Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Mini-Review Article

Recent Patents on Long Distance Pneumatic Conveying Technology

Author(s): Youtao Xia, Daolong Yang*, Bangsheng Xing*, Fanbo Jin, Jinjing Tang, Haichao Duan and Xiaolei Ma

Volume 18, Issue 8, 2024

Published on: 04 October, 2023

Article ID: e140923221046 Pages: 13

DOI: 10.2174/1872212118666230914095120

Price: $65

Abstract

Background: Pneumatic conveying is the use of air flow energy to transport granular materials in the direction of airflow in a closed pipeline, which involves the disadvantages of low conveying efficiency and easy deposition of particles.

Objective: It is necessary to develop pneumatic conveying devices to reduce particle deposition, promote particles to enter the flow field again to accelerate, and achieve the effect of extending the pneumatic conveying distance.

Method: The patent for anti-settling device re-accelerates the particles so that the particles return to the flow field, which effectively reduces the probability of settlement blockage of material particles during transportation. The pneumatic conveying pressurized separator uses a pot-shaped housing to generate an internal rotating flow field to screen particles, and the light dust adheres to the filter, reducing the possibility of pipeline dust explosion.

Results: The anti-settling device can quickly replace the anti-settlement block according to the parameters of the conveying pipeline, which can effectively reduce the probability of settlement blockage of material particles during transportation. The pressurized separator can use the air compressor to cooperate with the return air pipe to effectively remove the dust in the pneumatic conveying pipe and carry out secondary pressurized transportation of the materials in the pneumatic conveying pipe, which improves the safety of pneumatic conveying.

Conclusion: The above technology improves the efficiency of pneumatic conveying and gas utilization, enhances the speed of particle conveying, reduces particle settlement and collision, extends the distance of pneumatic conveying, and ensures the safety of pneumatic conveying and the feasibility of industrial applications.

Graphical Abstract

[1]
D. Yang, Y. Wang, and Z. Hu, "Research on the pressure dropin horizontal pneumatic conveying for large coal particles", Processes, vol. 8, no. 6, p. 650, 2020.
[http://dx.doi.org/10.3390/pr8060650]
[2]
T.C. Lei, and X.L. Zhang, "Pneumatic type controlled-interval conveying device.", C.N. Patent 106,672,552, , 2017.
[3]
T.C. Lei, and X.L. Zhang, "Pneumatic fixed distance conveying device.", W.O. Patent 2,018,149,113, , 2018.
[4]
M.J. Roberge, J. Denis, and R.L. Ruppert, "Fertilizer application system using pneumatic conveying with large diameter lines and rotary distributor.", U.S. Patent 10,278,326, , 2019.
[5]
R. Kelly, "System and method using telemetry to configure control systems for pneumatic conveying systems.", U.S. Patent 2,019,322,473, , 2019.
[6]
R. Kelly, "System and method using telemetry to characterize, maintain and analyze pneumatic conveying systems.", U.S. Patent 10,926,965, , 2021.
[7]
R.L. Ruppert, N.R. Pederson, C. O’Connell, J.S. Martin, and J.P. Hermann, "Agricultural product delivery applicator with a pneumatic conveying system having a distributor assembly.", U.S. Patent 2,021,282,312, , 2021.
[8]
G. Sundholm, "Conveying pipe part of a pneumatic material conveying system, conveying pipe arrangement and method for forming a conveying pipe arrangement.", W.O. Patent 2,022,234,184, , 2022.
[9]
M. Newton, R. Ellis, M. Newton, and R. Ellis, "Adjustable multi-hole orifice in a pneumatic conveying apparatus.", U.S. Patent 10,000,347, , 2018.
[10]
Y.F. Ma, H.X. He, and S.S. Wang, "Pneumatic conveying feeder and transfer pipe connecting structure.", W.O. Patent 2,018,196,479, , 2018.
[11]
K.P.C. Hui, M.J. Roberge, J.J. Denis, O.R. Carlton, and D.G. Thompson, "Air distribution system for a pneumatic conveying system.", U.S. Patent 2,020,148,485, , 2020.
[12]
G.B. Jiang, "Method for collecting, cleaning and drying solid particles using pneumatic conveying, and an apparatus therefor.", W.O. Patent 2,020,001,305, , 2020.
[13]
G.B. Jiang, "Method and device for collecting, washing, and drying solid particles by pneumatic conveying.", U.S. Patent 2,021,069,755, , 2021.
[14]
C. Yang, and F. Xu, "Pneumatic conveying apparatus and application thereof.", W.O. Patent 2,021,073,273, , 2021.
[15]
C. Yang, and F. Xu, "Pneumatic conveying equipment and application thereof.", C.N. Patent 112,722,855, , 2021.
[16]
D. Brewster, R. Shaffer, M. Rayburg, J. Weber, and M. Nguyen, "Automatic tuning system for pneumatic material conveying systems.", U.S. Patent 2,021,331,877, , 2021.
[17]
P. M. Westby, M. Congedi, and F. Novelli, "Fluid control system in pneumatic conveying ducts for powdered or granular material.", W.O.2,021,240,554, , 2021.
[18]
R. Ellis, and B. Snowdon, "Pneumatic conveying apparatus.", P.L. Patent 3,169,615, , 2022.
[19]
Q.Z. Lun, G.L. Wang, G.H. Xu, P.X. Duan, Z. Zhen, G.X.H. Zhu, C.X. Yin, D.J. Wang, J.J. Xiao, Z. Lin, P. Jin, and H.L. Zhao, "Pneumatic gangue combined filling device and coal mining method.", C.N. Patent 110,130,979, , 2019.
[20]
G.E. Fantini, M.G. Osório, and Y.A. de Araujo, "Pneumatic conveying unit, method and system for conveying drill cuttings in onshore drilling rigs.", U.S. Patent 2,020,056,434, , 2020.
[21]
R.C. Pan, "Pneumatic conveyor.", C.N. Patent 114,534,573, , 2022.
[22]
W. Nie, K. Feng, J.T. Zhao, C.Y. Li, Z.Y. Wang, and Y.T. Fang, "Abrasion-resistant bent pipe for pneumatic conveying.", C.N. Patent 112,061,790, , 2022.
[23]
J.P. Li, S.W. Tian, D.L. Yang, F. Zhou, Y.X. Wang, B.C. Yu, and C. Tian, "Coal pneumatic transportation rotational flow dust catching device.", C.N. Patent 108,726,183, , 2018.
[24]
J.P. Li, S.W. Tian, D.L. Yang, F. Zhou, Y.X. Wang, B.C. Yu, and C. Tian, "Coal pneumatic conveying swirling flow dust catching device.", W.O. Patent 2,019,200,696, , 2019.
[25]
J.P. Li, F. Zhou, D.L. Yang, S.W. Tian, C. Tian, Y.Z. Li, J.N. Luo, and H.Y. Zhou, "Composite pneumatic transport rotational flow elbow pipe.", C.N. Patent 109,230,549, , 2020.
[26]
Y.F. Ma, H.X. He, and S.S. Wang, "Pneumatic conveying feeder and transfer pipe connecting structure.", A.U. Patent 2,018,259,465, , 2019.
[27]
G. Sundholm, "Separating device and method for a pneumatic material conveying system.", P.L. Patent 2,768,749, , 2020.
[28]
G. Sundholm, "Method and pneumatic material conveying system.", P.L. Patent 2,635,508, , 2019.
[29]
G. Sundholm, "Method for conveying material and material conveying arrangement.", W.O. Patent 2,022,189,697, , 2022.
[30]
G. Sundholm, "Method for conveying material in a pneumatic material conveying system, and pneumatic material conveying system.", A.U. Patent 2,020,422,174, , 2022.
[31]
Z. X. Yang, G. Yang, H. H. Dong, F. S. Wang, D. L. Yang, H. Yang, H. L. Bi, and S. W. Liu, "Solid-liquid separation system for pneumatic conveying fluid bidirectional mixed pressing.", W.O. Patent. 2,020,088,071, , 2020.
[32]
T. Li, F. Yang, and C. Wang, "Pulverized coal high-temperature air pneumatic conveying system.", C.N. Patent 111,362,002, , 2020.
[33]
S.G. Zhang, H. Xiao, Y.Z. Ye, and Y.B. Xiao, "Positive-pressure pneumatic conveying processing system for pebble coal.", C.N. Patent 110,092,202, , 2020.
[34]
R.A. Heinen, R. Strathman, and B. Chen, "Cleaning-type pneumatic conveying shield, and system and method for replacing puffing machine mold.", W.O. Patent 2,021,164,336, , 2021.
[35]
R.A. Heinen, R. Strathman, and B. Chen, "Clean pneumatic conveying shield, mold replacement system for expanding machine and replacement method.", U.S. Patent 2,022,297,955, , 2022.
[36]
G.G. Ma, L.J. Chen, W.M. Cheng, G.M. Liu, L.X. Yi, and C.H. Zhang, "Double piston type pneumatic conveyor.", W.O. Patent 2,021,179,646, , 2021.
[37]
A. Goodwin, and M.J. Lucas, "Pneumatic conveying system for separating bulk product.", W.O. Patent 2,021,028,575, , 2022.
[38]
Z.Q. Li, H.C. Ke, L. Xu, P. Zhang, S.X. Xiong, S.Z. Zhang, F. Gu, Y.C. Sun, Q. Zeng, and C.L. Zheng, "Positive-pressure pneumatic conveying system for particle dust.", C.N. Patent 112,693,902, , 2022.
[39]
Z.Q. Li, C.L. Zheng, L. Xu, S.X. Xiong, Y.C. Sun, H.C. Ke, W. Chen, and Q. Zeng, "Converter gas dry dedusting fine ash pneumatic conveying system.", C.N. Patent 112,760,445, , 2022.
[40]
K.C. Ning, M. Liu, Z.Y. Jin, and C.L. Bu, "Pneumatic conveying system.", C.N. Patent 113,928,865, , 2022.
[41]
C.K. Li, "Pneumatic conveying system with coarse ash crusher.", C.N. Patent 114,314,006, , 2022.
[42]
Y.C. Guo, Y.Q. Zhao, G. Cheng, S. Wang, P.Z. Liu, L. He, and J. Zhou, "Coal gangue sorting device based on X-ray diffraction principle.", L.U. Patent 501,108, , 2022.
[43]
L.P. Dong, H. Yang, G. Yang, Z.X. Yang, and D.L. Yang, "Intelligent modular pneumatic conveying device.", N.L. Patent 2,030,358, , 2022.
[44]
C. Gotzen, and D. Bergerfurth, "Machine for spreading granular solids with a pneumatic conveying system.", P.L. Patent 3,662,731, , 2022.
[45]
D. Bergerfurth, and C. Gotzen, "Agricultural machine for spreading granular solids with a pneumatic conveying system.", P.L. Patent 3,662,732, , 2022.
[46]
T.Y. Li, Y.F. Hu, S.Q. Zhang, and Q. He, "Dual-power wind power conveying system and underground gangue conveying line.", C.N. Patent 111,807,061, , 2020.
[47]
H. Baquet, J. Heiszwolf, J. Letouzey, and D. Lyons, "Process for pneumatically conveying a powdery material.", W.O. Patent 2,018,096,167, , 2018.
[48]
H. Baquet, J. Heiszwolf, J. Letouzey, D. Lyons, C.T. Metz, H.B. Fitzgerald, and G.M. Filippelli, "Process for pneumatically conveying a powdery material.", B.E. Patent 1,025,278, , 2019.
[49]
H. Baquet, J. Letouzey, J. Letouzey, C.T. Metz, G.M. Filippelli, H.B. Fitzgerald, and J. Heiszwolf, "Process for pneumatically conveying a powdery material.", M.Y. Patent 193,826, , 2022.
[50]
J.G. Yuan, Y. Han, Y.Y. Zhu, J.P. Ding, Y. Xu, L.Y. Liu, Y.Q. Wu, L. Ma, and X.L. Hu, "Ground coal and pulverized coal conveying system.", C.N. Patent 107,954,218, , 2018.
[51]
R. Ellis, and B. Snowdon, "Pneumatic conveying apparatus.", U.S. Patent 10.138.077, , 2018.
[52]
R. Ellis, and B. Snowdon, "Pneumatic conveying apparatus.", U.S. Patent 2,017,210,574, , 2017.
[53]
D.L. Yang, B.S. Xing, Y.X. Wang, J.P. Li, Y. Liu, P.P. Huang, and Y. Hu, "Unblocking system and method of pneumatic conveying pipeline.", A.U. Patent 2,018,417,114, , 2019.
[54]
D.L. Yang, Y.X. Wang, J.P. Li, B.S. Xing, F. Zhou, B.C. Yu, S.W. Tian, and C. Tian, "System and method for pneumatic conveying with accurate pressurization.", A.U. Patent 2,018,418,036, , 2019.
[55]
D.L. Yang, Y.X. Wang, J.P. Li, B.S. Xing, F. Zhou, B.C. Yu, S.W. Tian, and C. Tian, "Precise pressure increasing system and method for pneumatic transport.", W.O. Patent 2,019,200,712, , 2019.
[56]
D.L. Yang, J.P. Li, B.S. Xing, Y.X. Wang, F.S. Wang, N.N. Hu, and W. Ma, "High-efficiency dust removal system and method of pneumatic conveying pipe.", A.U. Patent 2,018,417,115, , 2019.
[57]
M.X. Wang, "Pneumatic conveying complete equipment for pressurized ultra-thick-phase pulverized coal.", C.N. Patent 110,203,700, , 2019.
[58]
K.K. Holden, R.P. Freese, and J.G. Heaton, "Pneumatic conveying system and method using optical flow characterization data.", U.S. Patent 10,155,628, , 2019.
[59]
A. Herman, and E. Herman, "High-efficiency pneumatic conveying of granular material into a silo.", W.O. Patent 2020205596, , 2020.
[60]
R. Ruppert, J. Denis, and M.J. Roberge, "Pneumatic conveying system for an agricultural product applicator.", U.S. Patent 2,021,015,030, , 2021.
[61]
L.J. Chen, L.K. Qiu, Q.S. Ni, Y.Y. Xia, C. Xi, and X.W. Xu, "Method for measuring the concentration of solid phase in the pneumatic conveying pipeline.", C.N. Patent 109.655.389, , 2021.
[62]
G.A. Lourenço, T.L.C. Gomes, C.R. Duarte, and C.H. Ataíde, "Experimental study of efficiency in pneumatic conveying system’s feeding rate", Powder Technol., vol. 343, pp. 262-269, 2019.
[http://dx.doi.org/10.1016/j.powtec.2018.11.002]
[63]
W.G. Jia, and J.L. Yan, "Pressure drop characteristics and minimum pressure drop velocity for pneumatic conveying of polyacrylamide in a horizontal pipe with bends at both ends", In: Powder Technology., vol. 372. Elsevier, 2020, pp. 192-203.
[http://dx.doi.org/10.1016/j.powtec.2020.06.004]
[64]
Y. Alkassar, V.K. Agarwal, R.K. Pandey, and N. Behera, "Influence of particle attrition on erosive wear of bends in dilute phase pneumatic conveying", Wear, vol. 476, p. 203594, 2021.
[http://dx.doi.org/10.1016/j.wear.2020.203594]
[65]
D. Portnikov, N. Santo, and H. Kalman, "Simplified model for particle collision related to attrition in pneumatic conveying", Adv. Powder Technol., vol. 31, no. 1, pp. 359-369, 2020.
[http://dx.doi.org/10.1016/j.apt.2019.10.028]
[66]
N. Santo, D. Portnikov, and H. Kalman, "Experimental study on particle velocity and acceleration length in pneumatic and hydraulic conveying systems", Powder Technol., vol. 383, pp. 1-10, 2021.
[http://dx.doi.org/10.1016/j.powtec.2020.11.064]
[67]
G. Xu, Q. Zhang, and F. Chen, "Discharge stability analysis of top discharge blow tank in dense-phase pneumatic conveying system", Particul. Sci. Technol., vol. 40, no. 1, pp. 58-65, 2022.
[http://dx.doi.org/10.1080/02726351.2021.1905122]
[68]
A.G. de Freitas, V.F. de Oliveira, R.B. dos Santos, L.A.M. Riascos, and R. Zou, "Optimization method for pneumatic conveying parameters and energy consumption performance analysis of a compact blow tank", J. Press. Vessel Technol., vol. 144, no. 6, p. 064504, 2022.
[http://dx.doi.org/10.1115/1.4055111]
[69]
R. Özlü, and M. Güner, "Determination of pneumatic conveying characteristics of canola", Tarim Bilim. Derg., vol. 28, pp. 656-665, 2021.
[http://dx.doi.org/10.15832/ankutbd.794097]
[70]
A. Sharma, and S.S. Mallick, "An investigation into pressure drop through bends in pneumatic conveying systems", Particul. Sci. Technol., vol. 39, no. 2, pp. 180-191, 2021.
[http://dx.doi.org/10.1080/02726351.2019.1676348]
[71]
D. Yang, B. Xing, J. Li, Y. Wang, N. Hu, and S. Jiang, "Experiment and simulation analysis of the suspension behavior of large (5–30 mm) nonspherical particles in vertical pneumatic conveying", Powder Technol., vol. 354, pp. 442-455, 2019.
[http://dx.doi.org/10.1016/j.powtec.2019.06.023]
[72]
D. Yang, G. Li, Y. Wang, Q. Wang, J. Li, Q. Huang, Y. Xia, and Q. Li, "Prediction of horizontal pneumatic conveying of large coal particles using discrete phase model", Adv. Mater. Sci. Eng., vol. 2020, pp. 1-15, 2020.
[http://dx.doi.org/10.1155/2020/1967052]
[73]
H. Zhou, and Y. Xiong, "Conveying mechanisms of dense-phase pneumatic conveying of pulverized lignite in horizontal pipe under high pressure", Powder Technol., vol. 363, pp. 7-22, 2020.
[http://dx.doi.org/10.1016/j.powtec.2020.01.010]
[74]
S. Kuang, M. Zhou, and A. Yu, "CFD-DEM modelling and simulation of pneumatic conveying: A review", Powder Technol., vol. 365, pp. 186-207, 2020.
[http://dx.doi.org/10.1016/j.powtec.2019.02.011]
[75]
J. Zhou, X. Han, S. Jing, and Y. Liu, "Efficiency and stability of lump coal particles swirling flow pneumatic conveying system", Chem. Eng. Res. Des., vol. 157, pp. 92-103, 2020.
[http://dx.doi.org/10.1016/j.cherd.2020.03.006]
[76]
F. Yan, P. Tu, X. Li, Y. Chen, Y. Zheng, and R. Zhu, "Dynamic analysis of particles in vertical curved 90° bends of a horizontal-vertical pneumatic conveying system based on POD and wavelet transform", Adv. Powder Technol., vol. 32, no. 5, pp. 1399-1409, 2021.
[http://dx.doi.org/10.1016/j.apt.2021.03.005]
[77]
J.W. Zhou, L.J. Shangguan, and K.D. Gao, "Numerical study of slug characteristics for coarse particle dense phase pneumatic conveying", In: Powder Technology., vol. 392. Elsevier, 2021, pp. 438-47.
[78]
Z. Guo, J. Zhang, and J. Huang, "Numerical simulation on gas-solid two-phase flow in horizontal pneumatic conveying pipe based on DPM model", J. Phys. Conf. Ser., vol. 2097, no. 1, p. 012003, 2021.
[http://dx.doi.org/10.1088/1742-6596/2097/1/012003]
[79]
L.G. Gibilaro, R. Di Felice, S.P. Waldram, and P.U. Foscolo, "Generalized friction factor and drag coefficient correlations for fluid-particle interactions", Chem. Eng. Sci., vol. 40, no. 10, pp. 1817-1823, 1985.
[http://dx.doi.org/10.1016/0009-2509(85)80116-0]
[80]
W. Du, X. Bao, J. Xu, and W. Wei, "Computational fluid dynamics (CFD) modeling of spouted bed: Assessment of drag coefficient correlations", Chem. Eng. Sci., vol. 61, no. 5, pp. 1401-1420, 2006.
[http://dx.doi.org/10.1016/j.ces.2005.08.013]
[81]
M. Ishii, and N. Zuber, "Drag coefficient and relative velocity in bubbly, droplet or particulate flows", AIChE J., vol. 25, no. 5, pp. 843-855, 1979.
[http://dx.doi.org/10.1002/aic.690250513]
[82]
A. Haider, and O. Levenspiel, "Drag coefficient and terminal velocity of spherical and nonspherical particles", Powder Technol., vol. 58, no. 1, pp. 63-70, 1989.
[http://dx.doi.org/10.1016/0032-5910(89)80008-7]
[83]
D. L. Yang, Y. T. Xia, Y. M. Cui, L. C. Sheng, L. Li, Y. X. Wang, X. L. Ma, J. J. Tang, H. C. Duan, and F. B. Jin, "A kind of horizontal pipeline anti-settling device, disassembly method and material conveying system.", C.N. Patent 115,611,003A, , 2023.
[84]
D. L. Yang, Y. X. Wang, X. L. Ma, Z. Cao, and H. Y. Jiang, "A kind of pneumatic conveying separator and separation method.", C.N. Patent 112,403,908A, , 2021.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy