.; Yuan, Z.Y.; Tsimikas, S.; Shyy, J.Y.J. microRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production. JCI Insight, 2020, 5(23), e143812.
[http://dx.doi.org/10.1172/jci.insight.143812] [PMID: 33119548]
[162]
Huang, S.F.; Zhao, G.; Peng, X.F.; Ye, W.C. The pathogenic role of long non-coding RNA H19 in atherosclerosis via the miR-146a-5p/ANGPTL4 pathway. Front. Cardiovasc. Med., 2021, 8, 770163.
[http://dx.doi.org/10.3389/fcvm.2021.770163] [PMID: 34820432]
[163]
Xu, Y.; Xu, Y.; Zhu, Y.; Sun, H.; Juguilon, C.; Li, F.; Fan, D.; Yin, L.; Zhang, Y. Macrophage miR-34a is a key regulator of cholesterol efflux and atherosclerosis. Mol. Ther., 2020, 28(1), 202-216.
[http://dx.doi.org/10.1016/j.ymthe.2019.09.008] [PMID: 31604677]
[164]
Chang, Y.J.; Li, Y.S.; Wu, C.C.; Wang, K.C.; Huang, T.C.; Chen, Z.; Chien, S. Extracellular microRNA-92a mediates endothelial cell-macrophage communication. Arterioscler. Thromb. Vasc. Biol., 2019, 39(12), 2492-2504.
[http://dx.doi.org/10.1161/ATVBAHA.119.312707] [PMID: 31597449]
[165]
Tang, X.; Yin, R.; Shi, H.; Wang, X.; Shen, D.; Wang, X.; Pan, C. LncRNA ZFAS1 confers inflammatory responses and reduces cholesterol efflux in atherosclerosis through regulating miR-654-3p-ADAM10/RAB22A axis. Int. J. Cardiol., 2020, 315, 72-80.
[http://dx.doi.org/10.1016/j.ijcard.2020.03.056] [PMID: 32349937]
[166]
Lu, X.; Yang, B.; Yang, H.; Wang, L.; Li, H.; Chen, S.; Lu, X.; Gu, D. MicroRNA-320b modulates cholesterol efflux and atherosclerosis. J. Atheroscler. Thromb., 2022, 29(2), 200-220.
[http://dx.doi.org/10.5551/jat.57125] [PMID: 33536383]
[167]
Wang, Y.; Smith, W.; Hao, D.; He, B.; Kong, L. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int. Immunopharmacol., 2019, 70, 459-466.
[http://dx.doi.org/10.1016/j.intimp.2019.02.050] [PMID: 30861466]
[168]
Zhang, X.; Rotllan, N.; Canfrán-Duque, A.; Sun, J.; Toczek, J.; Moshnikova, A.; Malik, S.; Price, N.L.; Araldi, E.; Zhong, W.; Sadeghi, M.M.; Andreev, O.A.; Bahal, R.; Reshetnyak, Y.K.; Suárez, Y.; Fernández-Hernando, C. Targeted suppression of miRNA-33 using pHLIP improves atherosclerosis regression. Circ. Res., 2022, 131(1), 77-90.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.320296] [PMID: 35534923]
[169]
Jiang, T.; Xu, L.; Zhao, M.; Kong, F.; Lu, X.; Tang, C.; Yin, C. Dual targeted delivery of statins and nucleic acids by chitosan-based nanoparticles for enhanced antiatherosclerotic efficacy. Biomaterials, 2022, 280, 121324.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121324] [PMID: 34933253]
[170]
Rayner, K.J.; Sheedy, F.J.; Esau, C.C.; Hussain, F.N.; Temel, R.E.; Parathath, S.; van Gils, J.M.; Rayner, A.J.; Chang, A.N.; Suarez, Y.; Fernandez-Hernando, C.; Fisher, E.A.; Moore, K.J. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest., 2011, 121(7), 2921-2931.
[http://dx.doi.org/10.1172/JCI57275] [PMID: 21646721]
[171]
Wang, C.; Liu, C.; Shi, J.; Li, H.; Jiang, S.; Zhao, P.; Zhang, M.; Du, G.; Fu, S.; Li, S.; Wang, Z.; Wang, X.; Gao, F.; Sun, P.; Tian, J. Nicotine exacerbates endothelial dysfunction and drives atherosclerosis via extracellular vesicle-miRNA. Cardiovasc. Res., 2023, 119(3), 729-742.
[http://dx.doi.org/10.1093/cvr/cvac140] [PMID: 36006370]
[172]
Gomez, I.; Ward, B.; Souilhol, C.; Recarti, C.; Ariaans, M.; Johnston, J.; Burnett, A.; Mahmoud, M.; Luong, L.A.; West, L.; Long, M.; Parry, S.; Woods, R.; Hulston, C.; Benedikter, B.; Niespolo, C.; Bazaz, R.; Francis, S.; Kiss-Toth, E.; van Zandvoort, M.; Schober, A.; Hellewell, P.; Evans, P.C.; Ridger, V. Neutrophil microvesicles drive atherosclerosis by delivering miR-155 to atheroprone endothelium. Nat. Commun., 2020, 11(1), 214.
[http://dx.doi.org/10.1038/s41467-019-14043-y] [PMID: 31924781]
[173]
Wang, J.; Xu, X.; Li, P.; Zhang, B.; Zhang, J. HDAC3 protects against atherosclerosis through inhibition of inflammation via the microRNA-19b/PPARγ/NF-κB axis. Atherosclerosis, 2021, 323, 1-12.
[http://dx.doi.org/10.1016/j.atherosclerosis.2021.02.013] [PMID: 33756273]
[174]
Jiang, F.; Chen, Q.; Wang, W.; Ling, Y.; Yan, Y.; Xia, P. Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1. J. Hepatol., 2020, 72(1), 156-166.
[http://dx.doi.org/10.1016/j.jhep.2019.09.014] [PMID: 31568800]
[175]
Yin, Q.; He, M.; Huang, L.; Zhang, X.; Zhan, J.; Hu, J. lncRNA ZFAS1 promotes ox-LDL induced EndMT through miR-150-5p/Notch3 signaling axis. Microvasc. Res., 2021, 134, 104118.
[http://dx.doi.org/10.1016/j.mvr.2020.104118] [PMID: 33278458]
[176]
Vanchin, B.; Offringa, E.; Friedrich, J.; Brinker, M.G.L.; Kiers, B.; Pereira, A.C.; Harmsen, M.C.; Moonen, J.R.A.J.; Krenning, G. MicroRNA-374b induces endothelial-to-mesenchymal transition and early lesion formation through the inhibition of MAPK7 signaling. J. Pathol., 2019, 247(4), 456-470.
[http://dx.doi.org/10.1002/path.5204] [PMID: 30565701]
[177]
Souilhol, C.; Harmsen, M.C.; Evans, P.C.; Krenning, G. Endothelial–mesenchymal transition in atherosclerosis. Cardiovasc. Res., 2018, 114(4), 565-577.
[http://dx.doi.org/10.1093/cvr/cvx253] [PMID: 29309526]
[178]
Zhou, Z.; Yeh, C.F.; Mellas, M.; Oh, M.J.; Zhu, J.; Li, J.; Huang, R.T.; Harrison, D.L.; Shentu, T.P.; Wu, D.; Lueckheide, M.; Carver, L.; Chung, E.J.; Leon, L.; Yang, K.C.; Tirrell, M.V.; Fang, Y. Targeted polyelectrolyte complex micelles treat vascular complications in vivo. Proc. Natl. Acad. Sci., 2021, 118(50), e2114842118.
[http://dx.doi.org/10.1073/pnas.2114842118] [PMID: 34880134]
[179]
Dosta, P.; Tamargo, I.; Ramos, V.; Kumar, S.; Kang, D.W.; Borrós, S.; Jo, H. Delivery of anti-microRNA-712 to inflamed endothelial cells using poly(beta-amino ester) nanoparticles conjugated with VCAM-1 targeting peptide. Adv. Healthc. Mater., 2021, 10(15), 2001894.
[http://dx.doi.org/10.1002/adhm.202001894] [PMID: 33448151]
[180]
Landskroner-Eiger, S.; Moneke, I.; Sessa, W.C. miRNAs as modulators of angiogenesis. Cold Spring Harb. Perspect. Med., 2013, 3(2), a006643.
[http://dx.doi.org/10.1101/cshperspect.a006643] [PMID: 23169571]
[181]
Farina, F.M.; Hall, I.F.; Serio, S.; Zani, S.; Climent, M.; Salvarani, N.; Carullo, P.; Civilini, E.; Condorelli, G.; Elia, L.; Quintavalle, M. MiR-128-3p is a novel regulator of vascular smooth muscle cell phenotypic switch and vascular diseases. Circ. Res., 2020, 126(12), e120-e135.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.316489] [PMID: 32216529]
[182]
Wang, J.; Hu, X.; Hu, X.; Gao, F.; Li, M.; Cui, Y.; Wei, X.; Qin, Y.; Zhang, C.; Zhao, Y.; Gao, Y. MicroRNA-520c-3p targeting of RelA/p65 suppresses atherosclerotic plaque formation. Int. J. Biochem. Cell Biol., 2021, 131, 105873.
[http://dx.doi.org/10.1016/j.biocel.2020.105873] [PMID: 33166679]
[183]
Chin, D.D.; Poon, C.; Wang, J.; Joo, J.; Ong, V.; Jiang, Z.; Cheng, K.; Plotkin, A.; Magee, G.A.; Chung, E.J. miR-145 micelles mitigate atherosclerosis by modulating vascular smooth muscle cell phenotype. Biomaterials, 2021, 273, 120810.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120810] [PMID: 33892346]
[184]
Zhang, Y.; Xie, B.; Sun, L.; Chen, W.; Jiang, S.L.; Liu, W.; Bian, F.; Tian, H.; Li, R.K. Phenotypic switching of vascular smooth muscle cells in the ‘normal region’ of aorta from atherosclerosis patients is regulated by miR-145. J. Cell. Mol. Med., 2016, 20(6), 1049-1061.
[http://dx.doi.org/10.1111/jcmm.12825] [PMID: 26992033]
[185]
Peng, M.; Sun, R.; Hong, Y.; Wang, J.; Xie, Y.; Zhang, X.; Li, J.; Guo, H.; Xu, P.; Li, Y.; Wang, X.; Wan, T.; Zhao, Y.; Huang, F.; Wang, Y.; Ye, R.; Liu, Q.; Liu, G.; Liu, X.; Xu, G. Extracellular vesicles carrying proinflammatory factors may spread atherosclerosis to remote locations. Cell. Mol. Life Sci., 2022, 79(8), 430.
[http://dx.doi.org/10.1007/s00018-022-04464-2] [PMID: 35851433]
[186]
Vallejo, J.; Cochain, C.; Zernecke, A.; Ley, K. Heterogeneity of immune cells in human atherosclerosis revealed by scRNA-Seq. Cardiovasc. Res., 2021, 117(13), cvab260.
[http://dx.doi.org/10.1093/cvr/cvab260] [PMID: 34343272]
[187]
Afonso, M.S.; Sharma, M.; Schlegel, M.; van Solingen, C.; Koelwyn, G.J.; Shanley, L.C.; Beckett, L.; Peled, D.; Rahman, K.; Giannarelli, C.; Li, H.; Brown, E.J.; Khodadadi-Jamayran, A.; Fisher, E.A.; Moore, K.J. MiR-33 silencing reprograms the immune cell landscape in atherosclerotic plaques. Circ. Res., 2021, 128(8), 1122-1138.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317914] [PMID: 33593073]
[188]
Saigusa, R.; Winkels, H.; Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol., 2020, 17(7), 387-401.
[http://dx.doi.org/10.1038/s41569-020-0352-5] [PMID: 32203286]
[189]
Bu, T.; Li, Z.; Hou, Y.; Sun, W.; Zhang, R.; Zhao, L.; Wei, M.; Yang, G.; Yuan, L. Exosome-mediated delivery of inflammation-responsive Il-10 mRNA for controlled atherosclerosis treatment. Theranostics, 2021, 11(20), 9988-10000.
[http://dx.doi.org/10.7150/thno.64229] [PMID: 34815799]
[190]
Karshovska, E.; Wei, Y.; Subramanian, P.; Mohibullah, R.; Geißler, C.; Baatsch, I.; Popal, A.; Corbalán Campos, J.; Exner, N.; Schober, A. HIF-1α (Hypoxia-Inducible Factor-1α) promotes macrophage necroptosis by regulating miR-210 and miR-383. Arterioscler. Thromb. Vasc. Biol., 2020, 40(3), 583-596.
[http://dx.doi.org/10.1161/ATVBAHA.119.313290] [PMID: 31996026]
[191]
Li, Y.; Yang, C.; Zhang, L.; Yang, P. MicroRNA-210 induces endothelial cell apoptosis by directly targeting PDK1 in the setting of atherosclerosis. Cell. Mol. Biol. Lett., 2017, 22(1), 3.
[http://dx.doi.org/10.1186/s11658-017-0033-5] [PMID: 28536634]
[192]
Abplanalp, W.T.; Fischer, A.; John, D.; Zeiher, A.M.; Gosgnach, W.; Darville, H.; Montgomery, R.; Pestano, L.; Allée, G.; Paty, I.; Fougerousse, F.; Dimmeler, S. Efficiency and target derepression of anti-miR-92a: results of a first in human study. Nucleic Acid Ther., 2020, 30(6), 335-345.
[http://dx.doi.org/10.1089/nat.2020.0871] [PMID: 32707001]
[193]
Täubel, J.; Hauke, W.; Rump, S.; Viereck, J.; Batkai, S.; Poetzsch, J.; Rode, L.; Weigt, H.; Genschel, C.; Lorch, U.; Theek, C.; Levin, A.A.; Bauersachs, J.; Solomon, S.D.; Thum, T. Novel antisense therapy targeting microRNA-132 in patients with heart failure: Results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J., 2021, 42(2), 178-188.
[http://dx.doi.org/10.1093/eurheartj/ehaa898] [PMID: 33245749]
[194]
Son, D.J.; Kumar, S.; Takabe, W.; Woo Kim, C.; Ni, C.W.; Alberts-Grill, N.; Jang, I.H.; Kim, S.; Kim, W.; Won Kang, S.; Baker, A.H.; Woong Seo, J.; Ferrara, K.W.; Jo, H. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat. Commun., 2013, 4(1), 3000.
[http://dx.doi.org/10.1038/ncomms4000] [PMID: 24346612]
[195]
Wang, Z.; Zhang, J.; Zhang, S.; Yan, S.; Wang, Z.; Wang, C.; Zhang, X. MiR-30e and miR-92a are related to atherosclerosis by targeting ABCA1. Mol. Med. Rep., 2019, 19(4), 3298-3304.
[http://dx.doi.org/10.3892/mmr.2019.9983] [PMID: 30816508]
[196]
Yang, L.; Li, T. LncRNA TUG1 regulates ApoM to promote atherosclerosis progression through miR-92a/FXR1 axis. J. Cell. Mol. Med., 2020, 24(15), 8836-8848.
[http://dx.doi.org/10.1111/jcmm.15521] [PMID: 32597038]
[197]
Guo, X.; Li, D.; Chen, M.; Chen, L.; Zhang, B.; Wu, T.; Guo, R. miRNA-145 inhibits VSMC proliferation by targeting CD40. Sci. Rep., 2016, 6(1), 35302.
[http://dx.doi.org/10.1038/srep35302] [PMID: 27731400]
[198]
Nakaoka, H.; Hirono, K.; Yamamoto, S.; Takasaki, I.; Takahashi, K.; Kinoshita, K.; Takasaki, A.; Nishida, N.; Okabe, M.; Ce, W.; Miyao, N.; Saito, K.; Ibuki, K.; Ozawa, S.; Adachi, Y.; Ichida, F. MicroRNA-145-5p and microRNA-320a encapsulated in endothelial microparticles contribute to the progression of vasculitis in acute Kawasaki disease. Sci. Rep., 2018, 8(1), 1016.
[http://dx.doi.org/10.1038/s41598-018-19310-4] [PMID: 29343815]
[199]
Lv, Y.; Fu, L.; Zhang, Z.; Gu, W.; Luo, X.; Zhong, Y.; Xu, S.; Wang, Y.; Yan, L.; Li, M.; Du, L. Increased expression of microRNA-206 inhibits potassium voltage-gated channel subfamily a member 5 in pulmonary arterial smooth muscle cells and is related to exaggerated pulmonary artery hypertension following intrauterine growth retardation in rats. J. Am. Heart Assoc., 2019, 8(2), e010456.
[http://dx.doi.org/10.1161/JAHA.118.010456] [PMID: 30636484]
[200]
Jalali, S.; Ramanathan, G.K.; Parthasarathy, P.T.; Aljubran, S.; Galam, L.; Yunus, A.; Garcia, S.; Cox, R.R., Jr; Lockey, R.F.; Kolliputi, N. Mir-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation. PLoS One, 2012, 7(10), e46808.
[http://dx.doi.org/10.1371/journal.pone.0046808] [PMID: 23071643]
[201]
He, M.; Chen, Z.; Martin, M.; Zhang, J.; Sangwung, P.; Woo, B.; Tremoulet, A.H.; Shimizu, C.; Jain, M.K.; Burns, J.C.; Shyy, J.Y.J. miR-483 targeting of CTGF suppresses endothelial-to-mesenchymal transition. Circ. Res., 2017, 120(2), 354-365.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.310233] [PMID: 27923814]
[202]
Lei, Z.; Wahlquist, C.; el Azzouzi, H.; Deddens, J.C.; Kuster, D.; van Mil, A.; Rojas-Munoz, A.; Huibers, M.M.; Mercola, M.; de Weger, R.; Van der Velden, J.; Xiao, J.; Doevendans, P.A.; Sluijter, J.P.G. miR-132/212 impairs cardiomyocytes contractility in the failing heart by suppressing SERCA2a. Front. Cardiovasc. Med., 2021, 8, 592362.
[http://dx.doi.org/10.3389/fcvm.2021.592362] [PMID: 33816571]
[203]
Rencelj, A.; Gvozdenovic, N.; Cemazar, M. MitomiRs: their roles in mitochondria and importance in cancer cell metabolism. Radiol. Oncol., 2021, 55(4), 379-392.
[http://dx.doi.org/10.2478/raon-2021-0042] [PMID: 34821131]
[204]
Zheng, H.; Liu, J.; Yu, J.; McAlinden, A. Expression profiling of mitochondria-associated microRNAs during osteogenic differentiation of human MSCs. Bone, 2021, 151, 116058.
[http://dx.doi.org/10.1016/j.bone.2021.116058] [PMID: 34144232]
[205]
Liang, H.; Liu, J.; Su, S.; Zhao, Q. Mitochondrial noncoding RNAs: new wine in an old bottle. RNA Biol., 2021, 18(12), 2168-2182.
[http://dx.doi.org/10.1080/15476286.2021.1935572] [PMID: 34110970]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy