Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Direct Catalytic Conversion of Biomass-derived Carbohydrates to Ethyl Levulinate

Author(s): Jianrong Shan, Hengyu Hao, Feng Shen, Jirui Yang, Mo Qiu, Ruigang Wang and Haixin Guo*

Volume 27, Issue 11, 2023

Published on: 05 October, 2023

Page: [931 - 940] Pages: 10

DOI: 10.2174/1385272827666230830105829

Price: $65

conference banner
Abstract

Recently, levulinic acid as an important bio-based platform compound has attracted wide attention, and its potential application value is very high. This article focuses on chem-catalytic produced ethyl levulinate (EL) from biomass-derived carbohydrates (C6 carbohydrates) via multiple reaction pathways, which has an energy density comparable to gasoline and has great potential as a fuel additive. This review focuses on recent examples of the synthesis of EL from various materials using homogenous or heterogeneous catalysts. Special emphasis is placed on the understanding of the reaction mechanism and pathways. This review also summarizes the future opportunities and challenges associated with the applications of EL as a fuel additive and in other fields.

Graphical Abstract

[1]
Ambaye, T.G.; Vaccari, M.; Bonilla-Petriciolet, A.; Prasad, S.; van Hullebusch, E.D.; Rtimi, S. Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. J. Environ. Manage., 2021, 290, 112627.
[http://dx.doi.org/10.1016/j.jenvman.2021.112627] [PMID: 33991767]
[2]
Gu, J.; Zhang, J.; Li, D.; Yuan, H.; Chen, Y. Hyper‐cross‐linked polymer based carbonaceous materials as efficient catalysts for ethyl levulinate production from carbohydrates. J. Chem. Technol. Biotechnol., 2019, 94(10), 3073-3083.
[http://dx.doi.org/10.1002/jctb.6107]
[3]
Singhania, R.; Patel, A.; Raj, T.; Tsai, M.L.; Chen, C.W.; Dong, C.D. Advances and challenges in biocatalysts application for high solid-loading of biomass for 2nd generation bio-ethanol production. Catalysts, 2022, 12(6), 615.
[http://dx.doi.org/10.3390/catal12060615]
[4]
Meng, X.; Wang, Y.; Conte, A.J.; Zhang, S.; Ryu, J.; Wie, J.J.; Pu, Y.; Davison, B.H.; Yoo, C.G.; Ragauskas, A.J. Applications of biomass-derived solvents in biomass pretreatment – Strategies, challenges, and prospects. Bioresour. Technol., 2023, 368, 128280.
[http://dx.doi.org/10.1016/j.biortech.2022.128280]
[5]
Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev., 2007, 107(6), 2411-2502.
[http://dx.doi.org/10.1021/cr050989d] [PMID: 17535020]
[6]
Yabushita, M.; Kobayashi, H.; Fukuoka, A. Catalytic transformation of cellulose into platform chemicals. Appl. Catal. B, 2014, 145, 1-9.
[http://dx.doi.org/10.1016/j.apcatb.2013.01.052]
[7]
Dowaki, T.; Guo, H.; Smith, R.L. Jr Lignin-derived biochar solid acid catalyst for fructose conversion into 5-ethoxymethylfurfural. Renew. Energy, 2022, 199, 1534-1542.
[http://dx.doi.org/10.1016/j.renene.2022.09.074]
[8]
Rackemann, D.W.; Doherty, W.O.S. The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod. Biorefin., 2011, 5(2), 198-214.
[http://dx.doi.org/10.1002/bbb.267]
[9]
Tao, C.; Peng, L.; Zhang, J.; He, L. Al-modified heteropolyacid facilitates alkyl levulinate production from cellulose and lignocellulosic biomass: Kinetics and mechanism studies. Fuel Process. Technol., 2021, 213, 106709.
[http://dx.doi.org/10.1016/j.fuproc.2020.106709]
[10]
Nandiwale, K.Y.; Pande, A.M.; Bokade, V.V. One step synthesis of ethyl levulinate biofuel by ethanolysis of renewable furfuryl alcohol over hierarchical zeolite catalyst. RSC Advances, 2015, 5(97), 79224-79231.
[http://dx.doi.org/10.1039/C5RA13520F]
[11]
Zainol, M.M.; Asmadi, M.; Iskandar, P.; Wan, A.W.A.N.; Amin, N.A.S.; Hoe, T.T. Ethyl levulinate synthesis from biomass derivative chemicals using iron doped sulfonated carbon cryogel catalyst. J. Clean. Prod., 2020, (281), 124686.
[12]
Huang, Z.; Hao, S.; Yuan, H. Synthesis of ethyl levulinate from cellulose over a double acid site catalyst. J. Chem. Technol. Biotechnol., 2022, 97(1), 240-253.
[http://dx.doi.org/10.1002/jctb.6934]
[13]
Pastore, C.; D’Ambrosio, V. Intensification of processes for the production of ethyl levulinate using AlCl3·6H2O. Energies, 2021, 14(5), 1273.
[http://dx.doi.org/10.3390/en14051273]
[14]
Zhang, Z.; Yuan, H.; Wang, Y.; Ke, Y. Preparation and characterisation of ordered mesoporous SO42−/Al2O3 and its catalytic activity in the conversion of furfuryl alcohol to ethyl levulinate. J. Solid State Chem., 2019, 280, 120991.
[http://dx.doi.org/10.1016/j.jssc.2019.120991]
[15]
Li, M.; Wei, J.; Yan, G.; Liu, H.; Tang, X.; Sun, Y.; Zeng, X.; Lei, T.; Lin, L. Cascade conversion of furfural to fuel bioadditive ethyl levulinate over bifunctional zirconium-based catalysts. Renew. Energy, 2020, 147, 916-923.
[http://dx.doi.org/10.1016/j.renene.2019.09.064]
[16]
Peng, L.; Gao, X.; Chen, K. Catalytic upgrading of renewable furfuryl alcohol to alkyl levulinates using AlCl3 as a facile, efficient, and reusable catalyst. Fuel, 2015, 160, 123-131.
[http://dx.doi.org/10.1016/j.fuel.2015.07.086]
[17]
Gupta, S.S.R.; Kantam, M.L. Catalytic conversion of furfuryl alcohol or levulinic acid into alkyl levulinates using a sulfonic acid-functionalized hafnium-based MOF. Catal. Commun., 2019, 124, 62-66.
[http://dx.doi.org/10.1016/j.catcom.2019.03.003]
[18]
Christensen, E.; Williams, A.; Paul, S.; Burton, S.; McCormick, R.L. Properties and performance of levulinate esters as diesel blend components. Energy Fuels, 2011, 25(11), 5422-5428.
[http://dx.doi.org/10.1021/ef201229j]
[19]
Tiong, Y.W.; Yap, C.L.; Gan, S.; Yap, W.S.P. Kinetic and thermodynamic studies of oil palm mesocarp fiber cellulose conversion to levulinic acid and upgrading to ethyl levulinate via indium trichloride-ionic liquids. Renew. Energy, 2020, 146, 932-943.
[http://dx.doi.org/10.1016/j.renene.2019.07.024]
[20]
Pithadia, D.; Patel, A.; Hatiya, V. 12-Tungstophosphoric acid anchored to MCM-22, as a novel sustainable catalyst for the synthesis of potential biodiesel blend, levulinate ester. Renew. Energy, 2022, 187, 933-943.
[http://dx.doi.org/10.1016/j.renene.2022.01.106]
[21]
Zhou, S.; Wu, L.; Bai, J.; Lei, M.; Long, M.; Huang, K. Catalytic esterification of levulinic acid into the biofuel n-butyl levulinate over nanosized TiO2 particles. Nanomaterials, 2022, 12(21), 3870.
[http://dx.doi.org/10.3390/nano12213870] [PMID: 36364645]
[22]
Gautam, P.; Barman, S.; Ali, A. Catalytic synthesis of energy-rich fuel additive levulinate esters from levulinic acid using modified ultra-stable zeolite Y. ChemistrySelect, 2022, 7(40), e202203044.
[http://dx.doi.org/10.1002/slct.202203044]
[23]
Jia, S.; Wang, M.; Ma, J.; Liu, X.; Zhang, Y.; Xu, Z. Metal chloride mediated efficient conversion of Hydroxymethylfurfural (HMF) into long-chain levulinate ester. BioResources, 2021, 17(1), 849-861.
[http://dx.doi.org/10.15376/biores.17.1.849-861]
[24]
Bunrit, A.; Butburee, T.; Liu, M.; Huang, Z.; Meeporn, K.; Phawa, C.; Zhang, J.; Kuboon, S.; Liu, H.; Faungnawakij, K.; Wang, F. Photo–thermo-dual catalysis of levulinic acid and levulinate ester to γ-. Valerolactone. ACS Catal., 2022, 12(3), 1677-1685.
[http://dx.doi.org/10.1021/acscatal.1c04959]
[25]
Kulikova, M.V.; Krylova, A.Y.; Zhagfarov, F.G.; Krysanova, K.O.; Lapidus, A.L. Plant biomass as a raw material for producing basic organic sysnthesis products. Chem. Technol. Fuels Oils, 2022, 58(2), 320-326.
[http://dx.doi.org/10.1007/s10553-022-01387-3]
[26]
Sun, Z.; Fridrich, B.; de Santi, A.; Elangovan, S.; Barta, K. Bright side of lignin depolymerization: Toward new platform chemicals. Chem. Rev., 2018, 118(2), 614-678.
[http://dx.doi.org/10.1021/acs.chemrev.7b00588] [PMID: 29337543]
[27]
Jing, Y.; Dong, L.; Guo, Y.; Liu, X.; Wang, Y. Chemicals from lignin: A review of catalytic conversion involving hydrogen. ChemSusChem, 2020, 13(17), 4181-4198.
[http://dx.doi.org/10.1002/cssc.201903174] [PMID: 31886600]
[28]
Hao, H.; Abe, Y.; Guo, H.; Zhang, X.; Lee Smith, R. Jr Catalytic transfer hydrogenation and ethanolysis of furfural to ethyl levulinate using sulfonated Hf- or Ni-catalysts prepared with mixed solvents. ACS Sustain. Chem.& Eng., 2022, 10(49), 16261-16270.
[http://dx.doi.org/10.1021/acssuschemeng.2c04867]
[29]
Chen, X.; Zhang, Y.; Hou, T.; Han, L.; Xiao, W. Catalysis performance comparison of a Brønsted acid H2SO4 and a Lewis acid Al2(SO4)3 in methyl levulinate production from biomass carbohydrates. J. Energy Chem., 2018, 27(02), 231-237.
[30]
Zhao, S.; Xu, G.; Chang, C.; Fang, S.; Liu, Z.; Du, F. Direct conversion of carbohydrates into ethyl levulinate with potassium phosphotungstate as an efficient catalyst. Catalysts, 2015, 5(4), 1897-1910.
[http://dx.doi.org/10.3390/catal5041897]
[31]
Sharghi, H.; Shiri, P.; Aberi, M. An overview on recent advances in the synthesis of sulfonated organic materials, sulfonated silica materials, and sulfonated carbon materials and their catalytic applications in chemical processes. Beilstein J. Org. Chem., 2018, 14, 2745-2770.
[http://dx.doi.org/10.3762/bjoc.14.253] [PMID: 30498525]
[32]
Xu, L.; Xu, H.; Wu, T.; Wu, S.; Kan, Q. Synthesis and catalytic applications of novel composite molecular sieves. Chin. J. Catal., 2006, 27(12), 1149-1158.
[33]
Sohn, J.R. Recent advances in solid superacids. J. Ind. Eng. Chem., 2004, 10(1), 1-15.
[34]
Wu, J.; Shao, Y.; Jing, G.; Zhang, Z.; Ye, Z.; Hu, X. Design of graphene oxide by a one‐pot synthetic route for catalytic conversion of furfural alcohol to ethyl levulinate. J. Chem. Technol. Biotechnol., 2019, 94(10), 3093-3101.
[http://dx.doi.org/10.1002/jctb.6116]
[35]
Peng, L.; Gao, X.; Liu, Y.; Zhang, J.; He, L. Coupled transfer hydrogenation and alcoholysis of furfural to yield alkyl levulinate over multifunctional zirconia-zeolite-supported heteropoly acid. Energy Fuels, 2021, 35(5), 4182-4190.
[http://dx.doi.org/10.1021/acs.energyfuels.0c04222]
[36]
Peng, L.; Gao, X.; Yu, X.; Li, H.; Zhang, J.; He, L. Facile and high-yield synthesis of alkyl levulinate directly from furfural by combining Zr-MCM-41 and amberlyst-15 without external H-2. Energy Fuels, 2019, 33(1), 330-339.
[http://dx.doi.org/10.1021/acs.energyfuels.8b03422]
[37]
Liu, J.; Tang, Y.; Fu, X. Efficient conversion of carbohydratesto ethoxymethylfurfural and levulinic acid ethyl ester under the catalysis of recyclable DMSO/Brønsted acids. Stärke, 2015, 67(9-10), 765-771.
[http://dx.doi.org/10.1002/star.201400235]
[38]
Morales, G.; Paniagua, M.; Melero, J.A.; Iglesias, J. Efficient production of 5-ethoxymethylfurfural from fructose by sulfonic mesostructured silica using DMSO as co-solvent. Catal. Today, 2017, 279, 305-316.
[http://dx.doi.org/10.1016/j.cattod.2016.02.016]
[39]
Xu, G.; Chen, B.; Zheng, Z.; Li, K.; Tao, H. One-pot ethanolysis of carbohydrates to promising biofuels: 5-ethoxymethylfurfural and ethyl levulinate. Asia-Pac. J. Chem. Eng., 2017, 12(4), 527-535.
[http://dx.doi.org/10.1002/apj.2095]
[40]
Ma, X.; Huang, W.; Song, Y.; Han, J.; Wu, J.; Wang, L.; Wang, Y. Novel Recyclable UCST-type immobilized glucose isomerase biocatalyst with excellent performance for isomerization of glucose to fructose. J. Agric. Food Chem., 2022, 70(43), 13959-13968.
[http://dx.doi.org/10.1021/acs.jafc.2c05667] [PMID: 36264233]
[41]
Mascal, M.; Nikitin, E.B. Comment on processes for the direct conversion of cellulose or cellulosic biomass into levulinate esters. ChemSusChem, 2010, 3(12), 1349-1351.
[http://dx.doi.org/10.1002/cssc.201000326] [PMID: 21089092]
[42]
da Silva, M.J.; Rodrigues, A.A.; Pinheiro, P.F. Solketal synthesis from glycerol and acetone in the presence of metal salts: A Lewis or Brønsted acid catalyzed reaction? Fuel, 2020, 276, 118164.
[http://dx.doi.org/10.1016/j.fuel.2020.118164]
[43]
Clark, J.H. Green chemistry: Challenges and opportunities. Green Chem., 1999, 1(1), 1-8.
[http://dx.doi.org/10.1039/a807961g]
[44]
Bergbreiter, D.E.; Tian, J.; Hongfa, C. Using soluble polymer supports to facilitate homogeneous catalysis. Chem. Rev., 2009, 109(2), 530-582.
[http://dx.doi.org/10.1021/cr8004235] [PMID: 19209941]
[45]
Zhao, H.; Holladay, J.E.; Brown, H.; Zhang, Z.C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science, 2007, 316(5831), 1597-1600.
[http://dx.doi.org/10.1126/science.1141199] [PMID: 17569858]
[46]
Martins, F.; Rodrigues, F.; Silva, M. Fe2(SO4)3-catalyzed levulinic acid esterification: Production of fuel bioadditives. Energies, 2018, 11(5), 1263.
[http://dx.doi.org/10.3390/en11051263]
[47]
Dai, J.; Peng, L.; Li, H. Intensified ethyl levulinate production from cellulose using a combination of low loading H2SO4 and Al(OTf)3. Catal. Commun., 2018, 103, 116-119.
[http://dx.doi.org/10.1016/j.catcom.2017.10.007]
[48]
Li, C.; Zhang, Z.; Zhao, Z.K. Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation. Tetrahedron Lett., 2009, 50(38), 5403-5405.
[http://dx.doi.org/10.1016/j.tetlet.2009.07.053]
[49]
Saravanamurugan, S.; Nguyen Van Buu, O.; Riisager, A. Conversion of mono- and disaccharides to ethyl levulinate and ethyl pyranoside with sulfonic acid-functionalized ionic liquids. ChemSusChem, 2011, 4(6), 723-726.
[http://dx.doi.org/10.1002/cssc.201100137] [PMID: 21608135]
[50]
Amarasekara, A.S.; Wiredu, B. Acidic ionic liquid catalyzed one-pot conversion of cellulose to ethyl levulinate and levulinic acid in ethanol-water solvent system. BioEnergy Res., 2014, 7(4), 1237-1243.
[http://dx.doi.org/10.1007/s12155-014-9459-z]
[51]
Song, C.; Liu, S.; Peng, X.; Long, J.; Lou, W.; Li, X. Catalytic conversion of carbohydrates to levulinate ester over heteropolyanion-based ionic liquids. ChemSusChem, 2016, 9(23), 3307-3316.
[http://dx.doi.org/10.1002/cssc.201601080] [PMID: 27863064]
[52]
Zhu, W.; Chang, C.; Ma, C.; Du, F. Kinetics of glucose ethanolysis catalyzed by extremely low sulfuric acid in ethanol medium. Chin. J. Chem. Eng., 2014, 22(2), 238-242.
[http://dx.doi.org/10.1016/S1004-9541(14)60049-5]
[53]
Li, H.; Peng, L.; Lin, L.; Chen, K.; Zhang, H. Synthesis, isolation and characterization of methyl levulinate from cellulose catalyzed by extremely low concentration acid. J. Energy Chem., 2013, 22(6), 895-901.
[http://dx.doi.org/10.1016/S2095-4956(14)60269-2]
[54]
Weiqi, W.; Shubin, W. Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Brønsted acids. Chem. Eng. J., 2017, 307, 389-398.
[http://dx.doi.org/10.1016/j.cej.2016.08.099]
[55]
Yue, G.; Wu, G.; Hao, X. The Status Quo and prospects of fuel ethanol process technology in China. Prog. Chem., 2007, 19(7-8), 1084-1090.
[56]
Kumari, N.; Chhabra, T.; Kumar, S.; Krishnan, V. Nanoarchitectonics of sulfonated biochar from pine needles as catalyst for conversion of biomass derived chemicals to value added products. Catal. Commun., 2022, 168, 106467.
[http://dx.doi.org/10.1016/j.catcom.2022.106467]
[57]
Liu, C.; Zhang, K.; Liu, Y.; Wu, S. Esterification of levulinic acid into ethyl levulinate catalyzed by sulfonated bagasse-carbonized solid acid. BioResources, 2019, 14(1), 2186-2196.
[http://dx.doi.org/10.15376/biores.14.1.2186-2196]
[58]
Liu, R.; Chen, J.; Huang, X.; Chen, L.; Ma, L.; Li, X. Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chem., 2013, 15(10), 2895-2903.
[http://dx.doi.org/10.1039/c3gc41139g]
[59]
Nandiwale, K.Y.; Niphadkar, P.S.; Deshpande, S.S.; Bokade, V.V. Esterification of renewable levulinic acid to ethyl levulinate biodiesel catalyzed by highly active and reusable desilicated H-ZSM-5. J. Chem. Technol. Biotechnol., 2014, 89(10), 1507-1515.
[http://dx.doi.org/10.1002/jctb.4228]
[60]
Saravanamurugan, S.; Riisager, A. Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides. Catal. Commun., 2012, 17, 71-75.
[http://dx.doi.org/10.1016/j.catcom.2011.10.001]
[61]
Chang, C.; Xu, G.; Zhu, W.; Bai, J.; Fang, S. One-pot production of a liquid biofuel candidate-Ethyl levulinate from glucose and furfural residues using a combination of extremely low sulfuric acid and zeolite USY. Fuel, 2015, 140, 365-370.
[http://dx.doi.org/10.1016/j.fuel.2014.09.102]
[62]
An, R.; Kong, P.F.; Xu, G.Z.; Chang, C.; Bai, J.; Fang, S.Q. Dealuminized superstable Y zeolite catalyzed the alcohololysis of cellulose to ethyl levulinate. Chem. Eng. J., 2016, 67(11), 4643-4651.
[63]
Fernandes, D.R.; Rocha, A.S.; Mai, E.F.; Mota, C.J.A.; Teixeira da Silva, V. Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl. Catal. A Gen., 2012, 425-426, 199-204.
[http://dx.doi.org/10.1016/j.apcata.2012.03.020]
[64]
Ramli, N.A.S.; Hisham, N.I.; Saidina Amin, N.A. Esterification of levulinic acid to levulinate esters in the presence of sulfated silica catalyst. Sains Malays., 2018, 47(6), 1131-1138.
[http://dx.doi.org/10.17576/jsm-2018-4706-08]
[65]
Peng, L.; Lin, L.; Li, H. Extremely low sulfuric acid catalyst system for synthesis of methyl levulinate from glucose. Ind. Crops Prod., 2012, 40, 136-144.
[http://dx.doi.org/10.1016/j.indcrop.2012.03.007]
[66]
Cheng, Y.; Wang, X.; Feng, L.; Zhang, X. Hierarchically ordered porous solid acid: Preparation and application as a biodiesel catalyst. ChemistrySelect, 2022, 7(15), e202200514.
[http://dx.doi.org/10.1002/slct.202200514]
[67]
Wang, Y.; Arandiyan, H.; Scott, J.; Bagheri, A.; Dai, H.; Amal, R. Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: A review. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(19), 8825-8846.
[http://dx.doi.org/10.1039/C6TA10896B]
[68]
Chang, C.; An, R.; Kong, P.F. SO42-/ZrO2/USY catalyzed the alcohololysis of cellulose to produce ethyl levulinate. ACS Appl. Mater. Interfaces, 2018, 39(02), 80-85.
[69]
Babaei, Z.; Najafi Chermahini, A.; Dinari, M. Alumina-coated mesoporous silica SBA-15 as a solid catalyst for catalytic conversion of fructose into liquid biofuel candidate ethyl levulinate. Chem. Eng. J., 2018, 352, 45-52.
[http://dx.doi.org/10.1016/j.cej.2018.07.004]
[70]
Morales, G.; Osatiashtiani, A.; Hernández, B.; Iglesias, J.; Melero, J.A.; Paniagua, M.; Robert Brown, D.; Granollers, M.; Lee, A.F.; Wilson, K. Conformal sulfated zirconia monolayer catalysts for the one-pot synthesis of ethyl levulinate from glucose. Chem. Commun., 2014, 50(79), 11742-11745.
[http://dx.doi.org/10.1039/C4CC04594G] [PMID: 25144908]
[71]
Bodachivskyi, I.; Kuzhiumparambil, U.; Williams, D.B.G. A systematic study of metal triflates in catalytic transformations of glucose in water and methanol: Identifying the interplay of Brønsted and Lewis acidity. ChemSusChem, 2019, 12(14), 3263-3270.
[http://dx.doi.org/10.1002/cssc.201900292] [PMID: 30912243]
[72]
Zhu, P.; Meier, S.; Saravanamurugan, S.; Riisager, A. Modification of commercial Y zeolites by alkaline-treatment for improved performance in the isomerization of glucose to fructose. Mol. Catal., 2021, 510, 111686.
[http://dx.doi.org/10.1016/j.mcat.2021.111686]
[73]
Zhao, P.; Zhou, C.; Li, J.; Xu, S.; Hu, C. Synergistic effect of different species in stannic chloride solution on the production of levulinic acid from biomass. ACS Sustain. Chem.& Eng., 2019, 7(5), 5176-5183.
[http://dx.doi.org/10.1021/acssuschemeng.8b06062]
[74]
Song, D.; Zhang, Q.; Sun, Y.; Zhang, P.; Guo, Y.H.; Hu, J.L. Design of ordered mesoporous sulfonic acid functionalized ZrO2/organosilica bifunctional catalysts for direct catalytic conversion of glucose to ethyl levulinate. ChemCatChem, 2018, 10(21), 4953-4965.
[http://dx.doi.org/10.1002/cctc.201801089]
[75]
Mulik, N.; Niphadkar, P.; Bokade, V. Synergetic combination of H2Zr1PW12O40 and Sn‐Beta as potential solid acid catalyst for direct one‐step transformation of glucose to ethyl levulinate, a biofuel additive. Environ. Prog. Sustain. Energy, 2019, 38(5), 13173.
[http://dx.doi.org/10.1002/ep.13173]
[76]
Guo, H.; Hirosaki, Y.; Qi, X.; Lee Smith, R. Jr Synthesis of ethyl levulinate over amino-sulfonated functional carbon materials. Renew. Energy, 2020, 157, 951-958.
[http://dx.doi.org/10.1016/j.renene.2020.05.103]
[77]
Zainol, M.M.; Asmadi, M.; Amin, N.A.S.; Roslan, M.N.F. Glucose-derived bio-fuel additive via ethanolysis catalyzed by zinc modified sulfonated carbon. Mater. Today Proc., 2022, 57, 1008-1013.
[http://dx.doi.org/10.1016/j.matpr.2021.08.065]
[78]
Zhang, J.; Chen, J. Modified solid acids derived from biomass based cellulose for one-step conversion of carbohydrates into ethyl levulinate. J. Energy Chem., 2016, 25(5), 747-753.
[http://dx.doi.org/10.1016/j.jechem.2016.06.005]
[79]
Patil, C.R.; Niphadkar, P.S.; Bokade, V.V.; Joshi, P.N. Esterification of levulinic acid to ethyl levulinate over bimodal micro–mesoporous H/BEA zeolite derivatives. Catal. Commun., 2014, 43, 188-191.
[http://dx.doi.org/10.1016/j.catcom.2013.10.006]
[80]
Tiong, Y.W.; Yap, C.L.; Gan, S.; Yap, W.S.P. Conversion of biomass and its derivatives to llevulinic acid and levulinate esters via ionic liquids. Ind. Eng. Chem. Res., 2018, 57(14), 4749-4766.
[http://dx.doi.org/10.1021/acs.iecr.8b00273]
[81]
Zainol, M.M.; Asmadi, M.; Amin, N.A.S. Bio-fuel additive synthesized from levulinic acid using ionic liquid-furfural based carbon catalyst: Kinetic, thermodynamic and mechanism studies. Chem. Eng. Sci., 2022, 247, 117079.
[http://dx.doi.org/10.1016/j.ces.2021.117079]
[82]
Nowicki, J.; Nowakowska-Bogdan, E. Ethanolysis of selected catalysis by functionalized acidic ionic liquids: An unexpected effect of ILs structural functionalization on selectivity phenomena. New J. Chem., 2022, 46(4), 1857-1866.
[http://dx.doi.org/10.1039/D1NJ04885F]
[83]
Chang, C.; Li, B.; Xu, G.; Sun, P. Direct conversion of glucose in ethanol and ethanol/water mixed medium. Trans. Tech. Publications Ltd., 2013, 29, 312-315.
[84]
Chang, J.; Bai, J.; Chang, C.; Zhao, S.; Li, H.; Fang, S. Products distribution of glucose through ethanolysis reaction catalyzed by extremely low acid under high temperature. Chem. Ind. For. Prod., 2015, 35(6), 8-14.
[85]
Guan, Q.; Jiang, J.; Xu, J.; Wang, K.; Feng, J. Preparation of ethyl levulinate by pressurized liquefaction of wheat straw. Chem. Ind., 2016, 36(5), 127-132.
[86]
Kumaravel, S.; Thiripuranthagan, S.; Radhakrishnan, R.; Erusappan, E.; Durai, M.; Devarajan, A.; Mukannan, A. Liquid phase esterification of levulinic acid into ethyl levulinate over sulphobenzylated nanoporous Al-SBA-15 catalyst. J. Nanosci. Nanotechnol., 2019, 19(11), 6965-6977.
[http://dx.doi.org/10.1166/jnn.2019.16637] [PMID: 31039849]
[87]
Mthembu, L.D.; Lokhat, D.; Deenadayalu, N. Esterification of levulinic acid to ethyl levulinate: Optimization of process conditions using commercial levulinic acid and extension to the use of levulinic acid derived from depithed sugarcane bagasse. Biomass Convers. Biorefin., 2023, 13(4), 3113-3122.
[http://dx.doi.org/10.1007/s13399-021-01632-5]
[88]
Pasha, N.; Lingaiah, N.; Shiva, R. Zirconium exchanged phosphotungstic acid catalysts for esterification of levulinic acid to ethyl levulinate. Catal. Lett., 2019, 149(9), 2500-2507.
[http://dx.doi.org/10.1007/s10562-019-02862-z]
[89]
Kuwahara, Y.; Fujitani, T.; Yamashita, H. Esterification of levulinic acid with ethanol over sulfated mesoporous zirconosilicates: Influences of the preparation conditions on the structural properties and catalytic performances. Catal. Today, 2014, 237, 18-28.
[http://dx.doi.org/10.1016/j.cattod.2013.11.008]
[90]
Liu, Y.; Liu, C.L.; Wu, H.Z.; Dong, W.S. An efficient catalyst for the conversion of fructose into methyl levulinate. Catal. Lett., 2013, 143(12), 1346-1353.
[http://dx.doi.org/10.1007/s10562-013-1094-3]
[91]
Tan, J.; Liu, Q.; Chen, L.; Wang, T.; Ma, L.; Chen, G. Efficient production of ethyl levulinate from cassava over Al2(SO4)3 catalyst in ethanol–water system. J. Energy Chem., 2017, 26(1), 115-120.
[http://dx.doi.org/10.1016/j.jechem.2016.08.004]
[92]
Bosilj, M.; Schmidt, J.; Fischer, A.; White, R.J. One pot conversion of glucose to ethyl levulinate over a porous hydrothermal acid catalyst in green solvents. RSC Advances, 2019, 9(35), 20341-20344.
[http://dx.doi.org/10.1039/C9RA03902C] [PMID: 35514716]
[93]
Kim, J.; Han, J. Bio-based process for the catalytic production of ethyl levulinate from cellulose. Appl. Energy, 2021, 300, 117430.
[94]
Chang, C.; Xu, G.; Jiang, X. Production of ethyl levulinate by direct conversion of wheat straw in ethanol media. Bioresour. Technol., 2012, 121, 93-99.
[http://dx.doi.org/10.1016/j.biortech.2012.06.105] [PMID: 22858471]
[95]
Peng, L.; Lin, L.; Zhang, J.; Shi, J.; Liu, S. Solid acid catalyzed glucose conversion to ethyl levulinate. Appl. Catal. A Gen., 2011, 397(1-2), 259-265.
[http://dx.doi.org/10.1016/j.apcata.2011.03.008]
[96]
Démolis, A.; Essayem, N.; Rataboul, F. Synthesis and applications of alkyl levulinates. ACS Sustain. Chem.& Eng., 2014, 2(6), 1338-1352.
[http://dx.doi.org/10.1021/sc500082n]
[97]
Lomba, L.; Giner, B.; Zuriaga, E.; Moya, J.; Lafuente, C. Corrigendum to ‘Self-aggregation of liquids from biomass in aqueous solution’. J. Chem. Thermodyn., 2014, 78, 280-281.
[http://dx.doi.org/10.1016/j.jct.2014.04.007]
[98]
Zhang, Y.; Chen, X.; Lyu, X.; Zhao, G.; Zhao, T.; Han, L.; Xiao, W. Aluminum phosphotungstate as a promising bifunctional catalyst for biomass carbohydrate transformation to methyl levulinate under mild conditions. J. Clean. Prod., 2019, 215, 712-720.
[http://dx.doi.org/10.1016/j.jclepro.2019.01.062]
[99]
Lei, T.; Wang, Z.; Chang, X.; Lin, L.; Yan, X.; Sun, Y.; Shi, X.; He, X.; Zhu, J. Performance and emission characteristics of a diesel engine running on optimized ethyl levulinate–biodiesel–diesel blends. Energy, 2016, 95, 29-40.
[http://dx.doi.org/10.1016/j.energy.2015.11.059]
[100]
Cen, Y.; Zhu, S.; Guo, J.; Chai, J.; Jiao, W.; Wang, J.; Fan, W. Supported cobalt catalysts for the selective hydrogenation of ethyl levulinate to various chemicals. RSC Advances, 2018, 8(17), 9152-9160.
[http://dx.doi.org/10.1039/C8RA01316K] [PMID: 35541863]
[101]
Zhang, Z. Synthesis of γ-Valerolactone from carbohydrates and its applications. ChemSusChem, 2016, 9(2), 156-171.
[http://dx.doi.org/10.1002/cssc.201501089] [PMID: 26733161]
[102]
Vidal, J.D.; Climent, M.J.; Corma, A.; Concepcion, D.P.; Iborra, S. One‐pot selective catalytic synthesis of pyrrolidone derivatives from ethyl levulinate and nitro compounds. ChemSusChem, 2017, 10(1), 119-128.
[http://dx.doi.org/10.1002/cssc.201601333] [PMID: 27860418]
[103]
Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[104]
Horváth, I. T. 10th Annual Green Chemistry & Engineering Conference; Washington, DC July, 2006, p. 26-30.
[105]
Vidal, J.D.; Climent, M.J.; Concepción, P.; Corma, A.; Iborra, S.; Sabater, M.J. Chemicals from biomass: Chemoselective reductive amination of ethyl levulinate with amines. ACS Catal., 2015, 5(10), 5812-5821.
[http://dx.doi.org/10.1021/acscatal.5b01113]
[106]
Climent, M.J.; Corma, A.; Iborra, S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem., 2014, 16(2), 516-547.
[http://dx.doi.org/10.1039/c3gc41492b]
[107]
Pace, V.; Hoyos, P.; Castoldi, L.; Domínguez de María, P.; Alcántara, A.R. 2-Methyltetrahydrofuran (2-MeTHF): A biomass-derived solvent with broad application in organic chemistry. ChemSusChem, 2012, 5(8), 1369-1379.
[http://dx.doi.org/10.1002/cssc.201100780] [PMID: 22887922]
[108]
Leal Silva, J.F.; Grekin, R.; Mariano, A.P.; Maciel Filho, R. Making levulinic acid and ethyl levulinate economically viable: A worldwide technoeconomic and environmental assessment of possible routes. Energy Technol., 2018, 6(4), 613-639.
[http://dx.doi.org/10.1002/ente.201700594]
[109]
Hayes, M. DIBANET-The production of sustainable diesel-misciblebiofuels from the residues and wastes of Europe and Latin America., 2009. Available from: https://cordis.europa.eu/project/id/227248/fr
[110]
Heda, J.; Niphadkar, P.; Bokade, V. Efficient synergetic combination of H-USY and SnO2 for direct conversion of glucose into ethyl levulinate (biofuel additive). Energy Fuels, 2019, 33(3), 2319-2327.
[http://dx.doi.org/10.1021/acs.energyfuels.8b04395]
[111]
Joshi, H.; Moser, B.R.; Toler, J.; Smith, W.F.; Walker, T. Ethyl levulinate: A potential bio-based diluent for biodiesel which improves cold flow properties. Biomass Bioenergy, 2011, 35(7), 3262-3266.
[http://dx.doi.org/10.1016/j.biombioe.2011.04.020]
[112]
Rossini, S. The impact of catalytic materials on fuel reformulation. Catal. Today, 2003, 77(4), 467-484.
[http://dx.doi.org/10.1016/S0920-5861(02)00386-3]
[113]
Qi, D.H.; Chen, H.; Geng, L.M.; Bian, Y.Z. Effect of diethyl ether and ethanol additives on the combustion and emission characteristics of biodiesel-diesel blended fuel engine. Renew. Energy, 2011, 36(4), 1252-1258.
[http://dx.doi.org/10.1016/j.renene.2010.09.021]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy