Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

A Review of Magnetically Recyclable Nanocatalysts for the Synthesis of Quinazoline and its Derivatives

Author(s): Shweta Mishra* and Adarsh Sahu

Volume 27, Issue 11, 2023

Published on: 27 September, 2023

Page: [914 - 930] Pages: 17

DOI: 10.2174/1385272827666230911115733

Price: $65

conference banner
Abstract

The utility of quinazoline scaffolds as intermediates in new medicinal drug development and discovery has grown in recent decades. The quinazoline framework is a valuable pharmacophore, intermediate, and interesting building block with a wide range of pharmacological activities that has piqued the interest of researchers in developing novel synthetic strategies in medicinal chemistry. In contrast to time-, solvent-, and energy-consuming separation approaches, magnetic separation is an effective method for the quick separation of catalysts from reaction media. Nowadays, magnetically separable nanoparticles have recently gained much interest from chemist in recent research due to their remarkable catalytic activity in various chemical transformations. Many research articles have been published for the synthesis of quinazoline derivatives based on utilizing nanoparticles as a catalyst because of the significant role that biological quinazoline plays in medicinal chemistry. In the present review study, we summarize the surface functionalization of mesoporous silica, metal organocatalysts, ionic liquids, and polymer-supported magnetic nanoparticles and their applications as magnetically recoverable nanocatalysts in the efficient synthetic methods of biologically active quinazoline and its derivatives.

Graphical Abstract

[1]
Narayanan, R. Synthesis of green nanocatalysts and industrially important green reactions. Green Chem. Lett. Rev., 2012, 5(4), 707-725.
[http://dx.doi.org/10.1080/17518253.2012.700955]
[2]
Kalidindi, S.B.; Jagirdar, B.R. Nanocatalysis and prospects of green chemistry. ChemSusChem, 2012, 5(1), 65-75.
[http://dx.doi.org/10.1002/cssc.201100377] [PMID: 22190344]
[3]
Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007, 46(8), 1222-1244.
[http://dx.doi.org/10.1002/anie.200602866] [PMID: 17278160]
[4]
Rodrigues, T.S.; da Silva, A.G.M.; Camargo, P.H.C. Nanocatalysis by noble metal nanoparticles: Controlled synthesis for the optimization and understanding of activities. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(11), 5857-5874.
[http://dx.doi.org/10.1039/C9TA00074G]
[5]
Hutchings, G.J. Heterogeneous catalysts-discovery and design. J. Mater. Chem., 2009, 19(9), 1222-1235.
[http://dx.doi.org/10.1039/B812300B]
[6]
Davies, I.W.; Matty, L.; Hughes, D.L.; Reider, P.J. Are heterogeneous catalysts precursors to homogeneous catalysts? J. Am. Chem. Soc., 2001, 123(41), 10139-10140.
[http://dx.doi.org/10.1021/ja016877v] [PMID: 11592910]
[7]
Zhang, Q.; Yang, X.; Guan, J. Applications of magnetic nanomaterials in heterogeneous catalysis. ACS Appl. Nano Mater., 2019, 2(8), 4681-4697.
[http://dx.doi.org/10.1021/acsanm.9b00976]
[8]
Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem., 2010, 12(5), 743-754.
[http://dx.doi.org/10.1039/b921171c]
[9]
Chaturvedi, S.; Dave, P.N.; Shah, N.K. Applications of nano-catalyst in new era. J. Saudi Chem. Soc., 2012, 16(3), 307-325.
[http://dx.doi.org/10.1016/j.jscs.2011.01.015]
[10]
Singh, S.B.; Tandon, P.K. Catalysis: A brief review on nano-catalyst. J Energy Chem Eng., 2014, 2(3), 106-115.
[http://dx.doi.org/10.1016/j.jscs.2011.01.015]
[11]
Ansari, M.J.; Kadhim, M.M.; Hussein, B.A.; Lafta, H.A.; Kianfar, E. Synthesis and stability of magnetic nanoparticles. Bionanoscience, 2022, 12(2), 627-638.
[http://dx.doi.org/10.1007/s12668-022-00947-5]
[12]
Astruc, D. Introduction: Nanoparticles in catalysis. Chem. Rev., 2020, 120(2), 461-463.
[http://dx.doi.org/10.1021/acs.chemrev.8b00696] [PMID: 31964144]
[13]
Astruc, D. Nanoparticles and catalysis; John Wiley & Sons, 2008.
[http://dx.doi.org/10.1002/9783527621323]
[14]
Tao, F.F.; Nguyen, L.; Zhang, S. Introduction: Synthesis and catalysis on metal nanoparticles. In: Biology; , 2014.
[http://dx.doi.org/10.1039/9781782621034-00001]
[15]
Kazemi, M.; Ghobadi, M. Magnetically recoverable nano-catalysts in sulfoxidation reactions. Nanotechnol. Rev., 2017, 6(6), 549-571.
[http://dx.doi.org/10.1515/ntrev-2016-0113]
[16]
Gao, G.; Di, J.Q.; Zhang, H.Y.; Mo, L.P.; Zhang, Z.H. A magnetic metal organic framework material as a highly efficient and recyclable catalyst for synthesis of cyclohexenone derivatives. J. Catal., 2020, 387, 39-46.
[http://dx.doi.org/10.1016/j.jcat.2020.04.013]
[17]
Zhang, M.; Liu, Y.H.; Shang, Z.R.; Hu, H.C.; Zhang, Z.H. Supported molybdenum on graphene oxide/Fe3O4: An efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal. Commun., 2017, 88, 39-44.
[http://dx.doi.org/10.1016/j.catcom.2016.09.028]
[18]
Chen, M.N.; Mo, L.P.; Cui, Z.S.; Zhang, Z.H. Magnetic nanocatalysts: Synthesis and application in multicomponent reactions. Curr. Opin. Green Sustain. Chem., 2019, 15, 27-37.
[http://dx.doi.org/10.1016/j.cogsc.2018.08.009]
[19]
Deng, Q.; Shen, Y.; Zhu, H.; Tu, T. A magnetic nanoparticle-supported N-heterocyclic carbene-palladacycle: An efficient and recyclable solid molecular catalyst for Suzuki-Miyaura cross-coupling of 9-chloroacridine. Chem. Commun., 2017, 53(97), 13063-13066.
[http://dx.doi.org/10.1039/C7CC06958H] [PMID: 29165443]
[20]
Wang, Y.M.; Li, W.J.; Wang, M.M.; Zhang, M.; Zhang, Z.H. Magnetic MoS2 efficient heterogeneous photocatalyst for the α-methoxymethylation and aminomethylation of aromatic ketones. Catal. Sci. Technol., 2023, 13(3), 665-674.
[http://dx.doi.org/10.1039/D2CY01831D]
[21]
Hemalatha, K.; Madhumitha, G.; Kajbafvala, A.; Anupama, N.; Sompalle, R.; Mohana Roopan, S. Function of nanocatalyst in chemistry of organic compounds revolution: an overview. J. Nanomater., 2013, 2013, 1-23.
[http://dx.doi.org/10.1155/2013/341015]
[22]
Bhaskaruni, S.V.H.S.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts. Arab. J. Chem., 2020, 13(1), 1142-1178.
[http://dx.doi.org/10.1016/j.arabjc.2017.09.016]
[23]
Wang, D.; Gao, F. Quinazoline derivatives: Synthesis and bioactivities. Chem. Cent. J., 2013, 7(1), 95.
[http://dx.doi.org/10.1186/1752-153X-7-95] [PMID: 23731671]
[24]
Sahu, A.; Mishra, S.; Sahu, P.; Gajbhiye, A.; Agrawal, R.K. Indium (III) chloride: An efficient catalyst for one-pot multicomponent synthesis of 2, 3-dihydroquinazoline-4 (1H)-ones. Curr. Organocatal., 2018, 5(2), 137-144.
[http://dx.doi.org/10.2174/2213337205666180614112318]
[25]
Mishra, S.; Das, D.; Sahu, A.; Patil, S.; Agarwal, R.K.; Gajbhiye, A. Transition metal-free approach for the synthesis of 2-substituted quinazolin-4(3H)-one via anhydrous magnesium perchlorate. Curr. Organocatal., 2020, 7(2), 118-123.
[http://dx.doi.org/10.2174/2213337207666200220101535]
[26]
Sahu, P.; Sahu, A.; Sakthivel, A. Cyclocondensation of anthranilamide with aldehydes on gallium-containing MCM-22 zeolite materials. ACS Omega, 2021, 6(43), 28828-28837.
[http://dx.doi.org/10.1021/acsomega.1c03704] [PMID: 34746575]
[27]
Mishra, S.; Das, D.; Sahu, A.; Verma, E.; Patil, S.; Agarwal, R.K.; Gajbhiye, A. Electronegativity in Substituted-4(H)-quinazolinones causes anxiolysis without a sedative-hypnotic adverse reaction in female wistar rats. Cent. Nerv. Syst. Agents Med. Chem., 2020, 20(1), 26-40.
[http://dx.doi.org/10.2174/1871524920666191220112545] [PMID: 31858906]
[28]
Majidi, S.; Sehrig, Z.F.; Farkhani, S.M.; Goloujeh, S.M.; Akbarzadeh, A. Current methods for synthesis of magnetic nanoparticles. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 722-734.
[http://dx.doi.org/10.3109/21691401.2014.982802] [PMID: 25435409]
[29]
Willard, M.A.; Kurihara, L.K.; Carpenter, E.E.; Calvin, S.; Harris, V.G. Chemically prepared magnetic nanoparticles. Int. Mater. Rev., 2004, 49(3-4), 125-170.
[http://dx.doi.org/10.1179/095066004225021882]
[30]
Yelenich, O.V.; Solopan, S.O.; Greneche, J.M.; Belous, A.G. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures. Solid State Sci., 2015, 46, 19-26.
[http://dx.doi.org/10.1016/j.solidstatesciences.2015.05.011]
[31]
Davidson, M.; Ji, Y.; Leong, G.J.; Kovach, N.C.; Trewyn, B.G.; Richards, R.M. Hybrid mesoporous silica/noble-metal nanoparticle materials-synthesis and catalytic applications. ACS Appl. Nano Mater., 2018, 1(9), 4386-4400.
[http://dx.doi.org/10.1021/acsanm.8b00967]
[32]
Maiden, T.M.M.; Harrity, J.P.A. Recent developments in transition metal catalysis for quinazolinone synthesis. Org. Biomol. Chem., 2016, 14(34), 8014-8025.
[http://dx.doi.org/10.1039/C6OB01402J] [PMID: 27477737]
[33]
Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur. J. Med. Chem., 2015, 90, 124-169.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.084] [PMID: 25461317]
[34]
Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2010, 49(20), 3428-3459.
[http://dx.doi.org/10.1002/anie.200905684] [PMID: 20419718]
[35]
Lee, S.; Kang, J.; Kim, D. A mini review: Recent advances in surface modification of porous silicon. Materials, 2018, 11(12), 2557.
[http://dx.doi.org/10.3390/ma11122557] [PMID: 30558344]
[36]
Haghighat, M.; Shirini, F.; Golshekan, M. Efficiency of NaHSO4 modified periodic mesoporous organosilica magnetic nanoparticles as a new magnetically separable nanocatalyst in the synthesis of [1,2,4]triazolo quinazolinone/pyrimidine derivatives. J. Mol. Struct., 2018, 1171, 168-178.
[http://dx.doi.org/10.1016/j.molstruc.2018.05.112]
[37]
Ahmadizadeh Shendy, S.; Babazadeh, M.; Shahverdizadeh, G.H.; Hosseinzadeh-Khanmiri, R.; Es’haghi, M. Synthesis of the quinazolinone derivatives using an acid-functionalized magnetic silica heterogeneous catalyst in terms of green chemistry. Mol. Divers., 2021, 25(2), 889-897.
[http://dx.doi.org/10.1007/s11030-020-10033-1] [PMID: 32078143]
[38]
Abdolmohammadi, S.; Shariati, S.; Fard, N.E.; Samani, A. AQUEOUS‐MEDIATED green synthesis of novel spiro[indole‐quinazoline] derivatives using kit‐6 mesoporous silica coated Fe3O4 nanoparticles as catalyst. J. Heterocycl. Chem., 2020, 57(7), 2729-2737.
[http://dx.doi.org/10.1002/jhet.3981]
[39]
Maleki, A.; Rahimi, J. Synthesis of dihydroquinazolinone and octahydroquinazolinone and benzimidazoloquinazolinone derivatives catalyzed by an efficient magnetically recoverable GO-based nanocomposite. J. Porous Mater., 2018, 25(6), 1789-1796.
[http://dx.doi.org/10.1007/s10934-018-0592-5]
[40]
Shiri, L.; Heidari, L.; Kazemi, M. Magnetic Fe3O4 nanoparticles supported imine/Thiophene-nickel (II) complex: A new and highly active heterogeneous catalyst for the synthesis of polyhydroquinolines and 2, 3-dihydroquinazoline-4(1H)-ones. Appl. Organomet. Chem., 2018, 32(1), e3943.
[http://dx.doi.org/10.1002/aoc.3943]
[41]
Eidi, E.; Kassaee, M.Z.; Nasresfahani, Z.; Cummings, P.T. Synthesis of quinazolines over recyclable Fe3O4@SiO2-PrNH2-Fe3+ nanoparticles: A green, efficient, and solvent-free protocol. Appl. Organomet. Chem., 2018, 32(12), e4573.
[http://dx.doi.org/10.1002/aoc.4573]
[42]
Fekri, L.Z.; Nikpassand, M.; Khakshoor, S.N. Green, effective and chromatography free synthesis of benzoimidazo[1,2-a]pyrimidine and tetrahydrobenzo [4,5]imidazo [1,2-d]quinazolin-1(2H)-one and their pyrazolyl moiety using Fe3O4@SiO2@-proline reusable catalyst in aqueous media. J. Organomet. Chem., 2019, 894, 18-27.
[http://dx.doi.org/10.1016/j.jorganchem.2019.05.004]
[43]
Khanmohammadi-Sarabi, F.; Ghorbani-Choghamarani, A.; Aghavandi, H.; Zolfigol, M.A. ZnFe2O4@SiO2 ‐ascorbic acid: Green, magnetic, and versatile catalyst for the synthesis of chromeno[2,3‐d] pyrimidine‐8‐amine and quinazoline derivatives. Appl. Organomet. Chem., 2022, 36(8), 6768.
[http://dx.doi.org/10.1002/aoc.6768]
[44]
Riadi, Y.; Kadhim, M. Copper (II) complex supported on the surface of magnetic nanoparticles modified with S-benzylisothiourea (Fe3O4@SiO2-SMTU-Cu): A new and efficient nanomagnetic catalyst for the synthesis of quinazolines and amides. Synth. Commun., 2022, 52(6), 875-887.
[http://dx.doi.org/10.1080/00397911.2022.2056849]
[45]
Shokri, Z.; Azimi, N.; Moradi, S.; Rostami, A. A novel magnetically separable laccase‐mediator catalyst system for the aerobic oxidation of alcohols and 2‐substituted‐2,3‐dihydroquinazolin‐4(1H)‐ones under mild conditions. Appl. Organomet. Chem., 2020, 34(11), 58-99.
[http://dx.doi.org/10.1002/aoc.5899]
[46]
Mozafari, R.; Gheisvandi, Z.; Ghadermazi, M. Covalently bonded sulfonic acid onto the surface of magnetic nanosilica obtained from rice husk: CoFe2O4@RH-Pr-SO3H as novel acid catalyst for synthesis of octahydroquinazolinone and 3,4-dihydropyrimidinone. J. Mol. Struct., 2022, 1265, 133421.
[http://dx.doi.org/10.1016/j.molstruc.2022.133421]
[47]
Fani, M.H.; Dekamin, M.G. Para-aminobenzoic acid-functionalized silica-coated Fe3O4 nanoparticles: A highly efficient supported organocatalyst for on-water synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones; InChem. Proc, 2021, p. 3.
[http://dx.doi.org/10.3390/ecsoc-25-11772]
[48]
Keyhani, A.; Nikpassand, M.; Zare Fekri, L.; Kefayati, H. Green synthesis of novel azo-linked 2-aryl-quinazolinones using Fe3O4@SP@TA nanoparticle. J. Cluster Sci., 2022, 33(4), 1589-1599.
[http://dx.doi.org/10.1007/s10876-021-02021-8]
[49]
Mrówczyński, R.; Nan, A.; Liebscher, J. Magnetic nanoparticle-supported organocatalysts - an efficient way of recycling and reuse. RSC Adv, 2014, 4(12), 5927-5952.
[http://dx.doi.org/10.1039/c3ra46984k]
[50]
Azizi, N.; Abbasi, F.; Abdoli-Senejani, M. Thiamine immobilized on silane-functionalized magnetic nanoparticles for catalytic synthesis of 2,3-dihydroquinazolin-4(1H)-ones in water. Mater. Chem. Phys., 2017, 196, 118-125.
[http://dx.doi.org/10.1016/j.matchemphys.2017.04.041]
[51]
Sabale, S.S.; Degani, M.S. Magnetically recoverable nano sulfated titania catalysed one pot synthesis of 4(3H)-quinazolinone derivatives. Curr. Catal., 2018, 7(3), 167-175.
[http://dx.doi.org/10.2174/2211544707666180702125931]
[52]
Divar, M.; Zomorodian, K.; Bastan, S.; Yazdanpanah, S.; Khabnadideh, S. Synthesis of some quinazolinone derivatives using magnetic nanoparticles-supported tungstic acid as antimicrobial agents. J. Indian Chem. Soc., 2018, 15(7), 1457-1466.
[http://dx.doi.org/10.1007/s13738-018-1337-8]
[53]
Kazemnejadi, M.; Nasseri, M.A.; Sheikh, S.; Rezazadeh, Z.; Alavi Gol, S.A. Fe3O4@Sap/Cu(II): An efficient magnetically recoverable green nanocatalyst for the preparation of acridine and quinazoline derivatives in aqueous media at room temperature. RSC Adv, 2021, 11(26), 15989-16003.
[http://dx.doi.org/10.1039/D1RA01373D] [PMID: 35481188]
[54]
Huang, W.; Cheng, Q.; Ma, D. Recent reports on magnetic nanoparticles supported metallic catalysts: Synthesis of heterocycles. Synth. Commun., 2021, 51(9), 1321-1339.
[http://dx.doi.org/10.1080/00397911.2021.1884882]
[55]
Sonawane, H.R.; Deore, J.V.; Chavan, P.N. Reusable nano catalysed synthesis of heterocycles: An overview. ChemistrySelect, 2022, 7(8), 2021-3900.
[http://dx.doi.org/10.1002/slct.202103900]
[56]
Ghorbani-Choghamarani, A.; Norouzi, M. Synthesis of copper (II)-supported magnetic nanoparticle and study of its catalytic activity for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. J. Mol. Catal. Chem., 2014, 395, 172-179.
[http://dx.doi.org/10.1016/j.molcata.2014.08.013]
[57]
Ghorbani-Choghamarani, A.; Darvishnejad, Z.; Norouzi, M. Synthesis and characterization of copper(II) Schiff base complex supported on Fe3O4 magnetic nanoparticles: A recyclable catalyst for the one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Appl. Organomet. Chem., 2015, 29(10), 707-711.
[http://dx.doi.org/10.1002/aoc.3354]
[58]
Raut, A.B.; Bhanage, B.M. Cuprous oxide nanoparticle supported on iron oxide (Cu2O-Fe3O4): Magnetically separable and reusable nanocatalyst for the synthesis of quinazolines. ChemistrySelect, 2017, 2(31), 10055-10060.
[http://dx.doi.org/10.1002/slct.201701251]
[59]
Karimi-Chayjani, R.; Daneshvar, N.; Nikoo Langarudi, M.S.; Shirini, F.; Tajik, H. Silica-coated magnetic nanoparticles containing bis dicationic bridge for the synthesis of 1,2,4-triazolo pyrimidine/quinazolinone derivatives. J. Mol. Struct., 2020, 1199, 126891.
[http://dx.doi.org/10.1016/j.molstruc.2019.126891]
[60]
Radai, Z.; Kiss, N.Z.; Keglevich, G. An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr. Org. Chem., 2018, 22(6), 533-556.
[http://dx.doi.org/10.2174/1385272822666171227152013]
[61]
Łuczak, J.; Paszkiewicz, M.; Krukowska, A.; Malankowska, A.; Zaleska-Medynska, A. Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis. Adv. Colloid Interface Sci., 2016, 227, 1-52.
[http://dx.doi.org/10.1016/j.cis.2015.08.010] [PMID: 26520242]
[62]
Ghorbani-Choghamarani, A.; Taherinia, Z.; Nikoorazm, M. Ionic liquid supported on magnetic nanoparticles as a novel reusable nanocatalyst for the efficient synthesis of tetracyclic quinazoline compounds. Res. Chem. Intermed., 2018, 44(11), 6591-6604.
[http://dx.doi.org/10.1007/s11164-018-3510-1]
[63]
Bakhshali-Dehkordi, R.; Ghasemzadeh, M.A.; Safaei-Ghomi, J. Preparation and characterization of a novel DABCO‐based ionic liquid supported on Fe3O4@TiO2 nanoparticles and investigation of its catalytic activity in the synthesis of quinazolinones. Appl. Organomet. Chem., 2020, 34(9), 5721.
[http://dx.doi.org/10.1002/aoc.5721]
[64]
Fallah-Mehrjardi, M.; Kalantari, S. A brønsted acid ionic liquid immobilized on Fe3O4@SiO2 nanoparticles as an efficient and reusable solid acid catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Russ. J. Org. Chem., 2020, 56(2), 298-306.
[http://dx.doi.org/10.1134/S1070428020020207]
[65]
Fatehi, A.; Ghorbani-Vaghei, R.; Alavinia, S.; Mahmoodi, J. Synthesis of quinazoline derivatives catalyzed by a new efficient reusable nanomagnetic catalyst supported with functionalized piperidinium benzene‐1,3‐disulfonate ionic liquid. ChemistrySelect, 2020, 5(3), 944-951.
[http://dx.doi.org/10.1002/slct.201904679]
[66]
Gupta, R.; Arora, G.; Yadav, P.; Dixit, R.; Srivastava, A.; Sharma, R.K. A magnetically retrievable copper ionic liquid nanocatalyst for cyclooxidative synthesis of 2-phenylquinazolin-4(3H)-ones. Dalton Trans., 2021, 50(3), 890-898.
[http://dx.doi.org/10.1039/D0DT03634J] [PMID: 33350417]
[67]
Kamali, F.; Shirini, F.; Ardaki, M.S. Fe3O4@SiO2-supported ionic liquid as an efficient catalyst for the one-pot synthesis of benzimidazolo-quinazolinone derivatives under solvent-free conditions. Polycycl. Aromat. Compd., 2022, 43, 1-6.
[http://dx.doi.org/10.1080/10406638.2022.2094970]
[68]
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
[69]
Bakhtiarian, M.; Khodaei, M.M. Synthesis of 2,3-dihydro-4(1H) quinazolinones using a magnetic pectin-supported deep eutectic solvent. Colloids Surf. A Physicochem. Eng. Asp., 2022, 641, 128569.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128569]
[70]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials, 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[71]
Tong, X.; Pan, W.; Su, T.; Zhang, M.; Dong, W.; Qi, X. Recent advances in natural polymer-based drug delivery systems. React. Funct. Polym., 2020, 148, 104501.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104501]
[72]
Shaabani, A.; Hezarkhani, Z. Ferrite nanoparticles supported on natural wool in one-pot tandem oxidative reactions: strategy to synthesize benzimidazole, quinazolinone and quinoxaline derivatives. Appl. Organomet. Chem., 2017, 31(1), e3542.
[http://dx.doi.org/10.1002/aoc.3542]
[73]
Kemona, A.; Piotrowska, M. Polyurethane recycling and disposal: Methods and prospects. Polymers, 2020, 12(8), 1752.
[http://dx.doi.org/10.3390/polym12081752] [PMID: 32764494]
[74]
Mirjalili, B.B.F.; Bamoniri, A.; Azad, S. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by nano-Fe3O4/TiCl2/cellulose as a bio-based magnetic catalyst. J. Indian Chem. Soc., 2017, 14(1), 47-55.
[http://dx.doi.org/10.1007/s13738-016-0956-1]
[75]
Maleki, A.; Aghaei, M.; Kari, T. Facile Synthesis of 7-Aryl-benzo [h] tetrazolo [5, 1-b] quinazoline-5, 6-dione fused polycyclic compounds by using a novel magnetic polyurethane catalyst. Polycycl. Aromat. Compd., 2019, 39(3), 266-278.
[http://dx.doi.org/10.1080/10406638.2017.1325746]
[76]
Ayati, A.; Daraie, M.; Heravi, M.M.; Tanhaei, B. H4[W12SiO40] grafted on magnetic chitosan: a green nanocatalyst for the synthesis of [1,2,4]triazolo/benzimidazolo quinazolinone derivatives. Micro & Nano Lett., 2017, 12(12), 964-969.
[http://dx.doi.org/10.1049/mnl.2017.0053]
[77]
Bahadorikhalili, S.; Ashtari, A.; Ma’mani, L.; Ranjbar, P.R.; Mahdavi, M. Copper-supported β-cyclodextrin-functionalized magnetic nanoparticles: Efficient multifunctional catalyst for one-pot ‘green’ synthesis of 1,2,3-triazolylquinazolinone derivatives. Appl. Organomet. Chem., 2018, 32(4), e4212.
[http://dx.doi.org/10.1002/aoc.4212]
[78]
Rawat, M.; Taniike, T.; Rawat, D.S. Magnetically separable Fe3O4@poly(m‐ phenylenediamine)@Cu2O nanocatalyst for the facile synthesis of 5‐phenyl‐[1,2,3]triazolo[1,5‐c]quinazolines. ChemCatChem, 2022, 14(5), e202101926.
[http://dx.doi.org/10.1002/cctc.202101926]
[79]
Devine, P.N.; Howard, R.M.; Kumar, R.; Thompson, M.P.; Truppo, M.D.; Turner, N.J. Extending the application of biocatalysis to meet the challenges of drug development. Nat. Rev. Chem., 2018, 2(12), 409-421.
[http://dx.doi.org/10.1038/s41570-018-0055-1]
[80]
Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed., 2021, 60(1), 88-119.
[http://dx.doi.org/10.1002/anie.202006648] [PMID: 32558088]
[81]
Kamanna, K. 4 organocatalysts based on natural and modified amino acids for asymmetric reactions. Phys. Sci. Rev., 2022, 7, 89-128.
[http://dx.doi.org/10.1515/9783110732542-004]
[82]
Kamanna, K. Amino acids and peptides organocatalysts: A brief overview on its evolution and applications in organic asymmetric synthesis. Curr. Organocatal., 2021, 8(1), 126-146.
[http://dx.doi.org/10.2174/2213337207999201117093848]
[83]
Lai, Y.; Yin, W.; Liu, J.; Xi, R.; Zhan, J. One-pot green synthesis and bioapplication of L-arginine-capped superparamagnetic Fe3O4 nanoparticles. Nanoscale Res. Lett., 2010, 5(2), 302-307.
[http://dx.doi.org/10.1007/s11671-009-9480-x] [PMID: 20672030]
[84]
Gawande, M.B.; Velhinho, A.; Nogueira, I.D.; Ghumman, C.A.A.; Teodoro, O.M.N.D.; Branco, P.S. A facile synthesis of cysteine-ferrite magnetic nanoparticles for application in multicomponent reactions-a sustainable protocol. RSC Adv, 2012, 2(15), 6144-6149.
[http://dx.doi.org/10.1039/c2ra20955a]
[85]
Polshettiwar, V.; Baruwati, B.; Varma, R.S. Magnetic nanoparticle-supported glutathione: A conceptually sustainable organocatalyst. Chem. Commun., 2009, 14, 1837-1839.
[http://dx.doi.org/10.1039/b900784a]
[86]
Chouhan, G.; Wang, D.; Alper, H. Magnetic nanoparticle-supported proline as a recyclable and recoverable ligand for the CuI catalyzed arylation of nitrogen nucleophiles. Chem. Commun., 2007, 45, 4809-4811.
[http://dx.doi.org/10.1039/b711298j]
[87]
Rostamizadeh, S.; Nojavan, M.; Aryan, R.; Isapoor, E.; Azad, M. Amino acid-based ionic liquid immobilized on α-Fe2O3-MCM-41: An efficient magnetic nanocatalyst and recyclable reaction media for the synthesis of quinazolin-4(3H)-one derivatives. J. Mol. Catal. Chem., 2013, 374-375, 102-110.
[http://dx.doi.org/10.1016/j.molcata.2013.04.002]
[88]
Kharmawlong, G.K.; Nongrum, R.; Chhetri, B.; Rani, J.W.S.; Rahman, N.; Yadav, A.K.; Nongkhlaw, R. Green and efficient one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones and their anthelmintic studies. Synth. Commun., 2019, 49(20), 2683-2695.
[http://dx.doi.org/10.1080/00397911.2019.1639754]
[89]
Norouzi, F.H.; Foroughifar, N.; Khajeh-Amiri, A.; Pasdar, H. A novel superparamagnetic powerful guanidine-functionalized γ-Fe2O3 based sulfonic acid recyclable and efficient heterogeneous catalyst for microwave-assisted rapid synthesis of quinazolin-4(3H)-one derivatives in green media. RSC Adv, 2021, 11(48), 29948-29959.
[http://dx.doi.org/10.1039/D1RA05560G] [PMID: 35480261]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy