Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Green Synthesis of Silver Nanoparticles using Morinda citrifolia Linn Leaf Extract and its Antioxidant, Antibacterial and Anticancer Potential

Author(s): Kailas D. Datkhile*, Shuvronil Chakraborty, Pratik P. Durgawale and Satish R. Patil

Volume 12, Issue 4, 2024

Published on: 10 October, 2023

Page: [340 - 350] Pages: 11

DOI: 10.2174/2211738511666230913095001

Price: $65

Abstract

Introduction: Nanomedicine has emerged as a revolutionary regimen for moderating communicable as well as non-communicable diseases.

Purpose: This study demonstrated the phytosynthesis of silver nanoparticles using M. citrifolia leaf extract (MC-AgNPs) and their in vitro antioxidant, antibacterial and anticancer potential.

Materials and Methods: The Biosynthesis of MC-AgNPs was studied by spectroscopy and characterized by SEM, TEM, XRD and FTIR analysis. The antibacterial activity was checked by minimum inhibition concentration assay. The HeLa and MCF-7 cancer cell lines were used to explore the cytotoxicity and genotoxicity activity of biogenic MC-AgNPs.

Results: The free radical scavenging potential of MC-AgNPs was studied by in vitro DPPH and ABTS assays, which confirmed significant radical scavenging activity in a dose-dependent manner with IC50 of 17.70 ± 0.36 μg/mL for DPPH and 13.37 ± 3.15 μg/mL for ABTS radicals. The bactericidal effects of MC-AgNPs confirmed by MIC showed 0.1 mg/mL concentration of MC-AgNPs with greater sensitivity for E.coli (93.33 ± 0.89), followed by K. pneumoniae (90.99 ± 0.57), S. aureus (87.26 ± 2.80) and P. aeruginosa strains (44.68 ± 0.73). The cytotoxicity results depicted strong dose and timedependent toxicity of biogenic MC-AgNPs against cancer cell lines fifty percent inhibitory concentration MC-AgNPs against HeLa cells were 13.56 ± 1.22 μg/mL after 24h and 5.57 ± 0.12 μg/mL after 48 h exposure, likewise 16.86 ± 0.88 μg/mL and 11.60 ± 0.97 μg/mL respectively for MCF-7 cells.

Conclusions: The present study revealed the green synthesis of silver nanoparticles using M. citrifolia and their significant antioxidant, antibacterial and anticancer activities.

Graphical Abstract

[1]
Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab J Chem 2019; 12(8): 3576-600.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.002]
[2]
Saleem H, Zaidi SJ. Developments in the application of nanomaterials for water treatment and their impact on the environment. Nanomaterials 2020; 10(9): 1764.
[http://dx.doi.org/10.3390/nano10091764] [PMID: 32906594]
[3]
Ali A, Shah T, Ullah R, et al. Review on recent progress in magnetic nanoparticles: Synthesis, characterization, and diverse applications. Front Chem 2021; 9: 629054.
[http://dx.doi.org/10.3389/fchem.2021.629054] [PMID: 34327190]
[4]
Ahmed HM, Roy A, Wahab M, et al. Review article applications of nanomaterials in agrifood and pharmaceutical industry. J Nanomater 2021.
[5]
Thangavelu L, Veeraragavan GR, Mallineni SK, et al. Review: Role of nanoparticles in environmental remediation: An insight into heavy metal pollution from dentistry. Bioinorganic Chem App 2022; 2022
[6]
Boroumand Moghaddam A, Namvar F, Moniri M, Md Tahir P, Azizi S, Mohamad R. Nanoparticles Biosynthesized by fungi and yeast: A Review of their preparation, properties, and medical applications. Molecules 2015; 20(9): 16540-65.
[http://dx.doi.org/10.3390/molecules200916540] [PMID: 26378513]
[7]
Gahlwat G, Roy Choudhury A. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. Review Article. RSV Adv 2019; 19: 12944-67.
[8]
Patil MP, Kim JO, Seo YB, et al. Review on biogenic synthesis of metallic nanoparticles and their antibacterial applications. J Life Sci 2021; 31(9): 862-72.
[9]
Chopra H, Bibi S, Singh I, et al. Review: Green metallic nanoparticles: Biosynthesis to applications. Front Bioeng Biotechnol 2022; 10: 874742.
[http://dx.doi.org/10.3389/fbioe.2022.874742] [PMID: 35464722]
[10]
Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm J 2016; 24(4): 473-84.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[11]
Vijayaraghavan K, Ashokkumar T. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 2017; 5(5): 4866-83.
[http://dx.doi.org/10.1016/j.jece.2017.09.026]
[12]
Marslin G, Siram K, Maqbool Q, et al. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 2018; 11(6): 940.
[http://dx.doi.org/10.3390/ma11060940] [PMID: 29865278]
[13]
Shavandi A, Saeedi P, Ali MA, Jalalvandi E. Green synthesis of polysaccharide-based inorganic nanoparticles and biomedical aspects. Funct Polysacch Biomed Appl 2019; 2019: 267-304.
[http://dx.doi.org/10.1016/B978-0-08-102555-0.00008-X]
[14]
Singh P, Garg A, Pandit S, Mokkapati V, Mijakovic I. Antimicrobial effects of biogenic nanoparticles. Nanomaterials 2018; 8(12): 1009.
[http://dx.doi.org/10.3390/nano8121009] [PMID: 30563095]
[15]
Singh A, Gautam PK, Verma A, et al. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol Rep 2020; 25: e00427.
[http://dx.doi.org/10.1016/j.btre.2020.e00427] [PMID: 32055457]
[16]
Ahmad SA, Das SS, Khatoon A, et al. Bactericidal activity of silver nanoparticles: A mechanistic review. Mater Sci Technol 2012; 3: 756-69.
[17]
Rai M, Ingle AP, Trzcińska-Wencel J, et al. Biogenic silver nanoparticles: What we know and what do we need to know? Nanomaterials 2021; 11(11): 2901.
[http://dx.doi.org/10.3390/nano11112901] [PMID: 34835665]
[18]
Das G, Patra JK, Debnath T, Ansari A, Shin HS. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS One 2019; 14(8): e0220950.
[http://dx.doi.org/10.1371/journal.pone.0220950] [PMID: 31404086]
[19]
Bedlovičová Z, Strapáč I, Baláž M, Salayová A. Brief overview on antioxidant activity determination of silver Nanoparticles. Molecules 2020; 25(14): 3191.
[http://dx.doi.org/10.3390/molecules25143191] [PMID: 32668682]
[20]
Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurveda Integr Med 2020; 11(1): 37-44.
[http://dx.doi.org/10.1016/j.jaim.2017.11.003] [PMID: 30120058]
[21]
Kumar H, Bhardwaj K, Nepovimova E, et al. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials 2020; 10(7): 1334.
[http://dx.doi.org/10.3390/nano10071334] [PMID: 32650608]
[22]
Singh R, Hano C, Tavanti F, Sharma B. Biogenic synthesis and characterization of antioxidant and antimicrobial silver nanoparticles using flower extract of Couroupita guianensis Aubl. Materials 2021; 14(22): 6854.
[http://dx.doi.org/10.3390/ma14226854] [PMID: 34832255]
[23]
Bethu MS, Netala VR, Domdi L, Tartte V, Janapala VR. Potential anticancer activity of biogenic silver nanoparticles using leaf extract of Rhynchosia suaveolens: An insight into the mechanism. Artif Cells Nanomed Biotechnol 2018; 46(sup1): 104-4.
[http://dx.doi.org/10.1080/21691401.2017.1414824] [PMID: 29301413]
[24]
Wypij M, Jędrzejewski T, Ostrowski M, Trzcińska J, Rai M, Golińska P. Biogenic silver nanoparticles: Assessment of their cytotoxicity, genotoxicity and study of capping proteins. Molecules 2020; 25(13): 3022.
[http://dx.doi.org/10.3390/molecules25133022] [PMID: 32630696]
[25]
Khan MS, Alomari A, Tabrez S, et al. Anticancer potential of biogenic silver nanoparticles: A mechanistic study. Pharmaceutics 2021; 13(5): 707.
[http://dx.doi.org/10.3390/pharmaceutics13050707] [PMID: 34066092]
[26]
Jabeen S, Qureshi R, Munazir M, et al. Application of green synthesized silver nanoparticles in cancer treatment - A critical review. Mater Res Express 2021; 8(9): 092001.
[http://dx.doi.org/10.1088/2053-1591/ac1de3]
[27]
Walimbe KG, Dhawal PP, Kakodkar SA. Anticancer potential of biosynthesized silver nanoparticles: A review. Euro J Biol Biotechnol 2022; 3(2): 10-20.
[http://dx.doi.org/10.24018/ejbio.2022.3.2.338]
[28]
Inada A, Figueiredo P, Santos-Eichler R, et al. Morinda citrifolia Linn. (Noni) and Its potential in obesity-related metabolic dysfunction. Nutrients 2017; 9(6): 540.
[http://dx.doi.org/10.3390/nu9060540] [PMID: 28587078]
[29]
Almeida ÉS, Oliveira D, Hotza D. Properties and applications of morinda citrifolia (Noni): A review. Compr Rev Food Sci Food Saf 2019; 18(4): 883-909.
[http://dx.doi.org/10.1111/1541-4337.12456] [PMID: 33336991]
[30]
Gnanasekar S, Chandrakasan G, Karuppiah K, et al. Phytosynthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens. Colloid Surfaces B Biointerfaces 2012; 95: 235-40.
[31]
Valli G, Anusuya M. Perlina. Green synthesis of silver nanoparticles using Tephrosia purpurea root extract, Morinda tinctoria leaf extracts and evaluation of their antibacterial activities. J Appl Chem 2014; 3: 1560-8.
[32]
Jeyaprakash K, AlSalhi MS, Devanesan S. Anticancer and antioxidant efficacy of silver nanoparticles synthesized from fruit of Morinda citrifolia Linn on Ehrlich ascites carcinoma mice. J King Saud Univ Sci 2020; 32(7): 3181-6.
[http://dx.doi.org/10.1016/j.jksus.2020.09.005]
[33]
Datkhile KD, Durgawale PP, Patil SR. Biosynthesis and characterization of silver nanoparticles using Lasiosiphon eriocephalus Decne plant extract and their in vitro antioxidant, antimicrobial, cytotoxicity and genotoxicity activities. Pharm Nanotechnol 2023; 11: 180-93.
[http://dx.doi.org/10.2174/2211738511666221207153116] [PMID: 36503464]
[34]
Datkhile KD, Durgawale PP, Patil MN, Joshi SA, Korabu KS. Studies on phytoconstituents, in vitro antioxidant, antibacterial, antiparasitic, antimicrobial, and anticancer potential of medicinal plant Lasiosiphon eriocephalus decne (Family: Thymelaeaceae). J Nat Sci Biol Med 2019; 10(1): 38-47.
[http://dx.doi.org/10.4103/jnsbm.JNSBM_183_18]
[35]
Datkhile KD, Durgawale PP, Chakraborty S, Jagdale NJ, More AL, Patil SR. Biogenic Nanoparticles: Synthesis, characterization, and biological potential of gold nanoparticles synthesized using Lasiosiphaon eriocephalus Decne Plant extract. Pharm Nanotechnol 2023; 11(3): 303-14.
[http://dx.doi.org/10.2174/2211738511666230206112537] [PMID: 36744688]
[36]
Herrmann M, Lorenz HM, Voll R, Griinke M, Woith W, Kalden JR. A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res 1994; 22(24): 5506-7.
[http://dx.doi.org/10.1093/nar/22.24.5506] [PMID: 7816645]
[37]
Ramesh PS, Kokila T, Geetha D. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim Acta A Mol Biomol Spectrosc 2015; 142: 339-43.
[http://dx.doi.org/10.1016/j.saa.2015.01.062] [PMID: 25710891]
[38]
Dehghanizade S, Arasteh J, Mirzaie A. Green synthesis of silver nanoparticles using Anthemis atropatana extract: Characterization and in vitro biological activities. Artif Cells Nanomed Biotechnol 2018; 46(1): 160-8.
[http://dx.doi.org/10.1080/21691401.2017.1304402] [PMID: 28368661]
[39]
Makarov VV, Love AJ, Sinitsyna OV, et al. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nat (Engl Ed) 2014; 6(1): 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
[40]
Datkhile KD, Durgavale PP, Patil MN. Biogenic silver nanoparticles from Nothapodytes foetida kills human cancer cells in vitro through inhibition of cell proliferation and induction of apoptosis. J Bionanoscience 2017; 11(5): 416-27.
[http://dx.doi.org/10.1166/jbns.2017.1465]
[41]
Datkhile KD, Patil SR, Durgawale PP, et al. Biogenic silver nanoparticles synthesized using Mexican Poppy plant inhibits cell growth in cancer cells through activation of intrinsic ipoptosis pathway. Nano Biomed Eng 2020; 12(3): 241-52.
[http://dx.doi.org/10.5101/nbe.v12i3.p241-252]
[42]
Ansar S, Tabassum H, Aladwan NSM, et al. Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Sci Rep 2020; 10(1): 18564.
[http://dx.doi.org/10.1038/s41598-020-74371-8] [PMID: 33122798]
[43]
Kalyani RL, Chandta VS, Vijaykumar PPN, et al. Biosynthesis of silver nanoparticles using Annona squamosa Leaf extract with synergistic antibacterial activity. Indian J Pharm Sci 2019; 81: 1036-44.
[44]
Urnukhsaikhan E, Bold BE, Gunbileg A, Sukhbaatar N, Mishig-Ochir T. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Sci Rep 2021; 11(1): 21047.
[http://dx.doi.org/10.1038/s41598-021-00520-2] [PMID: 34702916]
[45]
Morales-Lozoya V, Espinoza-Gomez H, Flores-Lopez L, et al. Study of the effect of the different parts of Morinda citrifolia L. (noni) on the green synthesis of silver nanoparticles and their antibacterial activity. Appl Surf Sci 2021; 537: 147855.
[http://dx.doi.org/10.1016/j.apsusc.2020.147855]
[46]
Gurunathan S, Han JW, Eppakayala V, et al. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res Int 2013; 2013
[47]
Pannerselvam B, Thiyagarajan D, Pazhani A, Thangavelu KP, Kim HJ, Rangarajulu SK. Copperpod plant synthesized AgNPs enhance cytotoxic and apoptotic effect in cancer cell lines. Processes 2021; 9(5): 888.
[http://dx.doi.org/10.3390/pr9050888]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy