Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Tao of Copper Metabolism: From Physiology to Pathology

Author(s): Shan Gao, Mei Zhou and Zhenchu Tang*

Volume 31, Issue 35, 2024

Published on: 05 October, 2023

Page: [5805 - 5817] Pages: 13

DOI: 10.2174/0929867331666230915162405

Price: $65

Abstract

As a transitional metal, copper plays a crucial role in maintaining the normal physiological activities of mammals. The intracellular copper concentration is meticulously regulated to maintain extremely low levels through homeostatic regulation. Excessive accumulation of free copper in cells can have deleterious effects, as observed in conditions such as Wilson’s disease. Moreover, data accumulated over the past few decades have revealed a crucial role of copper imbalance in tumorigenesis, progression and metastasis. Recently, cuproptosis, also known as copper-induced cell death, has been proposed as a novel form of cell death. This discovery offers new prospects for treating copperrelated diseases and provides a promising avenue for developing copper-responsive therapies, particularly in cancer treatment. We present a comprehensive overview of the Yin– Yang equilibrium in copper metabolism, particularly emphasising its pathophysiological alterations and their relevance to copper-related diseases and malignancies.

[1]
Festa, R.A.; Thiele, D.J. Copper: An essential metal in biology. Curr. Biol., 2011, 21(21), R877-R883.
[http://dx.doi.org/10.1016/j.cub.2011.09.040] [PMID: 22075424]
[2]
Myint, Z.W.; Oo, T.H.; Thein, K.Z.; Tun, A.M.; Saeed, H. Copper deficiency anemia: Review article. Ann. Hematol., 2018, 97(9), 1527-1534.
[http://dx.doi.org/10.1007/s00277-018-3407-5] [PMID: 29959467]
[3]
Tsang, T.; Davis, C.I.; Brady, D.C. Copper biology. Curr. Biol., 2021, 31(9), R421-R427.
[http://dx.doi.org/10.1016/j.cub.2021.03.054] [PMID: 33974864]
[4]
Lin, C.; Zhang, Z.; Wang, T.; Chen, C.; James Kang, Y. Copper uptake by DMT1: A compensatory mechanism for CTR1 deficiency in human umbilical vein endothelial cells. Metallomics, 2015, 7(8), 1285-1289.
[http://dx.doi.org/10.1039/c5mt00097a] [PMID: 26067577]
[5]
Song, I.S.; Chen, H.H.W.; Aiba, I.; Hossain, A.; Liang, Z.D.; Klomp, L.W.J.; Kuo, M.T. Transcription factor Sp1 plays an important role in the regulation of copper homeostasis in mammalian cells. Mol. Pharmacol., 2008, 74(3), 705-713.
[http://dx.doi.org/10.1124/mol.108.046771] [PMID: 18483225]
[6]
Liang, Z.D.; Tsai, W.B.; Lee, M.Y.; Savaraj, N.; Kuo, M.T. Specificity protein 1 (sp1) oscillation is involved in copper homeostasis maintenance by regulating human high-affinity copper transporter 1 expression. Mol. Pharmacol., 2012, 81(3), 455-464.
[http://dx.doi.org/10.1124/mol.111.076422] [PMID: 22172574]
[7]
Petris, M.J.; Smith, K.; Lee, J.; Thiele, D.J. Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J. Biol. Chem., 2003, 278(11), 9639-9646.
[http://dx.doi.org/10.1074/jbc.M209455200] [PMID: 12501239]
[8]
Ohgami, R.S.; Campagna, D.R.; McDonald, A.; Fleming, M.D. The Steap proteins are metalloreductases. Blood, 2006, 108(4), 1388-1394.
[http://dx.doi.org/10.1182/blood-2006-02-003681] [PMID: 16609065]
[9]
Batzios, S.; Tal, G.; DiStasio, A.T.; Peng, Y.; Charalambous, C.; Nicolaides, P.; Kamsteeg, E.J.; Korman, S.H.; Mandel, H.; Steinbach, P.J.; Yi, L.; Fair, S.R.; Hester, M.E.; Drousiotou, A.; Kaler, S.G. Newly identified disorder of copper metabolism caused by variants in CTR1, a high-affinity copper transporter. Hum. Mol. Genet., 2022, 31(24), 4121-4130.
[http://dx.doi.org/10.1093/hmg/ddac156] [PMID: 35913762]
[10]
Wyman, S.; Simpson, R.J.; McKie, A.T.; Sharp, P.A. Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett., 2008, 582(13), 1901-1906.
[http://dx.doi.org/10.1016/j.febslet.2008.05.010] [PMID: 18498772]
[11]
Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch., 2020, 472(10), 1415-1429.
[http://dx.doi.org/10.1007/s00424-020-02412-2] [PMID: 32506322]
[12]
Rozensztrauch, A.; Dzien, I.; Śmigiel, R. Health-related quality of life and family functioning of primary caregivers of children with menkes disease. J. Clin. Med., 2023, 12(5), 1769.
[http://dx.doi.org/10.3390/jcm12051769] [PMID: 36902556]
[13]
De Feyter, S.; Beyens, A.; Callewaert, B. ATP7A‐related copper transport disorders: A systematic review and definition of the clinical subtypes. J. Inherit. Metab. Dis., 2023, 46(2), 163-173.
[http://dx.doi.org/10.1002/jimd.12590] [PMID: 36692329]
[14]
Yang, G.M.; Xu, L.; Wang, R.M.; Tao, X.; Zheng, Z.W.; Chang, S.; Ma, D.; Zhao, C.; Dong, Y.; Wu, S.; Guo, J.; Wu, Z.Y. Structures of the human Wilson disease copper transporter ATP7B. Cell Rep., 2023, 42(5), 112417.
[http://dx.doi.org/10.1016/j.celrep.2023.112417] [PMID: 37074913]
[15]
Ge, E.J.; Bush, A.I.; Casini, A.; Cobine, P.A.; Cross, J.R.; DeNicola, G.M.; Dou, Q.P.; Franz, K.J.; Gohil, V.M.; Gupta, S.; Kaler, S.G.; Lutsenko, S.; Mittal, V.; Petris, M.J.; Polishchuk, R.; Ralle, M.; Schilsky, M.L.; Tonks, N.K.; Vahdat, L.T.; Van Aelst, L.; Xi, D.; Yuan, P.; Brady, D.C.; Chang, C.J. Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat. Rev. Cancer, 2022, 22(2), 102-113.
[http://dx.doi.org/10.1038/s41568-021-00417-2] [PMID: 34764459]
[16]
Lutsenko, S. Human copper homeostasis: A network of interconnected pathways. Curr. Opin. Chem. Biol., 2010, 14(2), 211-217.
[http://dx.doi.org/10.1016/j.cbpa.2010.01.003] [PMID: 20117961]
[17]
Luo, Q.; Song, Y.; Kang, J.; Wu, Y.; Wu, F.; Li, Y.; Dong, Q.; Wang, J.; Song, C.; Guo, H. mtROS-mediated Akt/AMPK/mTOR pathway was involved in Copper-induced autophagy and it attenuates copper-induced apoptosis in RAW264.7 mouse monocytes. Redox Biol., 2021, 41, 101912.
[http://dx.doi.org/10.1016/j.redox.2021.101912] [PMID: 33706171]
[18]
Yang, F.; Pei, R.; Zhang, Z.; Liao, J.; Yu, W.; Qiao, N.; Han, Q.; Li, Y.; Hu, L.; Guo, J.; Pan, J.; Tang, Z. Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol. In Vitro, 2019, 54, 310-316.
[http://dx.doi.org/10.1016/j.tiv.2018.10.017] [PMID: 30389602]
[19]
Nagai, M.; Vo, N.H.; Shin Ogawa, L.; Chimmanamada, D.; Inoue, T.; Chu, J.; Beaudette-Zlatanova, B.C.; Lu, R.; Blackman, R.K.; Barsoum, J.; Koya, K.; Wada, Y. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic. Biol. Med., 2012, 52(10), 2142-2150.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.03.017] [PMID: 22542443]
[20]
Shimada, K.; Reznik, E.; Stokes, M.E.; Krishnamoorthy, L.; Bos, P.H.; Song, Y.; Quartararo, C.E.; Pagano, N.C.; Carpizo, D.R.; deCarvalho, A.C.; Lo, D.C.; Stockwell, B.R. Copper-binding small molecule induces oxidative stress and cell-cycle arrest in glioblastoma-patient-derived cells. Cell Chem. Biol., 2018, 25(5), 585-594.e7.
[http://dx.doi.org/10.1016/j.chembiol.2018.02.010] [PMID: 29576531]
[21]
Yip, N.C.; Fombon, I.S.; Liu, P.; Brown, S.; Kannappan, V.; Armesilla, A.L.; Xu, B.; Cassidy, J.; Darling, J.L.; Wang, W. Disulfiram modulated ROS–MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br. J. Cancer, 2011, 104(10), 1564-1574.
[http://dx.doi.org/10.1038/bjc.2011.126] [PMID: 21487404]
[22]
Chen, D.; Cui, Q.C.; Yang, H.; Dou, Q.P. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res., 2006, 66(21), 10425-10433.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2126] [PMID: 17079463]
[23]
Liu, N.; Huang, H.; Dou, Q.P.; Liu, J. Inhibition of 19S proteasome-associated deubiquitinases by metal-containing compounds. Oncoscience, 2015, 2(5), 457-466.
[http://dx.doi.org/10.18632/oncoscience.167] [PMID: 26097878]
[24]
Skrott, Z.; Mistrik, M.; Andersen, K.K.; Friis, S.; Majera, D.; Gursky, J.; Ozdian, T.; Bartkova, J.; Turi, Z.; Moudry, P.; Kraus, M.; Michalova, M.; Vaclavkova, J.; Dzubak, P.; Vrobel, I.; Pouckova, P.; Sedlacek, J.; Miklovicova, A.; Kutt, A.; Li, J.; Mattova, J.; Driessen, C.; Dou, Q.P.; Olsen, J.; Hajduch, M.; Cvek, B.; Deshaies, R.J.; Bartek, J. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017, 552(7684), 194-199.
[http://dx.doi.org/10.1038/nature25016] [PMID: 29211715]
[25]
Tsvetkov, P.; Detappe, A.; Cai, K.; Keys, H.R.; Brune, Z.; Ying, W.; Thiru, P.; Reidy, M.; Kugener, G.; Rossen, J.; Kocak, M.; Kory, N.; Tsherniak, A.; Santagata, S.; Whitesell, L.; Ghobrial, I.M.; Markley, J.L.; Lindquist, S.; Golub, T.R. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat. Chem. Biol., 2019, 15(7), 681-689.
[http://dx.doi.org/10.1038/s41589-019-0291-9] [PMID: 31133756]
[26]
Tardito, S.; Bassanetti, I.; Bignardi, C.; Elviri, L.; Tegoni, M.; Mucchino, C.; Bussolati, O.; Franchi-Gazzola, R.; Marchiò, L. Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells. J. Am. Chem. Soc., 2011, 133(16), 6235-6242.
[http://dx.doi.org/10.1021/ja109413c] [PMID: 21452832]
[27]
Tardito, S.; Barilli, A.; Bassanetti, I.; Tegoni, M.; Bussolati, O.; Franchi-Gazzola, R.; Mucchino, C.; Marchiò, L. Copper-dependent cytotoxicity of 8-hydroxyquinoline derivatives correlates with their hydrophobicity and does not require caspase activation. J. Med. Chem., 2012, 55(23), 10448-10459.
[http://dx.doi.org/10.1021/jm301053a] [PMID: 23170953]
[28]
Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; Eaton, J.K.; Frenkel, E.; Kocak, M.; Corsello, S.M.; Lutsenko, S.; Kanarek, N.; Santagata, S.; Golub, T.R. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 2022, 375(6586), 1254-1261.
[http://dx.doi.org/10.1126/science.abf0529] [PMID: 35298263]
[29]
Hunsaker, E.W.; Franz, K.J. Emerging opportunities to manipulate metal trafficking for therapeutic benefit. Inorg. Chem., 2019, 58(20), 13528-13545.
[http://dx.doi.org/10.1021/acs.inorgchem.9b01029] [PMID: 31247859]
[30]
Hasinoff, B.B.; Yadav, A.A.; Patel, D.; Wu, X. The cytotoxicity of the anticancer drug elesclomol is due to oxidative stress indirectly mediated through its complex with Cu(II). J. Inorg. Biochem., 2014, 137, 22-30.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.04.004] [PMID: 24798374]
[31]
Kirshner, J.R.; He, S.; Balasubramanyam, V.; Kepros, J.; Yang, C.Y.; Zhang, M.; Du, Z.; Barsoum, J.; Bertin, J. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol. Cancer Ther., 2008, 7(8), 2319-2327.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0298] [PMID: 18723479]
[32]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[33]
Dzieżyc-Jaworska, K.; Litwin, T.; Członkowska, A. Clinical manifestations of Wilson disease in organs other than the liver and brain. Ann. Transl. Med., 2019, 7(S2)(Suppl. 2), S62.
[http://dx.doi.org/10.21037/atm.2019.03.30] [PMID: 31179299]
[34]
Poujois, A.; Woimant, F. Challenges in the diagnosis of wilson disease. Ann. Transl. Med., 2019, 7(S2)(Suppl. 2), S67.
[http://dx.doi.org/10.21037/atm.2019.02.10] [PMID: 31179304]
[35]
Sandahl, T.D.; Laursen, T.L.; Munk, D.E.; Vilstrup, H.; Weiss, K.H.; Ott, P. The prevalence of Wilson’s disease: An update. Hepatology, 2020, 71(2), 722-732.
[http://dx.doi.org/10.1002/hep.30911] [PMID: 31449670]
[36]
European Association for Study of Liver. EASL clinical practice guidelines: Wilson’s disease. J. Hepatol., 2012, 56(3), 671-685.
[http://dx.doi.org/10.1016/j.jhep.2011.11.007] [PMID: 22340672]
[37]
Lo, C.; Bandmann, O. Epidemiology and introduction to the clinical presentation of Wilson disease. Handb. Clin. Neurol., 2017, 142, 7-17.
[http://dx.doi.org/10.1016/B978-0-444-63625-6.00002-1] [PMID: 28433111]
[38]
Coffey, A.J.; Durkie, M.; Hague, S.; McLay, K.; Emmerson, J.; Lo, C.; Klaffke, S.; Joyce, C.J.; Dhawan, A.; Hadzic, N.; Mieli-Vergani, G.; Kirk, R.; Elizabeth Allen, K.; Nicholl, D.; Wong, S.; Griffiths, W.; Smithson, S.; Giffin, N.; Taha, A.; Connolly, S.; Gillett, G.T.; Tanner, S.; Bonham, J.; Sharrack, B.; Palotie, A.; Rattray, M.; Dalton, A.; Bandmann, O. A genetic study of Wilson’s disease in the United Kingdom. Brain, 2013, 136(5), 1476-1487.
[http://dx.doi.org/10.1093/brain/awt035] [PMID: 23518715]
[39]
Dong, Y.; Wang, R.M.; Yang, G.M.; Yu, H.; Xu, W.Q.; Xie, J.J.; Zhang, Y.; Chen, Y.C.; Ni, W.; Wu, Z.Y. Role for biochemical assays and kayser-fleischer rings in diagnosis of Wilson’s disease. Clin. Gastroenterol. Hepatol., 2021, 19(3), 590-596.
[http://dx.doi.org/10.1016/j.cgh.2020.05.044] [PMID: 32485301]
[40]
Wu, Z.Y.; Wang, N.; Lin, M.T.; Fang, L.; Murong, S.X.; Yu, L. Mutation analysis and the correlation between genotype and phenotype of Arg778Leu mutation in chinese patients with Wilson disease. Arch. Neurol., 2001, 58(6), 971-976.
[http://dx.doi.org/10.1001/archneur.58.6.971] [PMID: 11405812]
[41]
Cheng, N.; Wang, H.; Wu, W.; Yang, R.; Liu, L.; Han, Y.; Guo, L.; Hu, J.; Xu, L.; Zhao, J.; Han, Y.; Liu, Q.; Li, K.; Wang, X.; Chen, W. Spectrum of ATP7B mutations and genotype-phenotype correlation in large-scale Chinese patients with Wilson disease. Clin. Genet., 2017, 92(1), 69-79.
[http://dx.doi.org/10.1111/cge.12951] [PMID: 27982432]
[42]
Dong, Y.; Ni, W.; Chen, W.J.; Wan, B.; Zhao, G.X.; Shi, Z.Q.; Zhang, Y.; Wang, N.; Yu, L.; Xu, J.F.; Wu, Z.Y. Spectrum and classification of ATP7B variants in a large cohort of Chinese patients with Wilson’s disease guides genetic diagnosis. Theranostics, 2016, 6(5), 638-649.
[http://dx.doi.org/10.7150/thno.14596] [PMID: 27022412]
[43]
Li, X.; Lu, Z.; Lin, Y.; Lu, X.; Xu, Y.; Cheng, J.; Shao, Y.; Su, X.; Liu, Z.; Sheng, H.; Cai, Y.; Li, T.; Zhou, Z.; Tan, J.; Liu, H.; Huang, Y.; Liu, L.; Zeng, C. Clinical features and mutational analysis in 114 young children with Wilson disease from South China. Am. J. Med. Genet. A., 2019, 179(8), ajmg.a.61254.
[http://dx.doi.org/10.1002/ajmg.a.61254] [PMID: 31172689]
[44]
Merle, U.; Weiss, K.H.; Eisenbach, C.; Tuma, S.; Ferenci, P.; Stremmel, W. Truncating mutations in the Wilson disease gene ATP7B are associated with very low serum ceruloplasmin oxidase activity and an early onset of Wilson disease. BMC Gastroenterol., 2010, 10(1), 8.
[http://dx.doi.org/10.1186/1471-230X-10-8] [PMID: 20082719]
[45]
Okada, T.; Shiono, Y.; Kaneko, Y.; Miwa, K.; Hasatani, K.; Hayashi, Y.; Mibayashi, H.; Aoyagi, H.; Tsuji, S.; Yoshimitsu, M.; Hayashi, H.; Yamagishi, M. High prevalence of fulminant hepatic failure among patients with mutant alleles for truncation of ATP7B in Wilson’s disease. Scand. J. Gastroenterol., 2010, 45(10), 1232-1237.
[http://dx.doi.org/10.3109/00365521.2010.492527] [PMID: 20491539]
[46]
Kluska, A.; Kulecka, M.; Litwin, T.; Dziezyc, K.; Balabas, A.; Piatkowska, M.; Paziewska, A.; Dabrowska, M.; Mikula, M.; Kaminska, D.; Wiernicka, A.; Socha, P.; Czlonkowska, A.; Ostrowski, J. Whole-exome sequencing identifies novel pathogenic variants across the ATP7B gene and some modifiers of Wilson’s disease phenotype. Liver Int., 2019, 39(1), 177-186.
[http://dx.doi.org/10.1111/liv.13967] [PMID: 30230192]
[47]
Litwin, T.; Gromadzka, G.; Członkowska, A. Apolipoprotein E gene (APOE) genotype in Wilson’s disease: Impact on clinical presentation. Parkinsonism Relat. Disord., 2012, 18(4), 367-369.
[http://dx.doi.org/10.1016/j.parkreldis.2011.12.005] [PMID: 22221592]
[48]
Członkowska, A.; Litwin, T.; Dusek, P.; Ferenci, P.; Lutsenko, S.; Medici, V.; Rybakowski, J.K.; Weiss, K.H.; Schilsky, M.L. Wilson disease. Nat. Rev. Dis. Primers, 2018, 4(1), 21.
[http://dx.doi.org/10.1038/s41572-018-0018-3] [PMID: 30190489]
[49]
Ferenci, P.; Stremmel, W.; Członkowska, A.; Szalay, F.; Viveiros, A.; Stättermayer, A.F.; Bruha, R.; Houwen, R.; Pop, T.L.; Stauber, R.; Gschwantler, M.; Pfeiffenberger, J.; Yurdaydin, C.; Aigner, E.; Steindl-Munda, P.; Dienes, H.P.; Zoller, H.; Weiss, K.H. Age and sex but not ATP7B genotype effectively influence the clinical phenotype of wilson disease. Hepatology, 2019, 69(4), 1464-1476.
[http://dx.doi.org/10.1002/hep.30280] [PMID: 30232804]
[50]
Członkowska, A.; Gromadzka, G.; Chabik, G. Monozygotic female twins discordant for phenotype of Wilson’s disease. Mov. Disord., 2009, 24(7), 1066-1069.
[http://dx.doi.org/10.1002/mds.22474] [PMID: 19306278]
[51]
Kegley, K.M.; Sellers, M.A.; Ferber, M.J.; Johnson, M.W.; Joelson, D.W.; Shrestha, R. Fulminant Wilson’s disease requiring liver transplantation in one monozygotic twin despite identical genetic mutation. Am. J. Transplant., 2010, 10(5), 1325-1329.
[http://dx.doi.org/10.1111/j.1600-6143.2010.03071.x] [PMID: 20346064]
[52]
Takeshita, Y.; Shimizu, N.; Yamaguchi, Y.; Nakazono, H.; Saitou, M.; Fujikawa, Y.; Aoki, T. Two families with Wilson disease in which siblings showed different phenotypes. J. Hum. Genet., 2002, 47(10), 0543-0547.
[http://dx.doi.org/10.1007/s100380200082] [PMID: 12376745]
[53]
Medici, V.; Shibata, N.M.; Kharbanda, K.K.; LaSalle, J.M.; Woods, R.; Liu, S.; Engelberg, J.A.; Devaraj, S.; Török, N.J.; Jiang, J.X.; Havel, P.J.; Lönnerdal, B.; Kim, K.; Halsted, C.H. Wilson’s disease: Changes in methionine metabolism and inflammation affect global DNA methylation in early liver disease. Hepatology, 2013, 57(2), 555-565.
[http://dx.doi.org/10.1002/hep.26047] [PMID: 22945834]
[54]
Guo, X.; Schrag, M.; Ghoshal, S.; Schilsky, M.; Beslow, L.; Schindler, E. Neuropsychiatric presentation of wilson disease in an adolescent male. Neuropediatrics, 2016, 47(5), 346-347.
[http://dx.doi.org/10.1055/s-0036-1586225] [PMID: 27490186]
[55]
Ye, X.N.; Mao, L.P.; Lou, Y.J.; Tong, H.Y. Hemolytic anemia as first presentation of Wilson’s disease with uncommon ATP7B mutation. Int. J. Clin. Exp. Med., 2015, 8(3), 4708-4711.
[PMID: 26064408]
[56]
Cleymaet, S.; Nagayoshi, K.; Gettings, E.; Faden, J. A review and update on the diagnosis and treatment of neuropsychiatric Wilson disease. Expert Rev. Neurother., 2019, 19(11), 1117-1126.
[http://dx.doi.org/10.1080/14737175.2019.1645009] [PMID: 31314605]
[57]
Antos, A.; Litwin, T.; Skowrońska, M.; Kurkowska-Jastrzębska, I.; Członkowska, A. Pitfalls in diagnosing Wilson’s Disease by genetic testing alone: The case of a 47-year-old woman with two pathogenic variants of the ATP7B gene. Neurol. Neurochir. Pol., 2020, 54(5), 478-480.
[http://dx.doi.org/10.5603/PJNNS.a2020.0063] [PMID: 32808274]
[58]
Tümer, Z.; Møller, L.B. Menkes disease. Eur. J. Hum. Genet., 2010, 18(5), 511-518.
[http://dx.doi.org/10.1038/ejhg.2009.187] [PMID: 19888294]
[59]
Vairo, F.P.; Chwal, B.C.; Perini, S.; Ferreira, M.A.P.; de Freitas Lopes, A.C.; Saute, J.A.M. A systematic review and evidence-based guideline for diagnosis and treatment of Menkes disease. Mol. Genet. Metab., 2019, 126(1), 6-13.
[http://dx.doi.org/10.1016/j.ymgme.2018.12.005] [PMID: 30594472]
[60]
Boullata, J.; Muthukumaran, G.; Piarulli, A.; Labarre, J.; Compher, C. Oral copper absorption in men with morbid obesity. J. Trace Elem. Med. Biol., 2017, 44, 146-150.
[http://dx.doi.org/10.1016/j.jtemb.2017.07.005] [PMID: 28965570]
[61]
Choi, E.H.; Strum, W. Hypocupremia-related myeloneuropathy following gastrojejunal bypass surgery. Ann. Nutr. Metab., 2010, 57(3-4), 190-192.
[http://dx.doi.org/10.1159/000321519] [PMID: 21088385]
[62]
Yarandi, S.S.; Griffith, D.P.; Sharma, R.; Mohan, A.; Zhao, V.M.; Ziegler, T.R. Optic neuropathy, myelopathy, anemia, and neutropenia caused by acquired copper deficiency after gastric bypass surgery. J. Clin. Gastroenterol., 2014, 48(10), 862-865.
[http://dx.doi.org/10.1097/MCG.0000000000000092] [PMID: 24583748]
[63]
Tisato, F.; Marzano, C.; Porchia, M.; Pellei, M.; Santini, C. Copper in diseases and treatments, and copper-based anticancer strategies. Med. Res. Rev., 2010, 30(4), 708-749.
[PMID: 19626597]
[64]
Prohaska, J.R. Impact of copper deficiency in humans. Ann. N. Y. Acad. Sci., 2014, 1314(1), 1-5.
[http://dx.doi.org/10.1111/nyas.12354] [PMID: 24517364]
[65]
Lopez, J.; Ramchandani, D.; Vahdat, L. Copper depletion as a therapeutic strategy in cancer. Met. Ions Life Sci., 2019, 19, 303-330.
[http://dx.doi.org/10.1515/9783110527872-012] [PMID: 30855113]
[66]
Ishida, S.; Andreux, P.; Poitry-Yamate, C.; Auwerx, J.; Hanahan, D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl. Acad. Sci. USA, 2013, 110(48), 19507-19512.
[http://dx.doi.org/10.1073/pnas.1318431110] [PMID: 24218578]
[67]
Wooton-Kee, C.R.; Robertson, M.; Zhou, Y.; Dong, B.; Sun, Z.; Kim, K.H.; Liu, H.; Xu, Y.; Putluri, N.; Saha, P.; Coarfa, C.; Moore, D.D.; Nuotio-Antar, A.M. Metabolic dysregulation in the Atp7b−/− Wilson’s disease mouse model. Proc. Natl. Acad. Sci. USA, 2020, 117(4), 2076-2083.
[http://dx.doi.org/10.1073/pnas.1914267117] [PMID: 31924743]
[68]
Hao, Y.N.; Zhang, W.X.; Gao, Y.R.; Wei, Y.N.; Shu, Y.; Wang, J.H. State-of-the-art advances of copper-based nanostructures in the enhancement of chemodynamic therapy. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(2), 250-266.
[http://dx.doi.org/10.1039/D0TB02360D] [PMID: 33237121]
[69]
Ngamchuea, K.; Batchelor-McAuley, C.; Compton, R.G. The Copper(II)-catalyzed oxidation of glutathione. Chemistry, 2016, 22(44), 15937-15944.
[http://dx.doi.org/10.1002/chem.201603366] [PMID: 27649691]
[70]
Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298.
[http://dx.doi.org/10.1083/jcb.201804161] [PMID: 29915025]
[71]
Laws, K.; Bineva-Todd, G.; Eskandari, A.; Lu, C.; O’Reilly, N.; Suntharalingam, K.A. Copper(II) phenanthroline metallopeptide that targets and disrupts mitochondrial function in breast cancer stem cells. Angew. Chem. Int. Ed., 2018, 57(1), 287-291.
[http://dx.doi.org/10.1002/anie.201710910] [PMID: 29144008]
[72]
Rochford, G.; Molphy, Z.; Kavanagh, K.; McCann, M.; Devereux, M.; Kellett, A.; Howe, O. Cu(II) phenanthroline–phenazine complexes dysregulate mitochondrial function and stimulate apoptosis. Metallomics, 2020, 12(1), 65-78.
[http://dx.doi.org/10.1039/c9mt00187e] [PMID: 31720645]
[73]
Angelé-Martínez, C.; Nguyen, K.V.T.; Ameer, F.S.; Anker, J.N.; Brumaghim, J.L. Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology, 2017, 11(2), 278-288.
[http://dx.doi.org/10.1080/17435390.2017.1293750] [PMID: 28248593]
[74]
Jomova, K.; Hudecova, L.; Lauro, P.; Simunková, M.; Barbierikova, Z.; Malcek, M.; Alwasel, S.H.; Alhazza, I.M.; Rhodes, C.J.; Valko, M. The effect of luteolin on DNA damage mediated by a copper catalyzed fenton reaction. J. Inorg. Biochem., 2022, 226, 111635.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111635] [PMID: 34717250]
[75]
Tsang, T.; Posimo, J.M.; Gudiel, A.A.; Cicchini, M.; Feldser, D.M.; Brady, D.C. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat. Cell Biol., 2020, 22(4), 412-424.
[http://dx.doi.org/10.1038/s41556-020-0481-4] [PMID: 32203415]
[76]
Santoro, A.M.; Monaco, I.; Attanasio, F.; Lanza, V.; Pappalardo, G.; Tomasello, M.F.; Cunsolo, A.; Rizzarelli, E.; De Luigi, A.; Salmona, M.; Milardi, D. Copper(II) ions affect the gating dynamics of the 20S proteasome: A molecular and in cell study. Sci. Rep., 2016, 6(1), 33444.
[http://dx.doi.org/10.1038/srep33444] [PMID: 27633879]
[77]
Zhang, Z.; Wang, H.; Yan, M.; Wang, H.; Zhang, C. Novel copper complexes as potential proteasome inhibitors for cancer treatment. Mol. Med. Rep., 2017, 15(1), 3-11.
[http://dx.doi.org/10.3892/mmr.2016.6022] [PMID: 27959411]
[78]
Antoniades, V.; Sioga, A.; Dietrich, E.M.; Meditskou, S.; Ekonomou, L.; Antoniades, K. Is copper chelation an effective anti-angiogenic strategy for cancer treatment? Med. Hypotheses, 2013, 81(6), 1159-1163.
[http://dx.doi.org/10.1016/j.mehy.2013.09.035] [PMID: 24210000]
[79]
Cucci, L.M.; Satriano, C.; Marzo, T.; La Mendola, D. Angiogenin and copper crossing in wound healing. Int. J. Mol. Sci., 2021, 22(19), 10704.
[http://dx.doi.org/10.3390/ijms221910704] [PMID: 34639045]
[80]
Brewer, G.J.; Dick, R.D.; Grover, D.K.; LeClaire, V.; Tseng, M.; Wicha, M.; Pienta, K.; Redman, B.G.; Jahan, T.; Sondak, V.K.; Strawderman, M.; LeCarpentier, G.; Merajver, S.D. Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: Phase I study. Clin. Cancer Res., 2000, 6(1), 1-10.
[PMID: 10656425]
[81]
Sen, C.K.; Khanna, S.; Venojarvi, M.; Trikha, P.; Ellison, E.C.; Hunt, T.K.; Roy, S. Copper-induced vascular endothelial growth factor expression and wound healing. Am. J. Physiol. Heart Circ. Physiol., 2002, 282(5), H1821-H1827.
[http://dx.doi.org/10.1152/ajpheart.01015.2001] [PMID: 11959648]
[82]
Das, A.; Ash, D.; Fouda, A.Y.; Sudhahar, V.; Kim, Y.M.; Hou, Y.; Hudson, F.Z.; Stansfield, B.K.; Caldwell, R.B.; McMenamin, M.; Littlejohn, R.; Su, H.; Regan, M.R.; Merrill, B.J.; Poole, L.B.; Kaplan, J.H.; Fukai, T.; Ushio-Fukai, M. Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis. Nat. Cell Biol., 2022, 24(1), 35-50.
[http://dx.doi.org/10.1038/s41556-021-00822-7] [PMID: 35027734]
[83]
Chan, N.; Willis, A.; Kornhauser, N.; Ward, M.M.; Lee, S.B.; Nackos, E.; Seo, B.R.; Chuang, E.; Cigler, T.; Moore, A.; Donovan, D.; Vallee Cobham, M.; Fitzpatrick, V.; Schneider, S.; Wiener, A.; Guillaume-Abraham, J.; Aljom, E.; Zelkowitz, R.; Warren, J.D.; Lane, M.E.; Fischbach, C.; Mittal, V.; Vahdat, L. Influencing the tumor microenvironment: A phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases. Clin. Cancer Res., 2017, 23(3), 666-676.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1326] [PMID: 27769988]
[84]
Jiao, Y.; Hannafon, B.N.; Ding, W.Q. Disulfiram’s anticancer activity: Evidence and mechanisms. Anticancer. Agents Med. Chem., 2016, 16(11), 1378-1384.
[http://dx.doi.org/10.2174/1871520615666160504095040] [PMID: 27141876]
[85]
Huang, J.; Campian, J.L.; Gujar, A.D.; Tran, D.D.; Lockhart, A.C.; DeWees, T.A.; Tsien, C.I.; Kim, A.H. A phase I study to repurpose disulfiram in combination with temozolomide to treat newly diagnosed glioblastoma after chemoradiotherapy. J. Neurooncol., 2016, 128(2), 259-266.
[http://dx.doi.org/10.1007/s11060-016-2104-2] [PMID: 26966095]
[86]
O’Day, S.; Gonzalez, R.; Lawson, D.; Weber, R.; Hutchins, L.; Anderson, C.; Haddad, J.; Kong, S.; Williams, A.; Jacobson, E. Phase II, randomized, controlled, double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage IV metastatic melanoma. J. Clin. Oncol., 2009, 27(32), 5452-5458.
[http://dx.doi.org/10.1200/JCO.2008.17.1579] [PMID: 19826135]
[87]
O’Day, S.J.; Eggermont, A.M.M.; Chiarion-Sileni, V.; Kefford, R.; Grob, J.J.; Mortier, L.; Robert, C.; Schachter, J.; Testori, A.; Mackiewicz, J.; Friedlander, P.; Garbe, C.; Ugurel, S.; Collichio, F.; Guo, W.; Lufkin, J.; Bahcall, S.; Vukovic, V.; Hauschild, A. Final results of phase III SYMMETRY study: Randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J. Clin. Oncol., 2013, 31(9), 1211-1218.
[http://dx.doi.org/10.1200/JCO.2012.44.5585] [PMID: 23401447]
[88]
Gohil, V.M. Repurposing elesclomol, an investigational drug for the treatment of copper metabolism disorders. Expert Opin. Investig. Drugs, 2021, 30(1), 1-4.
[http://dx.doi.org/10.1080/13543784.2021.1840550] [PMID: 33081534]
[89]
Krishnamoorthy, L.; Cotruvo, J.A., Jr; Chan, J.; Kaluarachchi, H.; Muchenditsi, A.; Pendyala, V.S.; Jia, S.; Aron, A.T.; Ackerman, C.M.; Wal, M.N.V.; Guan, T.; Smaga, L.P.; Farhi, S.L.; New, E.J.; Lutsenko, S.; Chang, C.J. Copper regulates cyclic-AMP-dependent lipolysis. Nat. Chem. Biol., 2016, 12(8), 586-592.
[http://dx.doi.org/10.1038/nchembio.2098] [PMID: 27272565]
[90]
Michniewicz, F.; Saletta, F.; Rouaen, J.R.C.; Hewavisenti, R.V.; Mercatelli, D.; Cirillo, G.; Giorgi, F.M.; Trahair, T.; Ziegler, D.; Vittorio, O. Copper: An intracellular achilles’ heel allowing the targeting of epigenetics, kinase pathways, and cell metabolism in cancer therapeutics. ChemMedChem, 2021, 16(15), 2315-2329.
[http://dx.doi.org/10.1002/cmdc.202100172] [PMID: 33890721]
[91]
He, F.; Chang, C.; Liu, B.; Li, Z.; Li, H.; Cai, N.; Wang, H.H. Copper (II) ions activate ligand-independent receptor tyrosine kinase (RTK) signaling pathway. BioMed Res. Int., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/4158415] [PMID: 31218225]
[92]
Turski, M.L.; Brady, D.C.; Kim, H.J.; Kim, B.E.; Nose, Y.; Counter, C.M.; Winge, D.R.; Thiele, D.J. A novel role for copper in Ras/mitogen-activated protein kinase signaling. Mol. Cell. Biol., 2012, 32(7), 1284-1295.
[http://dx.doi.org/10.1128/MCB.05722-11] [PMID: 22290441]
[93]
Brady, D.C.; Crowe, M.S.; Turski, M.L.; Hobbs, G.A.; Yao, X.; Chaikuad, A.; Knapp, S.; Xiao, K.; Campbell, S.L.; Thiele, D.J.; Counter, C.M. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature, 2014, 509(7501), 492-496.
[http://dx.doi.org/10.1038/nature13180] [PMID: 24717435]
[94]
Aubert, L.; Nandagopal, N.; Steinhart, Z.; Lavoie, G.; Nourreddine, S.; Berman, J.; Saba-El-Leil, M.K.; Papadopoli, D.; Lin, S.; Hart, T.; Macleod, G.; Topisirovic, I.; Gaboury, L.; Fahrni, C.J.; Schramek, D.; Meloche, S.; Angers, S.; Roux, P.P. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat. Commun., 2020, 11(1), 3701.
[http://dx.doi.org/10.1038/s41467-020-17549-y] [PMID: 32709883]
[95]
Blockhuys, S.; Celauro, E.; Hildesjö, C.; Feizi, A.; Stål, O.; Fierro-González, J.C.; Wittung-Stafshede, P. Defining the human copper proteome and analysis of its expression variation in cancers. Metallomics, 2017, 9(2), 112-123.
[http://dx.doi.org/10.1039/C6MT00202A] [PMID: 27942658]
[96]
Kamiya, T. Copper in the tumor microenvironment and tumor metastasis. J. Clin. Biochem. Nutr., 2022, 71(1), 22-28.
[http://dx.doi.org/10.3164/jcbn.22-9] [PMID: 35903604]
[97]
Polishchuk, E.V.; Merolla, A.; Lichtmannegger, J.; Romano, A.; Indrieri, A.; Ilyechova, E.Y.; Concilli, M.; De Cegli, R.; Crispino, R.; Mariniello, M.; Petruzzelli, R.; Ranucci, G.; Iorio, R.; Pietrocola, F.; Einer, C.; Borchard, S.; Zibert, A.; Schmidt, H.H.; Di Schiavi, E.; Puchkova, L.V.; Franco, B.; Kroemer, G.; Zischka, H.; Polishchuk, R.S. Activation of autophagy, observed in liver tissues from patients with wilson disease and from ATP7B-deficient animals, protects hepatocytes from copper-induced apoptosis. Gastroenterology, 2019, 156(4), 1173-1189.e5.
[http://dx.doi.org/10.1053/j.gastro.2018.11.032] [PMID: 30452922]
[98]
Kang, J.; Lin, C.; Chen, J.; Liu, Q. Copper induces histone hypoacetylation through directly inhibiting histone acetyltransferase activity. Chem. Biol. Interact., 2004, 148(3), 115-123.
[http://dx.doi.org/10.1016/j.cbi.2004.05.003] [PMID: 15276868]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy