Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Mini-Review Article

Recent Patents on Particle Wettability Measurement and Improvement

Author(s): Fanbo Jin, Songquan Wang*, Daolong Yang*, Lu Yu, Kaijun Wang and Youtao Xia

Volume 18, Issue 8, 2024

Published on: 06 October, 2023

Article ID: e150923221107 Pages: 13

DOI: 10.2174/1872212118666230915091946

Price: $65

conference banner
Abstract

Background: As the coal mining industry becomes more mechanized, it leads to a large number of coal dust particles suspended in the air, polluting the surrounding environment, accompanied by an increase in fine-grained low-rank coal particles and a low recovery rate of a large amount of organic matter in the particles, wasting resources.

Objective: The study of particle wettability can have an impact on spray dust reduction and particle flotation efficiency. By adjusting the hydrophilicity of coal powder particles, the generation of suspended coal dust can be effectively suppressed. By adding surfactants, the flotation separation efficiency of coal particles can be improved.

Method: This article introduces patents for the measurement method of particle wetting properties and patents for methods to improve the wetting properties of particles, providing a reference for studying the wetting properties of particles.

Results: The measurement of particle wetting properties is more accurate, simple, and convenient. Improving the wetting properties of particles by adding additives has significant implications for later dust reduction and particle flotation.

Conclusion: This thesis provides an important basis for studying the wettability of particles, modifying the wettability and hydrophilicity of particles, providing specific guidance for improving the wettability of particles for spray dust reduction and particle flotation, and greatly improving industrial production efficiency.

Graphical Abstract

[1]
Z. Liu, W.Y. Wang, H. Li, W.Z. Yang, W.M. Cheng, G. Wang, G. Zhou, H. Yang, and G.H. Ni, "Device and method for testing wetting characteristics of gas-containing coal particles.", W.O. Patent 2020238165, 2020.
[2]
W.K. Elizabeth, "Measurement of noble gas adsorption via laser-induced breakdown spectroscopy for wettability determination.", U.S. Patent 2017082549, 2017.
[3]
W.L. Xiao, Y.B. Yang, M. Li, L.L. Zheng, X.Y. Ren, G.M. Li, J.Q. Zhang, and Y. Wang, "New method for dense rock wettability determination.", C.N. Patent 109030292, 2018.
[4]
Y.B. Yao, X.X. Sun, X. Wen, D.M. Liu, and Y.D. Cai, "Method and device for measuring coal wettability under high pressure through low-field nuclear magnetic resonance.", C.N. Patent 108593697, 2018.
[5]
Z.Y. Gao, S. Yang, Z.X. Jiang, H. Yu, and Z.X. Xue, "Method and device for quantitatively characterizing wettability of rocks in shale reservoir.", C.N. Patent 108717031, 2018.
[6]
K.E. Uoshbern, "Method and system for determining wettability with spatial resolution.", R.U. Patent 2642896, 2018.
[7]
J.Y. Choi, H.J. Kim, S.M. Chae, K.H. Cho, S.W. Lee, and S.J. Lim, "Wettability measuring device and method for manufacturing same.", W.O. Patent 2018009014, 2018.
[8]
J.C. Guo, L. Tao, C. Chen, Z.H. Zhao, M. Li, and P.C. Tang, "Experimental testing device and method for shale mixed wettability.", C.N. Patent 110595953, 2019.
[9]
W. Cheng, and C. Cheng, "Mineral particle wettability measuring device and measuring method thereof.", C.N. Patent 110286064, 2019.
[10]
J.Q. Zhao, "Novel method and equipment for measuring rock wettability with resistance method.", C.N. Patent 109507241, 2019.
[11]
W.Y. Yu, X.M. Sun, F.F. Wang, B.L. Wu, G.Q. Yang, Y. Liu, Z. Lei, J.G. Sun, and T. Zhang, "Wettability testing device under the action of ultrasonic-thermoelectric compound field.", C.N. Patent 110220825, 2019.
[12]
J.W. Cui, and C.N. Zou, "Determination method of wettability of all components in fine-grained sedimentary rock and device.", C.N. Patent 109307642, 2019.
[13]
S.L. Mikhajlovna, and G.S. Petrovich, "Diffusion-adsorption activity based rocks pore space surface wettability evalution.", R.U. Patent 2681973, 2019.
[14]
Y.X. Yu, A.N. Zhou, S.X. Wang, Z. Li, L.J. Liu, J.Z. Qu, W. Yu, N.N. Zhang, S.J. Chen, and C. Yang, "Qualitative detection method for surface wettability of pulverized coal sample.", C.N. Patent 111948101, 2020.
[15]
Q. Chen, A.E.S. Muhammad, and A.A. Abdallah, "Wettability determination of rock samples.", U.S. Patent 2020371051, 2020.
[16]
R.Y. Zhu, F.S. Gao, and Y.X. Wang, "Surface wettability determination system and surface wettability determination method.", C.N. Patent 110967280, 2020.
[17]
Q. Chen, A.E.S. Muhammad, and A.A. Abdallah, "Determination of scanning loops of capillary pressure and relative permeability curves and wettability distribution of rock samples.", U.S. Patent 2020371011, 2020.
[18]
Z.Y. Gao, Z. Liang, Z.X. Jiang, S.L. Xiong, L.F. Duan, B.D. Yang, and G.W. Zheng, "Shale reservoir wettability evaluation method and device.", C.N. Patent 112378818, 2021.
[19]
T.B. Liang, F.J. Zhou, H. Su, F.W. Yu, Y. Li, J.J. Li, J. Zuo, K. Yang, H.Y. Qu, E.D. Yao, B. Li, and X.D. Hu, "Carbonate reservoir microcosmic model, and preparation method and application thereof.", C.N. Patent 112598986, 2021.
[20]
F.H. Wang, H.T. Zhu, W.D. Zhang, Z.Z. Sun, Z.H. Zhang, and L.Y. Wang, "Novel evaluation method suitable for formation silt solid particle surface wettability.", C.N. Patent 113063702, 2021.
[21]
B.Y. Li, and K. Hasan, "Wettability estimation using T2 distributions of water in wetting and non-wetting phases.", U.S. Patent 11493461, 2022.
[22]
Q.G. Li, Y.B. Zhang, Q.T. Hu, M.Y. Song, X.W. Zheng, Y.Z. Deng, J.C. Liu, Y.N. Qian, and M.H. Zheng, "NMR (nuclear magnetic resonance) characterization method for pore wettability of equal-particle-size pulverized coal.", C.N. Patent 114577673, 2022.
[23]
K. Hasan, S.X. Ma, and H. Gabor, "Wettability estimation using magnetic resonance.", W.O. Patent 2022225810, 2022.
[24]
O. Yu, "Wettability evalution method.", J.P. Patent 2022108659, 2022.
[25]
N.G. Liu, L.K. Zhang, Z.J. Jin, H.S. Ji, and J.Z. Yan, "Rock wettability determination method and system based on multi-liquid-bead contact angle measurement and correction.", C.N. Patent 114486639, 2022.
[26]
D.M. Liu, X.X. Sun, Y.B. Yao, and Y.D. Cai, "Calculation method for wettability of coal/shale in high-pressure environment.", C.N. Patent 114705591, 2022.
[27]
G. Zhou, J.F. Ding, J. Sun, D.H. Gao, and H.W. Pan, "Moistening agent for coal mine spray and dust reduction and preparation method.", C.N. Patent 108864382, 2018.
[28]
B.T. Qin, Q. Zhou, J. Wang, H.J. Liang, A.L. Wang, A. Gao, Y. Gao, and J. Hou, "Magnetization device and method for preparing magnetized water for coal mine downhole dust suppression.", W.O. Patent 2018223525, 2018.
[29]
Y. Sun, Z.F. Ju, X. Jin, L.S. Wu, P. Li, Z.Q. Xv, W. Chang, X.R. Li, and J. Liu, "Environment-friendly wetting-type dust suppressant and preparation method thereof.", C.N. Patent 109609091, 2019.
[30]
B.S. Valerievich, and G.G. Alekseevna, "Wetting agent for coal dust suppression.", R.U. Patent 2689469, 2019.
[31]
L.S. Xv, J. Sun, H. Xv, J. Gao, H. Zhao, Z.J. Cui, M.H. Cui, and B.F. Du, "Wetting type dust suppressant for road flying dust, and preparation method thereof.", C.N. Patent 111004608, 2020.
[32]
J.F. Ju, Q. Zhang, H. Yuan, Y.Y. Ju, Y.N. Yu, and T.R. Lan, "Construction site foam dedusting agent and preparation method thereof.", C.N. Patent 110872485, 2020.
[33]
Y.Q. Meng, J.K. Xia, H.X. Meng, J.X. Niu, and C. Wang, "Method for improving coal dust wettability.", C.N. Patent 110880359, 2020.
[34]
G. Zhou, S.L. Li, W.J. Jiang, C.M. Wang, D. Liu, Z.Q. Liu, C.Q. Niu, X.Y. Zhang, Y.F. Xue, J. Sun, Y.Y. Wang, and Q.Z. Meng, "Dust suppressant, preparation method thereof, and dustproof method in opencast coal mining and coal transportation.", C.N. Patent 111793469, 2020.
[35]
F.V. Sergeevich, "Method of dust suppression during blasting operations.", R.U. Patent 2018129263, 2020.
[36]
J.S. Zhang, and X.F. Ren, "Composite dust suppressant as well as preparation method and application thereof.", C.N. Patent 113512405, 2021.
[37]
G. Zhou, S.L. Li, K.L. Wang, Y. Yang, Y.M. Wang, J.J. Duan, M. He, W.J. Jiang, and C.M. Wang, "Coal and gas exploitation integrated permeability-increasing enhancer as well as preparation method and application thereof.", C.N. Patent 112342007, 2021.
[38]
G. Zhou, Q.T. Zhang, C.Q. Niu, M.Y. Xing, B. Sun, C.M. Wang, J.P. Wang, K.L. Wang, and J.J. Duan, "Efficient permeation wetting type humectant for coal seam water injection and preparation method thereof.", C.N. Patent 112321771, 2021.
[39]
K.D. Valerevich, and T.M. Sergeevich, "Method for dust suppression during conveyor transportation of bulk materials.", R.U. Patent 2752186, 2021.
[40]
H. Zhang, Y.P. Miao, B.F. Chang, F.C. Guo, Y.Y. Zhao, G.H. Zhao, Y.F. Zhu, K. Liu, Z.P. Zhang, Y. Sun, O. Tsuyoshi, F.T. Ling, and H.Y. Bao, "Dust suppressant extracted based on bagasse and used for spraying and dust falling of coal mine and preparation method of dust suppressant.", C.N. Patent 114790911, 2022.
[41]
M.A. Alekseevich, K.I. Leonidovich, K.S. Vasilevich, K.G. Ivanovich, and K.S. Viacheslavovich, "Composition for fixing dusty surfaces.", R.U. Patent 2770264, 2022.
[42]
J.J. Duan, M.Y. Xing, Y. Yang, Y. Ma, X.Y. Zhang, W.J. Jiang, Y. Kong, K.L. Wang, C.X. Niu, S.L. Li, Y.M. Wang, G. Zhou, R.L. Liu, Q.Z. Meng, X.S. Dong, and D. Liu, "Agglomerating agent for improving filtration and dust removal efficiency of dry dust removal filter materials and preparation method thereof.", N.L. Patent 2027973, 2022.
[43]
S.I. Lee, "Device for oil-water separation.", K.R. Patent 101765077, 2017.
[44]
W.B. Hwang, and H.D. Jo, "Oil and water separation device using wettability.", K.R. Patent 20170029242, 2017.
[45]
B. Lida, I. Erin, M. Ram, S. Ovadia, and O. Seyi, "Highly selective, ultralight, electro-spun filter media for separating oil-water mixtures.", U.S. Patent 10124298, 2018.
[46]
C.Q. Wang, and Y.J. Cao, "Mixed plastic separating method.", C.N. Patent 108748793, 2018.
[47]
C.Q. Wang, "Separation method of waste plastics.", C.N. Patent 108034070, 2018.
[48]
S. Howard, J. Li, and H.S. Chen, "System and method or emulsion breaking and phase separation by droplet adhesion.", U.S. Patent 2019134535, 2019.
[49]
X.L. Cai, and Z.W. Qu, "Screening method for improving dispersion wettability of flaky wave-absorbing powder.", C.N. Patent 110836904, 2020.
[50]
J.Y. Guo, B. Li, S.Y. Liu, and X.L. Sun, "Low-rank coal flotation separation method for adsorbing and desorbing surfactant in sequence under calcium ion condition.", C.N. Patent 111408479, 2020.
[51]
G.F. Zhang, Y.H. Yan, Y.Z. Li, and J. Cui, "Graphene based aerogel with asymmetric wettability and preparation method and application thereof.", A.U. Patent 2021105829, 2021.
[52]
S. Sneha, and Y. Howard, "Surface modified filter media.", C.N. Patent 113262564, 2021.
[53]
H.H. Tang, L. Wang, M.S. Li, Y.H. Hu, W. Sun, H.S. Han, and Y. Yang, "Reagent group for flotation separation of micro-fine particle lead oxide and iron oxide and application of reagent group.", C.N. Patent 112536154, 2021.
[54]
S. Sneha, Y. Howard, and Z. Siqiang, "Surface modified filter media.", U.S. Patent 2022249997, 2022.
[55]
H. Lukas, and H. Dominik, "Flotation installation, use and method.", W.O. Patent 2022167025, 2022.
[56]
J.L. Qiao, S.H. Wang, X.H. Zhang, G.C. Qi, Z.H. Song, C.L. Cai, X. Wang, J.M. Lai, B.H. Li, H.B. Jiang, Y. Ru, J.R. Zhang, J.M. Gao, H.B. Zhang, P. Han, C. Jiang, and Z.Y. Guo, "Super-wet surface and preparation method therefor and application thereof.", U.S. Patent 2022282054, 2022.
[57]
A. Maidaniuc, F. Miculescu, S.I. Voicu, C. Andronescu, M. Miculescu, E. Matei, A.C. Mocanu, I. Pencea, I. Csaki, T. Machedon-Pisu, and L.T. Ciocan, "Induced wettability and surface-volume correlation of composition for bovine bone derived hydroxyapatite particles", Appl. Surf. Sci., vol. 438, pp. 158-166, 2018.
[http://dx.doi.org/10.1016/j.apsusc.2017.07.074]
[58]
Y. Wang, Z. Liu, F. Muzzio, G. Drazer, and G. Callegari, "A drop penetration method to measure powder blend wettability", Int. J. Pharm., vol. 538, no. 1-2, pp. 112-118, 2018.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.034] [PMID: 29253584]
[59]
K. Tang, X. Lv, S. Wu, S. Xuan, X. Huang, and C. Bai, "Measurement for contact angle of iron ore particles and water", ISIJ Int., vol. 58, no. 3, pp. 379-400, 2018.
[http://dx.doi.org/10.2355/isijinternational.ISIJINT-2017-424]
[60]
L. Malm, A. Sand, N.J. Bolin, J. Rosenkranz, and I. Ymén, "Dynamic vapor sorption measurement and identification of mineral species in industrial-scale flotation cell samples", Powder Technol., vol. 356, no. C, pp. 1016-1023, 2019.
[http://dx.doi.org/10.1016/j.powtec.2019.08.063]
[61]
Y. Wei, and T. Babadagli, "Changing interfacial tension and wettability using new generation chemicals and nano metal particles at elevated temperatures and pressures: An analysis through a new experimental design for heavy-oil recovery applications", J. Dispers. Sci. Technol., vol. 40, no. 12, pp. 1785-1794, 2019.
[http://dx.doi.org/10.1080/01932691.2018.1542311]
[62]
J.S. Sachdeva, A. Nermoen, R.I. Korsnes, and M.V. Madland, "Impact of initial wettability and injection brine chemistry on mechanical behaviour of kansas chalk", Transp. Porous Media, vol. 128, no. 2, pp. 755-795, 2019.
[http://dx.doi.org/10.1007/s11242-019-01269-z]
[63]
E.N. Ngouangna, M.A. Manan, J.O. Oseh, M.N.A.M. Norddin, A. Agi, and A.O. Gbadamosi, "Influence of (3–Aminopropyl) triethoxysilane on silica nanoparticle for enhanced oil recovery", J. Mol. Liq., vol. 315, p. 113740, 2020.
[http://dx.doi.org/10.1016/j.molliq.2020.113740]
[64]
A. Tohry, R. Dehghan, A. Vale Oliveira, S. Chehreh Chelgani, and L. de Salles Leal Filho, "Enhanced Washburn Method (EWM): A comparative study for the contact angle measurement of powders", Adv. Powder Technol., vol. 31, no. 12, pp. 4665-4671, 2020.
[http://dx.doi.org/10.1016/j.apt.2020.10.014]
[65]
W. Alnoush, A. Sayed, T.I. Solling, and N. Alyafei, "Impact of calcite surface roughness in wettability assessment: Interferometry and atomic force microscopy analysis", J. Petrol. Sci. Eng., vol. 203, p. 108679, 2021.
[http://dx.doi.org/10.1016/j.petrol.2021.108679]
[66]
E. Kim, D. Kim, K. Kwak, Y. Nagata, M. Bonn, and M. Cho, "Wettability of graphene, water contact angle, and interfacial water structure", Chem, vol. 8, no. 5, pp. 1187-1200, 2022.
[http://dx.doi.org/10.1016/j.chempr.2022.04.002]
[67]
J. Wang, X. Gui, G. Li, and Y. Cao, "Experimental study on the interaction forces between water droplets and mineral surfaces", Chem. Phys., vol. 559, p. 111534, 2022.
[http://dx.doi.org/10.1016/j.chemphys.2022.111534]
[68]
B. Ghosh, H. Belhaj, H. Alhashmi, F. Idachaba, P. Joshi, M.M. Rahman, and M. Haroun, "Standardization of particle size for floating particle wettability measurement for carbonate rocks", ACS Omega, vol. 8, no. 13, pp. 11837-11851, 2023.
[http://dx.doi.org/10.1021/acsomega.2c06679] [PMID: 37033837]
[69]
H. Zhang, H.V. Thanh, M. Rahimi, W.J. Al-Mudhafar, S. Tangparitkul, T. Zhang, Z. Dai, and U. Ashraf, "Improving predictions of shale wettability using advanced machine learning techniques and nature-inspired methods: Implications for carbon capture utilization and storage", Sci. Total Environ., vol. 877, pp. 162944-162944, 2023.
[http://dx.doi.org/10.1016/j.scitotenv.2023.162944] [PMID: 36940746]
[70]
G. H. Ni, Q. Sun, M. Xun, H. Wang, Y.H. Xu, W.M. Cheng, and G. Wang, "Effect of NaCl-SDS compound solution on the wettability and functional groups of coal", Fuel, vol. 257, p. 116077, 2019.
[http://dx.doi.org/10.1016/j.fuel.2019.116077]
[71]
M. Yuan, W. Nie, W. Zhou, J. Yan, Q. Bao, C. Guo, P. Tong, H. Zhang, and L. Guo, "Determining the effect of the non-ionic surfactant AEO9 on lignite adsorption and wetting via molecular dynamics (MD) simulation and experiment comparisons", Fuel, vol. 278, p. 118339, 2020.
[http://dx.doi.org/10.1016/j.fuel.2020.118339]
[72]
J. Meng, L. Wang, S. Zhang, Y. Lyu, and J. Xia, "Effect of anionic/nonionic surfactants on the wettability of coal surface", Chem. Phys. Lett., vol. 785, p. 139130, 2021.
[http://dx.doi.org/10.1016/j.cplett.2021.139130]
[73]
M. Yuan, W. Nie, H. Yu, J. Yan, Q. Bao, W. Zhou, Y. Hua, L. Guo, and W. Niu, "Experimental and molecular dynamics simulation study of the effect of different surfactants on the wettability of low-rank coal", J. Environ. Chem. Eng., vol. 9, no. 5, p. 105986, 2021.
[http://dx.doi.org/10.1016/j.jece.2021.105986]
[74]
Y. Liu, H. Li, M. Gao, S. Ye, Y. Zhao, J. Xie, G. Liu, J. Liu, L.M. Li, J. Deng, and W.Q. Zhou, "Experimental and molecular dynamics study into the surfactant effect upon coal wettability", RSC Advances, vol. 11, no. 40, pp. 24543-24555, 2021.
[http://dx.doi.org/10.1039/D1RA01882E] [PMID: 35481000]
[75]
L. Zheng, Z. Liu, D. Li, H. Wang, and Q. Zhang, "Micromechanism analysis of surfactant wetting of coal based on 13 C NMR experiments", ACS Omega, vol. 6, no. 2, pp. 1378-1390, 2021.
[http://dx.doi.org/10.1021/acsomega.0c05005] [PMID: 33490797]
[76]
Z. Liu, M. Zhu, H. Yang, D. Zhao, and K. Zhang, "Study on the influence of new compound reagents on the functional groups and wettability of coal", Fuel, vol. 302, p. 121113, 2021.
[http://dx.doi.org/10.1016/j.fuel.2021.121113]
[77]
H. Wang, G. Ni, X. Zhang, G. Sun, Z. Wang, G. Wang, and Y. Liu, "Effect of imidazolium-based ionic liquids on the pore wetting characteristics and mechanical properties of coal", Fuel, vol. 315, p. 123274, 2022.
[http://dx.doi.org/10.1016/j.fuel.2022.123274]
[78]
X. Chen, J. Gao, C. Deng, S. Ge, C. Fan, and W. Zhang, "Experimental study on chemical structure and wetting influence of imidazole ionic liquids on coal", Fuel, vol. 330, p. 125545, 2022.
[http://dx.doi.org/10.1016/j.fuel.2022.125545]
[79]
X. Chen, G. Yan, Y. Zhou, G. Xu, X. Bai, and J. Li, "Molecular mechanism study on the effect of nonionic surfactants with different degrees of ethoxylation on the wettability of anthracite", Chemosphere, vol. 310, p. 136902, 2023.
[http://dx.doi.org/10.1016/j.chemosphere.2022.136902] [PMID: 36265703]
[80]
S. Chen, Z. Yang, L. Chen, X. Tao, L. Tang, and H. He, "Wetting thermodynamics of low rank coal and attachment in flotation", Fuel, vol. 207, pp. 214-225, 2017.
[http://dx.doi.org/10.1016/j.fuel.2017.06.018]
[81]
K. Zhen, C. Zheng, C. Li, and H. Zhang, "Wettability and flotation modification of long flame coal with low-temperature pyrolysis", Fuel, vol. 227, pp. 135-140, 2018.
[http://dx.doi.org/10.1016/j.fuel.2018.04.073]
[82]
B. Li, S. Liu, J. Guo, L. Zhang, and X. Sun, "Increase in wettability difference between organic and mineral matter to promote low-rank coal flotation by using ultrasonic treatment", Appl. Surf. Sci., vol. 481, pp. 454-459, 2019.
[http://dx.doi.org/10.1016/j.apsusc.2019.03.142]
[83]
K. Zhen, H. Zhang, and C. Zheng, "Wettability modification and flotation intensification of low-rank coal with dodecyltrimethylammonium chloride addition", J. Therm. Anal. Calorim., vol. 137, no. 6, pp. 2007-2016, 2019.
[http://dx.doi.org/10.1007/s10973-019-08131-w]
[84]
Y. Xia, Z. Yang, R. Zhang, Y. Xing, and X. Gui, "Mechanism analysis of DTAB on the change in surface wettability of low-rank coal and its relationship to flotability", Int. J. Coal Prep. Util., vol. 42, no. 1, pp. 82-96, 2022.
[http://dx.doi.org/10.1080/19392699.2019.1579201]
[85]
Y.F. Patrakov, S.A. Semenova, and T.A. Papina, "Influence of gas microbubbles on the wettability of coal surfaces", Coke Chem., vol. 63, no. 2, pp. 63-67, 2020.
[http://dx.doi.org/10.3103/S1068364X20020076]
[86]
L. Li, Z. Li, X. Zhu, M. He, C. Ma, Q. Wang, H. Yu, and J. Wang, "Theoretical calculation and experimental investigation on ionic liquid [C16mim]Cl affecting wettability of low-rank coal", Adv. Compos. Hybrid Mater., vol. 5, no. 2, pp. 1241-1252, 2022.
[http://dx.doi.org/10.1007/s42114-021-00359-1]
[87]
X. Sun, L. Zhang, Z. Xie, B. Li, and S. Liu, "Improvement of low‐rank coal flotation based on the enhancement of wettability difference between organic matter and gangue", J. Surfactants Deterg., vol. 24, no. 2, pp. 269-279, 2021.
[http://dx.doi.org/10.1002/jsde.12482]
[88]
W.W. Xie, L.J. Bie, X.H. Xv, Q.H. Li, and F.F. Cao, "Study on surfactant promotion mechanism of Hongxinghe coal slurry flotation", Min. Res. Dev., vol. 42, no. 10, pp. 75-80, 2022.
[http://dx.doi.org/10.13827/j.cnki.kyyk.20220519.001]
[89]
Z.X. Xie, L. Zhang, J.Y. Guo, B. Li, Z.C. Yang, S.H. Zhang, and S.Y. Liu, "Effect of cationic-anionic surfactants in synergy with non-polar oils on flotation of low rank coal", Coal Sci. Technol., vol. 50, no. 9, pp. 267-275, 2022.
[http://dx.doi.org/10.13199/j.cnki.cst.2020-1604]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy