Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

At the Crossroads of TNF α Signaling and Cancer

Author(s): Sonal M. Manohar*

Volume 17, 2024

Published on: 19 October, 2023

Article ID: e080923220828 Pages: 20

DOI: 10.2174/1874467217666230908111754

Price: $65

Abstract

Tumor necrosis factor-alpha (TNFα) is a pleiotropic pro-inflammatory cytokine of the TNF superfamily. It regulates key cellular processes such as death, and proliferation besides its well-known role in immune response through activation of various intracellular signaling pathways (such as MAPK, Akt, NF-κB, etc.) via complex formation by ligand-activated TNFα receptors. TNFα tightly regulates the activity of key signaling proteins via their phosphorylation and/or ubiquitination which culminate in specific cellular responses. Deregulated TNFα signaling is implicated in inflammatory diseases, neurological disorders, and cancer. TNFα has been shown to exert opposite effects on cancer cells since it activates prosurvival as well as anti-survival pathways depending on various contexts such as cell type, concentration, cell density, etc. A detailed understanding of TNFα signaling phenomena is crucial for understanding its pleiotropic role in malignancies and its potential as a drug target or an anticancer therapeutic. This review enlightens complex cellular signaling pathways activated by TNFα and further discusses its role in various cancers.

[1]
Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov., 2022, 12(1), 31-46.
[http://dx.doi.org/10.1158/2159-8290.CD-21-1059] [PMID: 35022204]
[2]
Wang, X.; Lin, Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin., 2008, 29(11), 1275-1288.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00889.x] [PMID: 18954521]
[3]
Wang, L.; Du, F.; Wang, X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell, 2008, 133(4), 693-703.
[http://dx.doi.org/10.1016/j.cell.2008.03.036] [PMID: 18485876]
[4]
Wajant, H.; Siegmund, D. TNFR1 and TNFR2 in the control of the life and death balance of macrophages. Front. Cell Dev. Biol., 2019, 7, 91.
[http://dx.doi.org/10.3389/fcell.2019.00091] [PMID: 31192209]
[5]
Salomon, B.L.; Leclerc, M.; Tosello, J.; Ronin, E.; Piaggio, E.; Cohen, J.L. Tumor necrosis factor α and regulatory T cells in oncoimmunology. Front. Immunol., 2018, 9, 444.
[http://dx.doi.org/10.3389/fimmu.2018.00444] [PMID: 29593717]
[6]
Aggarwal, B.B. Signalling pathways of the TNF superfamily: A double-edged sword. Nat. Rev. Immunol., 2003, 3(9), 745-756.
[http://dx.doi.org/10.1038/nri1184] [PMID: 12949498]
[7]
Tartaglia, L.A.; Ayres, T.M.; Wong, G.H.W.; Goeddel, D.V. A novel domain within the 55 kd TNF receptor signals cell death. Cell, 1993, 74(5), 845-853.
[http://dx.doi.org/10.1016/0092-8674(93)90464-2] [PMID: 8397073]
[8]
Ashkenazi, A.; Dixit, V.M. Death receptors: Signaling and modulation. Science., 1998, 281(5381), 1305-1308.
[http://dx.doi.org/10.1126/science.281.5381.1305] [PMID: 9721089]
[9]
Karin, M. NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb. Perspect. Biol., 2009, 1(5), a000141.
[http://dx.doi.org/10.1101/cshperspect.a000141] [PMID: 20066113]
[10]
Jang, D.; Lee, A.H.; Shin, H.Y.; Song, H.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The role of tumor necrosis factor alpha (TNF-α) in Autoimmune Disease and Current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci., 2021, 22(5), 2719.
[http://dx.doi.org/10.3390/ijms22052719] [PMID: 33800290]
[11]
Wajant, H.; Pfizenmaier, K.; Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ., 2003, 10(1), 45-65.
[http://dx.doi.org/10.1038/sj.cdd.4401189] [PMID: 12655295]
[12]
Chan, F.K.M.; Chun, H.J.; Zheng, L.; Siegel, R.M.; Bui, K.L.; Lenardo, M.J. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science., 2000, 288(5475), 2351-2354.
[http://dx.doi.org/10.1126/science.288.5475.2351] [PMID: 10875917]
[13]
Monaco, C.; Nanchahal, J.; Taylor, P.; Feldmann, M. Anti-TNF therapy: Past, present and future. Int. Immunol., 2015, 27(1), 55-62.
[http://dx.doi.org/10.1093/intimm/dxu102] [PMID: 25411043]
[14]
Webster, J.D.; Vucic, D. The balance of TNF mediated pathways regulates inflammatory cell death signaling in healthy and diseased tissues. Front. Cell Dev. Biol., 2020, 8, 365.
[http://dx.doi.org/10.3389/fcell.2020.00365] [PMID: 32671059]
[15]
Naudé, P.J.W.; den Boer, J.A.; Luiten, P.G.M.; Eisel, U.L.M. Tumor necrosis factor receptor cross-talk. FEBS J., 2011, 278(6), 888-898.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08017.x] [PMID: 21232019]
[16]
Dempsey, P.W.; Doyle, S.E.; He, J.Q.; Cheng, G. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev., 2003, 14(3-4), 193-209.
[http://dx.doi.org/10.1016/S1359-6101(03)00021-2] [PMID: 12787559]
[17]
Takada, H.; Chen, N.J.; Mirtsos, C.; Suzuki, S.; Suzuki, N.; Wakeham, A.; Mak, T.W.; Yeh, W.C. Role of SODD in regulation of tumor necrosis factor responses. Mol. Cell. Biol., 2003, 23(11), 4026-4033.
[http://dx.doi.org/10.1128/MCB.23.11.4026-4033.2003] [PMID: 12748303]
[18]
Hsu, H.; Shu, H.B.; Pan, M.G.; Goeddel, D.V. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell, 1996, 84(2), 299-308.
[http://dx.doi.org/10.1016/S0092-8674(00)80984-8] [PMID: 8565075]
[19]
Schlatter, R.; Schmich, K.; Lutz, A.; Trefzger, J.; Sawodny, O.; Ederer, M.; Merfort, I. Modeling the TNFα-induced apoptosis pathway in hepatocytes. PLoS One, 2011, 6(4), e18646.
[http://dx.doi.org/10.1371/journal.pone.0018646] [PMID: 21533085]
[20]
Blackwell, K.; Zhang, L.; Thomas, G.S.; Sun, S.; Nakano, H.; Habelhah, H. TRAF2 phosphorylation modulates tumor necrosis factor alpha-induced gene expression and cell resistance to apoptosis. Mol. Cell. Biol., 2009, 29(2), 303-314.
[http://dx.doi.org/10.1128/MCB.00699-08] [PMID: 18981220]
[21]
Li, S.; Wang, L.; Dorf, M.E. PKC phosphorylation of TRAF2 mediates IKKalpha/beta recruitment and K63-linked polyubiquitination. Mol. Cell, 2009, 33(1), 30-42.
[http://dx.doi.org/10.1016/j.molcel.2008.11.023] [PMID: 19150425]
[22]
Varfolomeev, E.; Goncharov, T.; Fedorova, A.V.; Dynek, J.N.; Zobel, K.; Deshayes, K.; Fairbrother, W.J.; Vucic, D. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J. Biol. Chem., 2008, 283(36), 24295-24299.
[http://dx.doi.org/10.1074/jbc.C800128200] [PMID: 18621737]
[23]
Ea, C.K.; Deng, L.; Xia, Z.P.; Pineda, G.; Chen, Z.J. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell, 2006, 22(2), 245-257.
[http://dx.doi.org/10.1016/j.molcel.2006.03.026] [PMID: 16603398]
[24]
Li, H.; Kobayashi, M.; Blonska, M.; You, Y.; Lin, X. Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J. Biol. Chem., 2006, 281(19), 13636-13643.
[http://dx.doi.org/10.1074/jbc.M600620200] [PMID: 16543241]
[25]
Vanlangenakker, N.; Bertrand, M.J.M.; Bogaert, P.; Vandenabeele, P.; Vanden Berghe, T. TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis., 2011, 2(11), e230.
[http://dx.doi.org/10.1038/cddis.2011.111] [PMID: 22089168]
[26]
Wertz, I.E.; O’Rourke, K.M.; Zhou, H.; Eby, M.; Aravind, L.; Seshagiri, S.; Wu, P.; Wiesmann, C.; Baker, R.; Boone, D.L.; Ma, A.; Koonin, E.V.; Dixit, V.M. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature., 2004, 430(7000), 694-699.
[http://dx.doi.org/10.1038/nature02794] [PMID: 15258597]
[27]
Lademann, U.; Kallunki, T.; Jäättelä, M. A20 zinc finger protein inhibits TNF-induced apoptosis and stress response early in the signaling cascades and independently of binding to TRAF2 or 14-3-3 proteins. Cell Death Differ., 2001, 8(3), 265-272.
[http://dx.doi.org/10.1038/sj.cdd.4400805] [PMID: 11319609]
[28]
Hao, S. D. Baltimore D, RNA splicing regulates the temporal order of TNF-alpha-induced gene expression. Proc. Natl. Acad. Sci., 2013, 110, 11934-11939.
[http://dx.doi.org/10.1073/pnas.1309990110] [PMID: 23812748]
[29]
Enesa, K.; Zakkar, M.; Chaudhury, H.; Luong, A.; Rawlinson, L.; Mason, J.C.; Haskard, D.O.; Dean, J.L.; Evans, P.C. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: A novel negative feedback loop in pro-inflammatory signaling. J. Biol. Chem., 2008, 283(11), 7036-7045.
[http://dx.doi.org/10.1074/jbc.M708690200] [PMID: 18178551]
[30]
Kovalenko, A.; Chable-Bessia, C.; Cantarella, G.; Israël, A.; Wallach, D.; Courtois, G. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature, 2003, 424(6950), 801-805.
[http://dx.doi.org/10.1038/nature01802] [PMID: 12917691]
[31]
Trompouki, E.; Hatzivassiliou, E.; Tsichritzis, T.; Farmer, H.; Ashworth, A.; Mosialos, G. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature, 2003, 424(6950), 793-796.
[http://dx.doi.org/10.1038/nature01803] [PMID: 12917689]
[32]
Jono, H.; Lim, J.H.; Chen, L.F.; Xu, H.; Trompouki, E.; Pan, Z.K.; Mosialos, G.; Li, J.D. NF-kappaB is essential for induction of CYLD, the negative regulator of NF-kappaB: evidence for a novel inducible autoregulatory feedback pathway. J. Biol. Chem., 2004, 279(35), 36171-36174.
[http://dx.doi.org/10.1074/jbc.M406638200] [PMID: 15226292]
[33]
Sun, L.; Deng, L.; Ea, C.K.; Xia, Z.P.; Chen, Z.J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell, 2004, 14(3), 289-301.
[http://dx.doi.org/10.1016/S1097-2765(04)00236-9] [PMID: 15125833]
[34]
Zhou, H.; Wertz, I.; O’Rourke, K.; Ultsch, M.; Seshagiri, S.; Eby, M.; Xiao, W.; Dixit, V.M. Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature, 2004, 427(6970), 167-171.
[http://dx.doi.org/10.1038/nature02273] [PMID: 14695475]
[35]
Blonska, M.; Shambharkar, P.B.; Kobayashi, M.; Zhang, D.; Sakurai, H.; Su, B.; Lin, X. TAK1 is recruited to the tumor necrosis factor-alpha (TNF-alpha) receptor 1 complex in a receptor-interacting protein (RIP)-dependent manner and cooperates with MEKK3 leading to NF-kappaB activation. J. Biol. Chem., 2005, 280(52), 43056-43063.
[http://dx.doi.org/10.1074/jbc.M507807200] [PMID: 16260783]
[36]
Ling, L.; Cao, Z.; Goeddel, D.V. NF-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc. Natl. Acad. Sci., 1998, 95(7), 3792-3797.
[http://dx.doi.org/10.1073/pnas.95.7.3792] [PMID: 9520446]
[37]
Razani, B.; Zarnegar, B.; Ytterberg, A.J.; Shiba, T.; Dempsey, P.W.; Ware, C.F.; Loo, J.A.; Cheng, G. Negative feedback in noncanonical NF-kappaB signaling modulates NIK stability through IKKalpha-mediated phosphorylation. Sci. Signal., 2010, 3(123), ra41.
[http://dx.doi.org/10.1126/scisignal.2000778] [PMID: 20501937]
[38]
Nakano, H.; Shindo, M.; Sakon, S.; Nishinaka, S.; Mihara, M.; Yagita, H.; Okumura, K. Differential regulation of IκB kinase α and β by two upstream kinases, NF-κB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc. Natl. Acad. Sci., 1998, 95(7), 3537-3542.
[http://dx.doi.org/10.1073/pnas.95.7.3537] [PMID: 9520401]
[39]
Mahoney, D.J.; Cheung, H.H.; Mrad, R.L.; Plenchette, S.; Simard, C.; Enwere, E.; Arora, V.; Mak, T.W.; Lacasse, E.C.; Waring, J.; Korneluk, R.G. Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation. Proc. Natl. Acad. Sci., 2008, 105(33), 11778-11783.
[http://dx.doi.org/10.1073/pnas.0711122105] [PMID: 18697935]
[40]
Chen, L.F.; Greene, W.C. Shaping the nuclear action of NF-κB. Nat. Rev. Mol. Cell Biol., 2004, 5(5), 392-401.
[http://dx.doi.org/10.1038/nrm1368] [PMID: 15122352]
[41]
Chiao, P.J.; Miyamoto, S.; Verma, I.M. Autoregulation of I kappa B alpha activity. Proc. Natl. Acad. Sci., 1994, 91(1), 28-32.
[http://dx.doi.org/10.1073/pnas.91.1.28] [PMID: 8278379]
[42]
Sakurai, H.; Chiba, H.; Miyoshi, H.; Sugita, T.; Toriumi, W. IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J. Biol. Chem., 1999, 274(43), 30353-30356.
[http://dx.doi.org/10.1074/jbc.274.43.30353] [PMID: 10521409]
[43]
Zhong, H.; SuYang, H.; Erdjument-Bromage, H.; Tempst, P.; Ghosh, S. The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell, 1997, 89(3), 413-424.
[http://dx.doi.org/10.1016/S0092-8674(00)80222-6] [PMID: 9150141]
[44]
Müller, G.; Ayoub, M.; Storz, P.; Rennecke, J.; Fabbro, D.; Pfizenmaier, K. PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J., 1995, 14(9), 1961-1969.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb07188.x] [PMID: 7744003]
[45]
Wang, D.; Westerheide, S.D.; Hanson, J.L.; Baldwin, A.S., Jr Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J. Biol. Chem., 2000, 275(42), 32592-32597.
[http://dx.doi.org/10.1074/jbc.M001358200] [PMID: 10938077]
[46]
Zhong, H.; Voll, R.E.; Ghosh, S. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell, 1998, 1(5), 661-671.
[http://dx.doi.org/10.1016/S1097-2765(00)80066-0] [PMID: 9660950]
[47]
Delhalle, S.; Deregowski, V.; Benoit, V.; Merville, M.P.; Bours, V. NF-κB-dependent MnSOD expression protects adenocarcinoma cells from TNF-α-induced apoptosis. Oncogene., 2002, 21(24), 3917-3924.
[http://dx.doi.org/10.1038/sj.onc.1205489] [PMID: 12032830]
[48]
Sakon, S.; Xue, X.; Takekawa, M.; Sasazuki, T.; Okazaki, T.; Kojima, Y.; Piao, J.H.; Yagita, H.; Okumura, K.; Doi, T.; Nakano, H. NF- B inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J., 2003, 22(15), 3898-3909.
[http://dx.doi.org/10.1093/emboj/cdg379] [PMID: 12881424]
[49]
Pham, C.G.; Bubici, C.; Zazzeroni, F.; Papa, S.; Jones, J.; Alvarez, K.; Jayawardena, S.; De Smaele, E.; Cong, R.; Beaumont, C.; Torti, F.M.; Torti, S.V.; Franzoso, G. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell, 2004, 119(4), 529-542.
[http://dx.doi.org/10.1016/j.cell.2004.10.017] [PMID: 15537542]
[50]
Tang, G.; Minemoto, Y.; Dibling, B.; Purcell, N.H.; Li, Z.; Karin, M.; Lin, A. Inhibition of JNK activation through NF-κB target genes. Nature., 2001, 414(6861), 313-317.
[http://dx.doi.org/10.1038/35104568] [PMID: 11713531]
[51]
Micheau, O.; Lens, S.; Gaide, O.; Alevizopoulos, K.; Tschopp, J. NF-kappaB signals induce the expression of c-FLIP. Mol. Cell. Biol., 2001, 21(16), 5299-5305.
[http://dx.doi.org/10.1128/MCB.21.16.5299-5305.2001] [PMID: 11463813]
[52]
Catz, S.D.; Johnson, J.L. Transcriptional regulation of bcl-2 by nuclear factor κB and its significance in prostate cancer. Oncogene, 2001, 20(50), 7342-7351.
[http://dx.doi.org/10.1038/sj.onc.1204926] [PMID: 11704864]
[53]
Lee, S.Y.; Reichlin, A.; Santana, A.; Sokol, K.A.; Nussenzweig, M.C.; Choi, Y. TRAF2 is essential for JNK but not NF-kappaB activation and regulates lymphocyte proliferation and survival. Immunity., 1997, 7(5), 703-713.
[http://dx.doi.org/10.1016/S1074-7613(00)80390-8] [PMID: 9390693]
[54]
Song, H.Y.; Régnier, C.H.; Kirschning, C.J.; Goeddel, D.V.; Rothe, M. Tumor necrosis factor (TNF)-mediated kinase cascades: Bifurcation of nuclear factor-kappaB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc. Natl. Acad. Sci., 1997, 94(18), 9792-9796.
[55]
Shi, C.S.; Kehrl, J.H. Activation of stress-activated protein kinase/c-Jun N-terminal kinase, but not NF-kappaB, by the tumor necrosis factor (TNF) receptor 1 through a TNF receptor-associated factor 2- and germinal center kinase related-dependent pathway. J. Biol. Chem., 1997, 272(51), 32102-32107.
[http://dx.doi.org/10.1074/jbc.272.51.32102] [PMID: 9405407]
[56]
Yuasa, T.; Ohno, S.; Kehrl, J.H.; Kyriakis, J.M. Tumor necrosis factor signaling to stress-activated protein kinase (SAPK)/Jun NH2-terminal kinase (JNK) and p38. Germinal center kinase couples TRAF2 to mitogen-activated protein kinase/ERK kinase kinase 1 and SAPK while receptor interacting protein associates with a mitogen-activated protein kinase kinase kinase upstream of MKK6 and p38. J. Biol. Chem., 1998, 273(35), 22681-22692.
[http://dx.doi.org/10.1074/jbc.273.35.22681] [PMID: 9712898]
[57]
Xia, Y.; Makris, C.; Su, B.; Li, E.; Yang, J.; Nemerow, G.R.; Karin, M. MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc. Natl. Acad. Sci., 2000, 97(10), 5243-5248.
[http://dx.doi.org/10.1073/pnas.97.10.5243] [PMID: 10805784]
[58]
Kim, J.W.; Joe, C.O.; Choi, E.J. Role of receptor-interacting protein in tumor necrosis factor-alpha -dependent MEKK1 activation. J. Biol. Chem., 2001, 276(29), 27064-27070.
[http://dx.doi.org/10.1074/jbc.M009364200] [PMID: 11369754]
[59]
Siow, Y.L.; Kalmar, G.B.; Sanghera, J.S.; Tai, G.; Oh, S.S.; Pelech, S.L. Identification of two essential phosphorylated threonine residues in the catalytic domain of Mekk1. Indirect activation by Pak3 and protein kinase C. J. Biol. Chem., 1997, 272(12), 7586-7594.
[http://dx.doi.org/10.1074/jbc.272.12.7586] [PMID: 9065412]
[60]
Zhou, L.; Tan, A.; Iasvovskaia, S.; Li, J.; Lin, A.; Hershenson, M.B. Ras and mitogen-activated protein kinase kinase kinase-1 coregulate activator protein-1- and nuclear factor-kappaB-mediated gene expression in airway epithelial cells. Am. J. Respir. Cell Mol. Biol., 2003, 28(6), 762-769.
[http://dx.doi.org/10.1165/rcmb.2002-0261OC] [PMID: 12600818]
[61]
Ichijo, H.; Nishida, E.; Irie, K.; Dijke, P.; Saitoh, M.; Moriguchi, T.; Takagi, M.; Matsumoto, K.; Miyazono, K.; Gotoh, Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science, 1997, 275(5296), 90-94.
[http://dx.doi.org/10.1126/science.275.5296.90] [PMID: 8974401]
[62]
Park, H.S.; Kim, M.S.; Huh, S.H.; Park, J.; Chung, J.; Kang, S.S.; Choi, E.J. Akt (protein kinase B) negatively regulates SEK1 by means of protein phosphorylation. J. Biol. Chem., 2002, 277(4), 2573-2578.
[http://dx.doi.org/10.1074/jbc.M110299200] [PMID: 11707464]
[63]
De Smaele, E.; Zazzeroni, F.; Papa, S.; Nguyen, D.U.; Jin, R.; Jones, J.; Cong, R.; Franzoso, G. Induction of gadd45β by NF-κB downregulates pro-apoptotic JNK signalling. Nature, 2001, 414(6861), 308-313.
[http://dx.doi.org/10.1038/35104560] [PMID: 11713530]
[64]
Yang, Z.; Song, L.; Huang, C. Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades. Curr. Cancer Drug. Targets., 2009, 9(8), 915-930.
[http://dx.doi.org/10.2174/156800909790192383] [PMID: 20025601]
[65]
Liu, J.; Minemoto, Y.; Lin, A. c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, is essential for tumor necrosis factor alpha-induced c-Jun kinase activation and apoptosis. Mol. Cell. Biol., 2004, 24(24), 10844-10856.
[http://dx.doi.org/10.1128/MCB.24.24.10844-10856.2004] [PMID: 15572687]
[66]
Deng, Y.; Ren, X.; Yang, L.; Lin, Y.; Wu, X. A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell., 2003, 115(1), 61-70.
[http://dx.doi.org/10.1016/S0092-8674(03)00757-8] [PMID: 14532003]
[67]
Ahmed, N.; Zeng, M.; Sinha, I.; Polin, L.; Wei, W.Z.; Rathinam, C.; Flavell, R.; Massoumi, R.; Venuprasad, K. The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation. Nat. Immunol., 2011, 12(12), 1176-1183.
[http://dx.doi.org/10.1038/ni.2157] [PMID: 22057290]
[68]
Ventura, J.J.; Cogswell, P.; Flavell, R.A.; Baldwin, A.S., Jr; Davis, R.J. JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev., 2004, 18(23), 2905-2915.
[http://dx.doi.org/10.1101/gad.1223004] [PMID: 15545623]
[69]
Yamamoto, K.; Ichijo, H.; Korsmeyer, S.J. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol. Cell. Biol., 1999, 19(12), 8469-8478.
[http://dx.doi.org/10.1128/MCB.19.12.8469] [PMID: 10567572]
[70]
Schievella, A.R.; Chen, J.H.; Graham, J.R.; Lin, L.L. MADD, a novel death domain protein that interacts with the type 1 tumor necrosis factor receptor and activates mitogen-activated protein kinase. J. Biol. Chem., 1997, 272(18), 12069-12075.
[http://dx.doi.org/10.1074/jbc.272.18.12069] [PMID: 9115275]
[71]
Hildt, E.; Oess, S. Identification of Grb2 as a novel binding partner of tumor necrosis factor (TNF) receptor I. J. Exp. Med., 1999, 189(11), 1707-1714.
[http://dx.doi.org/10.1084/jem.189.11.1707] [PMID: 10359574]
[72]
Kolch, W. Meaningful relationships: The regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J., 2000, 351(2), 289-305.
[http://dx.doi.org/10.1042/bj3510289] [PMID: 11023813]
[73]
Rushworth, L.K.; Hindley, A.D.; O’Neill, E.; Kolch, W. Regulation and role of Raf-1/B-Raf heterodimerization. Mol. Cell. Biol., 2006, 26(6), 2262-2272.
[http://dx.doi.org/10.1128/MCB.26.6.2262-2272.2006] [PMID: 16508002]
[74]
Ünal, E.B.; Uhlitz, F.; Blüthgen, N. A compendium of ERK targets. FEBS Lett., 2017, 591(17), 2607-2615.
[http://dx.doi.org/10.1002/1873-3468.12740] [PMID: 28675784]
[75]
Pitson, S.M.; Xia, P.; Leclercq, T.M.; Moretti, P.A.B.; Zebol, J.R.; Lynn, H.E.; Wattenberg, B.W.; Vadas, M.A. Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. J. Exp. Med., 2005, 201(1), 49-54.
[http://dx.doi.org/10.1084/jem.20040559] [PMID: 15623571]
[76]
Alvarez, S.E.; Harikumar, K.B.; Hait, N.C.; Allegood, J.; Strub, G.M.; Kim, E.Y.; Maceyka, M.; Jiang, H.; Luo, C.; Kordula, T.; Milstien, S.; Spiegel, S. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature, 2010, 465(7301), 1084-1088.
[http://dx.doi.org/10.1038/nature09128] [PMID: 20577214]
[77]
Pucci, B.; Indelicato, M.; Paradisi, V.; Reali, V.; Pellegrini, L.; Aventaggiato, M.; Karpinich, N.O.; Fini, M.; Russo, M.A.; Farber, J.L.; Tafani, M. ERK-1 MAP kinase prevents TNF-induced apoptosis through bad phosphorylation and inhibition of Bax translocation in HeLa Cells. J. Cell. Biochem., 2009, 108(5), 1166-1174.
[http://dx.doi.org/10.1002/jcb.22345] [PMID: 19777442]
[78]
Raingeaud, J.; Whitmarsh, A.J.; Barrett, T.; Dérijard, B.; Davis, R.J. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell. Biol., 1996, 16(3), 1247-1255.
[http://dx.doi.org/10.1128/MCB.16.3.1247] [PMID: 8622669]
[79]
Lee, T.H.; Huang, Q.; Oikemus, S.; Shank, J.; Ventura, J.J.; Cusson, N.; Vaillancourt, R.R.; Su, B.; Davis, R.J.; Kelliher, M.A. The death domain kinase RIP1 is essential for tumor necrosis factor alpha signaling to p38 mitogen-activated protein kinase. Mol. Cell. Biol., 2003, 23(22), 8377-8385.
[http://dx.doi.org/10.1128/MCB.23.22.8377-8385.2003] [PMID: 14585994]
[80]
Liu, H.; Nishitoh, H.; Ichijo, H.; Kyriakis, J.M. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol. Cell. Biol., 2000, 20(6), 2198-2208.
[http://dx.doi.org/10.1128/MCB.20.6.2198-2208.2000] [PMID: 10688666]
[81]
Sakurai, H.; Miyoshi, H.; Mizukami, J.; Sugita, T. Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1. FEBS Lett., 2000, 474(2-3), 141-145.
[http://dx.doi.org/10.1016/S0014-5793(00)01588-X] [PMID: 10838074]
[82]
Gómez-Muñoz, A.; Kong, J.Y.; Parhar, K.; Wang, S.W.; Gangoiti, P.; González, M.; Eivemark, S.; Salh, B.; Duronio, V.; Steinbrecher, U.P. Ceramide-1-phosphate promotes cell survival through activation of the phosphatidylinositol 3-kinase/protein kinase B pathway. FEBS Lett., 2005, 579(17), 3744-3750.
[http://dx.doi.org/10.1016/j.febslet.2005.05.067] [PMID: 15978590]
[83]
Nidai Ozes, O.; Mayo, L.D.; Gustin, J.A.; Pfeffer, S.R.; Pfeffer, L.M.; Donner, D.B. NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase. Nature, 1999, 401(6748), 82-85.
[http://dx.doi.org/10.1038/43466] [PMID: 10485710]
[84]
Burow, M.E.; Weldon, C.B.; Melnik, L.I.; Duong, B.N.; Collins-Burow, B.M.; Beckman, B.S.; McLachlan, J.A. PI3-K/AKT regulation of NF-kappaB signaling events in suppression of TNF-induced apoptosis. Biochem. Biophys. Res. Commun., 2000, 271(2), 342-345.
[http://dx.doi.org/10.1006/bbrc.2000.2626] [PMID: 10799299]
[85]
Datta, S.R.; Dudek, H.; Tao, X.; Masters, S.; Fu, H.; Gotoh, Y.; Greenberg, M.E. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 1997, 91(2), 231-241.
[http://dx.doi.org/10.1016/S0092-8674(00)80405-5] [PMID: 9346240]
[86]
Zheng, L.; Bidere, N.; Staudt, D.; Cubre, A.; Orenstein, J.; Chan, F.K.; Lenardo, M. Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Mol. Cell. Biol., 2006, 26(9), 3505-3513.
[http://dx.doi.org/10.1128/MCB.26.9.3505-3513.2006] [PMID: 16611992]
[87]
Wajant, H.; Scheurich, P. TNFR1-induced activation of the classical NF-κB pathway. FEBS J., 2011, 278(6), 862-876.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08015.x] [PMID: 21232017]
[88]
Van Herreweghe, F.; Festjens, N.; Declercq, W.; Vandenabeele, P. Tumor necrosis factor-mediated cell death: To break or to burst, that’s the question. Cell. Mol. Life Sci., 2010, 67(10), 1567-1579.
[http://dx.doi.org/10.1007/s00018-010-0283-0] [PMID: 20198502]
[89]
Jeong, E.J.; Bang, S.; Lee, T.H.; Park, Y.I.; Sim, W.S.; Kim, K.S. The solution structure of FADD death domain. Structural basis of death domain interactions of Fas and FADD. J. Biol. Chem., 1999, 274(23), 16337-16342.
[http://dx.doi.org/10.1074/jbc.274.23.16337] [PMID: 10347191]
[90]
Harper, N.; Hughes, M.; MacFarlane, M.; Cohen, G.M. Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J. Biol. Chem., 2003, 278(28), 25534-25541.
[http://dx.doi.org/10.1074/jbc.M303399200] [PMID: 12721308]
[91]
Lin, Y.; Devin, A.; Rodriguez, Y.; Liu, Z. Cleavage of the death domain kinase RIP by Caspase-8 prompts TNF-induced apoptosis. Genes Dev., 1999, 13(19), 2514-2526.
[http://dx.doi.org/10.1101/gad.13.19.2514] [PMID: 10521396]
[92]
Lawrence, C.P.; Chow, S.C. FADD deficiency sensitises Jurkat T cells to TNF-α-dependent necrosis during activation-induced cell death. FEBS Lett., 2005, 579(28), 6465-6472.
[http://dx.doi.org/10.1016/j.febslet.2005.10.041] [PMID: 16289096]
[93]
Gao, M.; Labuda, T.; Xia, Y.; Gallagher, E.; Fang, D.; Liu, Y.C.; Karin, M. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science, 2004, 306(5694), 271-275.
[http://dx.doi.org/10.1126/science.1099414] [PMID: 15358865]
[94]
Shearwin-Whyatt, L.M.; Harvey, N.L.; Kumar, S. Subcellular localization and CARD-dependent oligomerization of the death adaptor RAIDD. Cell Death Differ., 2000, 7(2), 155-165.
[http://dx.doi.org/10.1038/sj.cdd.4400632] [PMID: 10713730]
[95]
Sun, X.; Lee, J.; Navas, T.; Baldwin, D.T.; Stewart, T.A.; Dixit, V.M. RIP3, a novel apoptosis-inducing kinase. J. Biol. Chem., 1999, 274(24), 16871-16875.
[http://dx.doi.org/10.1074/jbc.274.24.16871] [PMID: 10358032]
[96]
Pasparakis, M.; Vandenabeele, P. Necroptosis and its role in inflammation. Nature, 2015, 517(7534), 311-320.
[http://dx.doi.org/10.1038/nature14191] [PMID: 25592536]
[97]
He, S.; Wang, L.; Miao, L.; Wang, T.; Du, F.; Zhao, L.; Wang, X. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell., 2009, 137(6), 1100-1111.
[http://dx.doi.org/10.1016/j.cell.2009.05.021] [PMID: 19524512]
[98]
Lin, Y.; Choksi, S.; Shen, H.M.; Yang, Q.F.; Hur, G.M.; Kim, Y.S.; Tran, J.H.; Nedospasov, S.A.; Liu, Z. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J. Biol. Chem., 2004, 279(11), 10822-10828.
[http://dx.doi.org/10.1074/jbc.M313141200] [PMID: 14701813]
[99]
Silke, J.; Rickard, J.A.; Gerlic, M. The diverse role of RIP kinases in necroptosis and inflammation. Nat. Immunol., 2015, 16(7), 689-697.
[http://dx.doi.org/10.1038/ni.3206] [PMID: 26086143]
[100]
Declercq, W.; Vanden Berghe, T.; Vandenabeele, P. RIP kinases at the crossroads of cell death and survival. Cell, 2009, 138(2), 229-232.
[http://dx.doi.org/10.1016/j.cell.2009.07.006] [PMID: 19632174]
[101]
Moquin, D.M.; McQuade, T.; Chan, F.K.M. CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One, 2013, 8(10), e76841.
[http://dx.doi.org/10.1371/journal.pone.0076841] [PMID: 24098568]
[102]
Lork, M.; Verhelst, K.; Beyaert, R. CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: So similar, yet so different. Cell Death Differ., 2017, 24(7), 1172-1183.
[http://dx.doi.org/10.1038/cdd.2017.46] [PMID: 28362430]
[103]
Tanzer, M.C.; Tripaydonis, A.; Webb, A.I.; Young, S.N.; Varghese, L.N.; Hall, C.; Alexander, W.S.; Hildebrand, J.M.; Silke, J.; Murphy, J.M. Necroptosis signalling is tuned by phosphorylation of MLKL residues outside the pseudokinase domain activation loop. Biochem. J., 2015, 471(2), 255-265.
[http://dx.doi.org/10.1042/BJ20150678] [PMID: 26283547]
[104]
Preyat, N.; Rossi, M.; Kers, J.; Chen, L.; Bertin, J.; Gough, P.J.; Le Moine, A.; Rongvaux, A.; Van Gool, F.; Leo, O. Intracellular nicotinamide adenine dinucleotide promotes TNF-induced necroptosis in a sirtuin-dependent manner. Cell Death Differ., 2016, 23(1), 29-40.
[http://dx.doi.org/10.1038/cdd.2015.60] [PMID: 26001219]
[105]
Chen, W.; Wu, J.; Li, L.; Zhang, Z.; Ren, J.; Liang, Y.; Chen, F.; Yang, C.; Zhou, Z.; Sean Su, S.; Zheng, X.; Zhang, Z.; Zhong, C.Q.; Wan, H.; Xiao, M.; Lin, X.; Feng, X.H.; Han, J. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat. Cell Biol., 2015, 17(4), 434-444.
[http://dx.doi.org/10.1038/ncb3120] [PMID: 25751141]
[106]
Lee, E.W.; Kim, J.H.; Ahn, Y.H.; Seo, J.; Ko, A.; Jeong, M.; Kim, S.J.; Ro, J.Y.; Park, K.M.; Lee, H.W.; Park, E.J.; Chun, K.H.; Song, J. Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. Nat. Commun., 2012, 3(1), 978.
[http://dx.doi.org/10.1038/ncomms1981] [PMID: 22864571]
[107]
Dondelinger, Y.; Jouan-Lanhouet, S.; Divert, T.; Theatre, E.; Bertin, J.; Gough, P.J.; Giansanti, P.; Heck, A.J.R.; Dejardin, E.; Vandenabeele, P.; Bertrand, M.J.M. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol. Cell, 2015, 60(1), 63-76.
[http://dx.doi.org/10.1016/j.molcel.2015.07.032] [PMID: 26344099]
[108]
Tay, S.; Hughey, J.J.; Lee, T.K.; Lipniacki, T.; Quake, S.R.; Covert, M.W. Single-cell NF-κB dynamics reveal digital activation and analogue information processing. Nature, 2010, 466(7303), 267-271.
[http://dx.doi.org/10.1038/nature09145] [PMID: 20581820]
[109]
Chen, Y.M.; Chiang, W.C.; Lin, S.L.; Wu, K.D.; Tsai, T.J.; Hsieh, B.S. Dual regulation of tumor necrosis factor-α-induced CCL2/monocyte chemoattractant protein-1 expression in vascular smooth muscle cells by nuclear factor-kappaB and activator protein-1: modulation by type III phosphodiesterase inhibition. J. Pharmacol. Exp. Ther., 2004, 309(3), 978-986.
[http://dx.doi.org/10.1124/jpet.103.062620] [PMID: 14978197]
[110]
Shaulian, E.; Karin, M. AP-1 in cell proliferation and survival. Oncogene, 2001, 20(19), 2390-2400.
[http://dx.doi.org/10.1038/sj.onc.1204383] [PMID: 11402335]
[111]
van Dam, H.; Wilhelm, D.; Herr, I.; Steffen, A.; Herrlich, P.; Angel, P. ATF-2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBO J., 1995, 14(8), 1798-1811.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb07168.x] [PMID: 7737130]
[112]
De Plaen, I.G.; Han, X.B.; Liu, X.; Hsueh, W.; Ghosh, S.; May, M.J. Lipopolysaccharide induces CXCL2/macrophage inflammatory protein-2 gene expression in enterocytes via NF-kappaB activation: Independence from endogenous TNF-α and platelet-activating factor. Immunology, 2006, 118(2), 153-163.
[http://dx.doi.org/10.1111/j.1365-2567.2006.02344.x] [PMID: 16771850]
[113]
Bzowska, M.; Jura, N.; Lassak, A.; Black, R.A.; Bereta, J. Tumour necrosis factor-α stimulates expression of TNF-α converting enzyme in endothelial cells. Eur. J. Biochem., 2004, 271(13), 2808-2820.
[http://dx.doi.org/10.1111/j.1432-1033.2004.04215.x] [PMID: 15206946]
[114]
Janbandhu, V.C.; Singh, A.K.; Mukherji, A.; Kumar, V. p65 Negatively regulates transcription of the cyclin E gene. J. Biol. Chem., 2010, 285(23), 17453-17464.
[http://dx.doi.org/10.1074/jbc.M109.058974] [PMID: 20385564]
[115]
McCracken, S.A.; Hadfield, K.; Rahimi, Z.; Gallery, E.D.; Morris, J.M. NF-κB-regulated suppression of T-bet in T cells represses Th1 immune responses in pregnancy. Eur. J. Immunol., 2007, 37(5), 1386-1396.
[http://dx.doi.org/10.1002/eji.200636322] [PMID: 17407192]
[116]
Chen, G.Y.; Sakuma, K.; Kannagi, R. Significance of NF-kappaB/GATA axis in tumor necrosis factor-α-induced expression of 6-sulfated cell recognition glycans in human T-lymphocytes. J. Biol. Chem., 2008, 283(50), 34563-34570.
[http://dx.doi.org/10.1074/jbc.M804271200] [PMID: 18849568]
[117]
Tanabe, K.; Matsushima-Nishiwaki, R.; Yamaguchi, S.; Iida, H.; Dohi, S.; Kozawa, O. Mechanisms of tumor necrosis factor-α-induced interleukin-6 synthesis in glioma cells. J. Neuroinflammation., 2010, 7(1), 16.
[http://dx.doi.org/10.1186/1742-2094-7-16] [PMID: 20205746]
[118]
Cao, X.M.; Guy, G.R.; Sukhatme, V.P.; Tan, Y.H. Regulation of the Egr-1 gene by tumor necrosis factor and interferons in primary human fibroblasts. J. Biol. Chem., 1992, 267(2), 1345-1349.
[http://dx.doi.org/10.1016/S0021-9258(18)48437-2] [PMID: 1730654]
[119]
Shin, S.Y.; Kim, J.H.; Baker, A.; Lim, Y.; Lee, Y.H. Transcription factor Egr-1 is essential for maximal matrix metalloproteinase-9 transcription by tumor necrosis factor alpha. Mol. Cancer Res., 2010, 8(4), 507-519.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0454] [PMID: 20332214]
[120]
Burke-Gaffney, A.; Hellewell, P.G. Tumour necrosis factor-α-induced ICAM-1 expression in human vascular endothelial and lung epithelial cells: Modulation by tyrosine kinase inhibitors. Br. J. Pharmacol., 1996, 119(6), 1149-1158.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb16017.x] [PMID: 8937718]
[121]
Radeff-Huang, J.; Seasholtz, T.M.; Chang, J.W.; Smith, J.M.; Walsh, C.T.; Brown, J.H. Tumor necrosis factor-α-stimulated cell proliferation is mediated through sphingosine kinase-dependent Akt activation and cyclin D expression. J. Biol. Chem., 2007, 282(2), 863-870.
[http://dx.doi.org/10.1074/jbc.M601698200] [PMID: 17114809]
[122]
Donato, N.J.; Perez, M. Tumor necrosis factor-induced apoptosis stimulates p53 accumulation and p21WAF1 proteolysis in ME-180 cells. J. Biol. Chem., 1998, 273(9), 5067-5072.
[http://dx.doi.org/10.1074/jbc.273.9.5067] [PMID: 9478957]
[123]
Chen, C.C.; Sun, Y.T.; Chen, J.J.; Chiu, K.T. TNF-α-induced cyclooxygenase-2 expression in human lung epithelial cells: involvement of the phospholipase C-γ 2, protein kinase C-α, tyrosine kinase, NF-κ B-inducing kinase, and I-κ B kinase 1/2 pathway. J. Immunol., 2000, 165(5), 2719-2728.
[http://dx.doi.org/10.4049/jimmunol.165.5.2719] [PMID: 10946303]
[124]
Osawa, Y.; Nagaki, M.; Banno, Y.; Brenner, D.A.; Asano, T.; Nozawa, Y.; Moriwaki, H.; Nakashima, S. Tumor necrosis factor alpha-induced interleukin-8 production via NF-kappaB and phosphatidylinositol 3-kinase/Akt pathways inhibits cell apoptosis in human hepatocytes. Infect. Immun., 2002, 70(11), 6294-6301.
[http://dx.doi.org/10.1128/IAI.70.11.6294-6301.2002] [PMID: 12379708]
[125]
Korthagen, N.M.; van Bilsen, K.; Swagemakers, S.M.A.; van de Peppel, J.; Bastiaans, J.; van der Spek, P.J.; van Hagen, P.M.; Dik, W.A. Retinal pigment epithelial cells display specific transcriptional responses upon TNF-α stimulation. Br. J. Ophthalmol., 2015, 99(5), 700-704.
[http://dx.doi.org/10.1136/bjophthalmol-2014-306309] [PMID: 25680620]
[126]
Cruceriu, D.; Baldasici, O.; Balacescu, O.; Berindan-Neagoe, I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol., 2020, 43(1), 1-18.
[http://dx.doi.org/10.1007/s13402-019-00489-1] [PMID: 31900901]
[127]
Mahdavi Sharif, P.; Jabbari, P.; Razi, S.; Keshavarz-Fathi, M.; Rezaei, N. Importance of TNF-alpha and its alterations in the development of cancers. Cytokine, 2020, 130, 155066.
[http://dx.doi.org/10.1016/j.cyto.2020.155066] [PMID: 32208336]
[128]
Zhou, X.L.; Fan, W.; Yang, G.; Yu, M.X. The clinical significance of PR, ER, NF- κ B, and TNF- α in breast cancer. Dis. Markers, 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/494581] [PMID: 24864130]
[129]
Du, L.C.; Gao, R. Role of TNF-α -308G/A gene polymorphism in gastric cancer risk: A case control study and meta-analysis. Turk. J. Gastroenterol., 2017, 28(4), 272-282.
[http://dx.doi.org/10.5152/tjg.2017.16741] [PMID: 28699601]
[130]
Gupta, M.; Babic, A.; Beck, A.H.; Terry, K. TNF-α expression, risk factors, and inflammatory exposures in ovarian cancer: evidence for an inflammatory pathway of ovarian carcinogenesis? Hum. Pathol., 2016, 54, 82-91.
[http://dx.doi.org/10.1016/j.humpath.2016.03.006] [PMID: 27068525]
[131]
Kemper, O.; Derré, J.; Cherif, D.; Engelmann, H.; Wallach, D.; Berger, R. The gene for the type II (p75) tumor necrosis factor receptor (TNF-RII) is localized on band 1p36.2-p36.3. Hum. Genet., 1991, 87(5), 623-624.
[http://dx.doi.org/10.1007/BF00209026] [PMID: 1655619]
[132]
Al-Lamki, R.S.; Mayadas, T.N. TNF receptors: Signaling pathways and contribution to renal dysfunction. Kidney Int., 2015, 87(2), 281-296.
[http://dx.doi.org/10.1038/ki.2014.285] [PMID: 25140911]
[133]
Gubernatorova, E.O.; Polinova, A.I.; Petropavlovskiy, M.M.; Namakanova, O.A.; Medvedovskaya, A.D.; Zvartsev, R.V.; Telegin, G.B.; Drutskaya, M.S.; Nedospasov, S.A. Dual role of TNF-alpha and LTα in carcinogenesis as implicated by studies in mice. Cancers., 2021, 13(8), 1775.
[http://dx.doi.org/10.3390/cancers13081775] [PMID: 33917839]
[134]
Tian, T.; Wang, M.; Ma, D. TNF-α, a good or bad factor in hematological diseases? Stem Cell Investig., 2014, 1, 12.
[PMID: 27358858]
[135]
Cai, X.; Cao, C.; Li, J.; Chen, F.; Zhang, S.; Liu, B.; Zhang, W.; Zhang, X.; Ye, L. Inflammatory factor TNF-α promotes the growth of breast cancer via the positive feedback loop of TNFR1/NF-κB (and/or p38)/p-STAT3/HBXIP/TNFR1. Oncotarget., 2017, 8(35), 58338-58352.
[http://dx.doi.org/10.18632/oncotarget.16873] [PMID: 28938560]
[136]
Martínez-Reza, I.; Díaz, L.; García-Becerra, R. Preclinical and clinical aspects of TNF-α and its receptors TNFR1 and TNFR2 in breast cancer. J. Biomed. Sci., 2017, 24(1), 90.
[http://dx.doi.org/10.1186/s12929-017-0398-9] [PMID: 29202842]
[137]
An, L.; Dou, X.; Wang, M.; Luo, W.; Ma, Q.; Liu, X. Involvement of TNF-alpha and IL-10 in breast cancer and patient survival. Trop. J. Pharm. Res., 2020, 19(10), 2033-2039.
[http://dx.doi.org/10.4314/tjpr.v19i10.2]
[138]
Liu, W.; Lu, X.; Shi, P.; Yang, G.; Zhou, Z.; Li, W.; Mao, X.; Jiang, D.; Chen, C. TNF-α increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-κB pathway. Sci. Rep., 2020, 10(1), 1804.
[http://dx.doi.org/10.1038/s41598-020-58642-y] [PMID: 32019974]
[139]
Mercogliano, M.F.; Bruni, S.; Elizalde, P.V.; Schillaci, R. Tumor necrosis factor α blockade: An opportunity to tackle breast cancer. Front. Oncol., 2020, 10, 584.
[http://dx.doi.org/10.3389/fonc.2020.00584] [PMID: 32391269]
[140]
Zhao, P.; Zhang, Z. TNF-α promotes colon cancer cell migration and invasion by upregulating TROP-2. Oncol. Lett., 2018, 15(3), 3820-3827.
[http://dx.doi.org/10.3892/ol.2018.7735] [PMID: 29467899]
[141]
Pakdemirli, A.; Kocal, G.C. TNF-alpha induces pro-inflammatory factors in colorectal cancer microenvironment. Medical Science and Discovery, 2020, 7(4), 466-469.
[http://dx.doi.org/10.36472/msd.v7i4.368]
[142]
Manso, B.A.; Krull, J.E.; Gwin, K.A.; Lothert, P.K.; Welch, B.M.; Novak, A.J.; Parikh, S.A.; Kay, N.E.; Medina, K.L. Chronic lymphocytic leukemia B-cell-derived TNFα impairs bone marrow myelopoiesis. iScience, 2021, 24(1), 101994.
[http://dx.doi.org/10.1016/j.isci.2020.101994] [PMID: 33458625]
[143]
Shen, N.; Liu, S.; Cui, J.; Li, Q.; You, Y.; Zhong, Z.; Cheng, F.; Guo, A.Y.; Zou, P.; Yuan, G.; Zhu, X. Tumor necrosis factor α knockout impaired tumorigenesis in chronic myeloid leukemia cells partly by metabolism modification and miRNA regulation. OncoTargets Ther., 2019, 12, 2355-2364.
[http://dx.doi.org/10.2147/OTT.S197535] [PMID: 31015764]
[144]
Guo, G.; Gong, K.; Ali, S.; Ali, N.; Shallwani, S.; Hatanpaa, K.J.; Pan, E.; Mickey, B.; Burma, S.; Wang, D.H.; Kesari, S.; Sarkaria, J.N.; Zhao, D.; Habib, A.A. A TNF–JNK–Axl–ERK signaling axis mediates primary resistance to EGFR inhibition in glioblastoma. Nat. Neurosci., 2017, 20(8), 1074-1084.
[http://dx.doi.org/10.1038/nn.4584] [PMID: 28604685]
[145]
Wei, Q.; Singh, O.; Ekinci, C.; Gill, J.; Li, M.; Mamatjan, Y.; Karimi, S.; Bunda, S.; Mansouri, S.; Aldape, K.; Zadeh, G. TNFα secreted by glioma associated macrophages promotes endothelial activation and resistance against anti-angiogenic therapy. Acta Neuropathol. Commun., 2021, 9(1), 67.
[http://dx.doi.org/10.1186/s40478-021-01163-0] [PMID: 33853689]
[146]
Zhang, C.; Zhu, M.; Wang, W.; Chen, D.; Chen, S.; Zheng, H. TNF-α promotes tumor lymph angiogenesis in head and neck squamous cell carcinoma through regulation of ERK3. Transl. Cancer Res., 2019, 8(6), 2439-2448.
[http://dx.doi.org/10.21037/tcr.2019.09.60] [PMID: 35116996]
[147]
Selimovic, D.; Wahl, R.; Ruiz, E.; Aslam, R.; Flanagan, T.; Hassan, S.Y.; Santourlidis, S.; Haikel, Y.; Friedlander, P.; Megahed, M.; Kandil, E.; Hassan, M. Tumor necrosis factor-α triggers opposing signals in head and neck squamous cell carcinoma and induces apoptosis via mitochondrial- and non-mitochondrial-dependent pathways. Int. J. Oncol., 2019, 55(6), 1324-1338.
[http://dx.doi.org/10.3892/ijo.2019.4900] [PMID: 31638203]
[148]
Montfort, A.; Colacios, C.; Levade, T.; Andrieu-Abadie, N.; Meyer, N.; Ségui, B. The TNF-alpha paradox in cancer progression and immunotherapy. Front. Immunol., 2019, 10, 1818.
[http://dx.doi.org/10.3389/fimmu.2019.01818] [PMID: 31417576]
[149]
Calip, G.S.; Patel, P.R.; Adimadhyam, S.; Xing, S.; Wu, Z.; Sweiss, K.; Schumock, G.T.; Lee, T.A.; Chiu, B.C.H. Tumor necrosis factor-alpha inhibitors and risk of non-Hodgkin lymphoma in a cohort of adults with rheumatologic conditions. Int. J. Cancer, 2018, 143(5), 1062-1071.
[http://dx.doi.org/10.1002/ijc.31407] [PMID: 29603214]
[150]
Mori, T.; Sato, Y.; Miyamoto, K.; Kobayashi, T.; Shimizu, T.; Kanagawa, H.; Katsuyama, E.; Fujie, A.; Hao, W.; Tando, T.; Iwasaki, R.; Kawana, H.; Morioka, H.; Matsumoto, M.; Saya, H.; Toyama, Y.; Miyamoto, T. TNFα promotes osteosarcoma progression by maintaining tumor cells in an undifferentiated state. Oncogene, 2014, 33(33), 4236-4241.
[http://dx.doi.org/10.1038/onc.2013.545] [PMID: 24336323]
[151]
Maolake, A.; Izumi, K.; Natsagdorj, A.; Iwamoto, H.; Kadomoto, S.; Makino, T.; Naito, R.; Shigehara, K.; Kadono, Y.; Hiratsuka, K.; Wufuer, G.; Nastiuk, K.L.; Mizokami, A. Tumor necrosis factor‐α induces prostate cancer cell migration in lymphatic metastasis through CCR 7 upregulation. Cancer Sci., 2018, 109(5), 1524-1531.
[http://dx.doi.org/10.1111/cas.13586] [PMID: 29575464]
[152]
Dalaveris, E.; Kerenidi, T.; Katsabeki-Katsafli, A.; Kiropoulos, T.; Tanou, K.; Gourgoulianis, K.I.; Kostikas, K. VEGF, TNF-α and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer. Lung Cancer, 2009, 64(2), 219-225.
[http://dx.doi.org/10.1016/j.lungcan.2008.08.015] [PMID: 18845357]
[153]
Coşkun; í-ztopuz; í-zkan, F. Determination of IL-6, TNF-α and VEGF levels in the serums of patients with colorectal cancer. Cell. Mol. Biol., 2017, 63(5), 97-101.
[http://dx.doi.org/10.14715/cmb/2017.63.5.18] [PMID: 28719352]
[154]
Sun, M.D.; Zheng, Y.Q.; Wang, L.P.; Zhao, H.T.; Yang, S. Long noncoding RNA UCA1 promotes cell proliferation, migration and invasion of human leukemia cells via sponging miR-126. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(8), 2233-2245.
[PMID: 29762824]
[155]
Aguayo, A.; Kantarjian, H.; Manshouri, T.; Gidel, C.; Estey, E.; Thomas, D.; Koller, C.; Estrov, Z.; O’Brien, S.; Keating, M.; Freireich, E.; Albitar, M. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood, 2000, 96(6), 2240-2245.
[http://dx.doi.org/10.1182/blood.V96.6.2240] [PMID: 10979972]
[156]
Sahibzada, H.A.; Khurshid, Z.; Khan, R.S.; Naseem, M.; Siddique, K.M.; Mali, M.; Zafar, M.S. Salivary IL-8, IL-6 and TNF-α as potential diagnostic biomarkers for oral Cancer. Diagnostics., 2017, 7(2), 21.
[http://dx.doi.org/10.3390/diagnostics7020021] [PMID: 28397778]
[157]
Møller, T.; James, J.P.; Holmstrøm, K.; Sørensen, F.B.; Lindebjerg, J.; Nielsen, B.S. Co-detection of miR-21 and TNF-α mRNA in budding cancer cells in colorectal cancer. Int. J. Mol. Sci., 2019, 20(8), 1907.
[http://dx.doi.org/10.3390/ijms20081907] [PMID: 30999696]
[158]
Warzocha, K.; Bienvenu, J.; Ribeiro, P.; Moullet, I.; Dumontet, C.; Neidhardt-Berard, E.M.; Coiffier, B.; Salles, G. Plasma levels of tumour necrosis factor and its soluble receptors correlate with clinical features and outcome of Hodgkin’s disease patients. Br. J. Cancer, 1998, 77(12), 2357-2362.
[http://dx.doi.org/10.1038/bjc.1998.391] [PMID: 9649158]
[159]
Villani, F.; Busia, A.; Villani, M.; Vismara, C.; Viviani, S.; Bonfante, V. Serum cytokine in response to chemo-radiotherapy for Hodgkin’s disease. Tumori, 2008, 94(6), 803-808.
[http://dx.doi.org/10.1177/030089160809400605] [PMID: 19267096]
[160]
Purdue, M.P.; Lan, Q.; Kricker, A.; Grulich, A.E.; Vajdic, C.M.; Turner, J.; Whitby, D.; Chanock, S.; Rothman, N.; Armstrong, B.K. Polymorphisms in immune function genes and risk of non-Hodgkin lymphoma: Findings from the New South Wales non-Hodgkin Lymphoma Study. Carcinogenesis., 2007, 28(3), 704-712.
[http://dx.doi.org/10.1093/carcin/bgl200] [PMID: 17056605]
[161]
Salles, G.; Bienvenu, J.; Bastion, Y.; Barbier, Y.; Doche, C.; Warzocha, K.; Gutowski, M.C.; Rieux, C.; Coiffier, B. Elevated circulating levels of tnfα and its p55 soluble receptor are associated with an adverse prognosis in lymphoma patients. Br. J. Haematol., 1996, 93(2), 352-359.
[http://dx.doi.org/10.1046/j.1365-2141.1996.5181059.x] [PMID: 8639428]
[162]
Warzocha, K.; Salles, G.; Bienvenu, J.; Bastion, Y.; Dumontet, C.; Renard, N.; Neidhardt-Berard, E.M.; Coiffier, B. Tumor necrosis factor ligand-receptor system can predict treatment outcome in lymphoma patients. J. Clin. Oncol., 1997, 15(2), 499-508.
[http://dx.doi.org/10.1200/JCO.1997.15.2.499] [PMID: 9053471]
[163]
Ferrajoli, A.; Keating, M.J.; Manshouri, T.; Giles, F.J.; Dey, A.; Estrov, Z.; Koller, C.A.; Kurzrock, R.; Thomas, D.A.; Faderl, S.; Lerner, S.; O’Brien, S.; Albitar, M. The clinical significance of tumor necrosis factor-α plasma level in patients having chronic lymphocytic leukemia. Blood, 2002, 100(4), 1215-1219.
[http://dx.doi.org/10.1182/blood.V100.4.1215.h81602001215_1215_1219] [PMID: 12149200]
[164]
Torrey, H.; Butterworth, J.; Mera, T.; Okubo, Y.; Wang, L.; Baum, D.; Defusco, A.; Plager, S.; Warden, S.; Huang, D.; Vanamee, E.; Foster, R.; Faustman, D.L. Targeting TNFR2 with antagonistic antibodies inhibits proliferation of ovarian cancer cells and tumor-associated T regs. Sci. Signal., 2017, 10(462), eaaf8608.
[http://dx.doi.org/10.1126/scisignal.aaf8608] [PMID: 28096513]
[165]
Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S.S. The interplay among miRNAs, major cytokines, and cancer-related inflammation. Mol. Ther. Nucleic Acids, 2020, 20, 606-620.
[http://dx.doi.org/10.1016/j.omtn.2020.04.002] [PMID: 32348938]
[166]
Yusof, K.M.; Groen, K.; Rosli, R.; Avery-Kiejda, K.A. Crosstalk between microRNAs and the pathological features of secondary lymphedema. Front. Cell Dev. Biol., 2021, 9, 732415.
[http://dx.doi.org/10.3389/fcell.2021.732415] [PMID: 34733847]
[167]
Wang, Y.; Zhou, S.; Fan, K.; Jiang, C. MicroRNA‑21 and its impact on signaling pathways in cervical cancer (Review). Oncol. Lett., 2019, 17(3), 3066-3070.
[http://dx.doi.org/10.3892/ol.2019.10002] [PMID: 30867735]
[168]
Alotaibi, A.G.; Li, J.V.; Gooderham, N.J. Tumour necrosis factor-alpha (TNF-α)-induced metastatic phenotype in colorectal cancer epithelial cells: Mechanistic support for the role of MicroRNA-21. Cancers., 2023, 15(3), 627.
[http://dx.doi.org/10.3390/cancers15030627] [PMID: 36765584]
[169]
Qiu, Y.F.; Wang, M.X.; Meng, L.N.; Zhang, R.; Wang, W. MiR-21 regulates proliferation and apoptosis of oral cancer cells through TNF-α. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(22), 7735-7741.
[PMID: 30536317]
[170]
Lai, C.Y.; Yeh, K.Y.; Liu, B.F.; Chang, T.M.; Chang, C.H.; Liao, Y.F.; Liu, Y.W.; Her, G.M. Microrna-21 plays multiple oncometabolic roles in colitisassociated carcinoma and colorectal cancer via the PI3K/Akt, STAT3, and PDSD4/TNF-α signaling pathways in zebrafish. Cancers., 2021, 13(21), 5565.
[http://dx.doi.org/10.3390/cancers13215565] [PMID: 34771727]
[171]
Shen, Z.; Zhou, R.; Liu, C.; Wang, Y.; Zhan, W.; Shao, Z.; Liu, J.; Zhang, F.; Xu, L.; Zhou, X.; Qi, L.; Bo, F.; Ding, Y.; Zhao, L. MicroRNA-105 is involved in TNF-α-related tumor microenvironment enhanced colorectal cancer progression. Cell Death Dis., 2017, 8(12), 3213.
[http://dx.doi.org/10.1038/s41419-017-0048-x] [PMID: 29238068]
[172]
Zhang, J.; Wu, H.; Li, P.; Zhao, Y.; Liu, M.; Tang, H. NF-κB-modulated miR-130a targets TNF-α in cervical cancer cells. J Transl Med, 2014, 12, 155.
[173]
Sánchez, N.C.; Medrano-Jiménez, E.; Aguilar-León, D.; Pérez-Martínez, L.; Pedraza-Alva, G. Tumor necrosis factor-induced miR-146a upregulation promotes human lung adenocarcinoma metastasis by targeting merlin. DNA Cell Biol., 2020, 39(3), 484-497.
[http://dx.doi.org/10.1089/dna.2019.4620] [PMID: 31999471]
[174]
Yee, D.; Shah, K.M.; Coles, M.C.; Sharp, T.V.; Lagos, D. MicroRNA-155 induction via TNF-α and IFN-γ suppresses expression of programmed death ligand-1 (PD-L1) in human primary cells. J. Biol. Chem., 2017, 292(50), 20683-20693.
[http://dx.doi.org/10.1074/jbc.M117.809053] [PMID: 29066622]
[175]
O’connell, R.M.; Taganov, K.D.; Boldin, M.P.; Cheng, G.; Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci, 2007, 104(5), 1604-1609.
[176]
Ding, J.; Huang, S.; Wang, Y.; Tian, Q.; Zha, R.; Shi, H.; Wang, Q.; Ge, C.; Chen, T.; Zhao, Y.; Liang, L.; Li, J.; He, X. Genome-wide screening reveals that miR-195 targets the TNF-α/NF-κB pathway by down-regulating IκB kinase alpha and TAB3 in hepatocellular carcinoma. Hepatology, 2013, 58(2), 654-666.
[http://dx.doi.org/10.1002/hep.26378] [PMID: 23487264]
[177]
Li, M.; Ren, C.X.; Zhang, J.M.; Xin, X.Y.; Hua, T.; Wang, H.B.; Wang, H.B. The effects of miR-195-5p/MMP14 on proliferation and invasion of cervical carcinoma cells through TNF signaling pathway based on bioinformatics analysis of microarray profiling. Cell. Physiol. Biochem., 2018, 50(4), 1398-1413.
[http://dx.doi.org/10.1159/000494602] [PMID: 30355924]
[178]
Kempinska-Podhorodecka, A.; Blatkiewicz, M.; Wunsch, E.; Krupa, L.; Gutkowski, K.; Milkiewicz, P.; Milkiewicz, M. Oncomir MicroRNA-346 is upregulated in colons of patients with primary sclerosing cholangitis. Clin. Transl. Gastroenterol., 2020, 11(1), e00112.
[http://dx.doi.org/10.14309/ctg.0000000000000112] [PMID: 31972611]
[179]
Hsing, E.W.; Shiah, S.G.; Peng, H.Y.; Chen, Y.W.; Chuu, C.P.; Hsiao, J.R.; Lyu, P.C.; Chang, J.Y. TNF-α-induced miR-450a mediates TMEM182 expression to promote oral squamous cell carcinoma motility. PLoS One, 2019, 14(3), e0213463.
[http://dx.doi.org/10.1371/journal.pone.0213463] [PMID: 30893332]
[180]
Ozkurt, M.; Hellwig-Bürgel, T.; Depping, R.; Kadabere, S.; Ozyurt, R.; Karadag, A.; Erkasap, N. miR663 prevents Epo inhibition caused by TNF-alpha in normoxia and hypoxia. Int. J. Endocrinol., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/3670499] [PMID: 34367277]
[181]
Yang, X.; Liu, R. Long non-coding RNA HCG18 promotes gastric cancer progression by regulating miRNA-146a-5p/tumor necrosis factor receptor-associated factor 6 axis. Bioengineered, 2022, 13(3), 6781-6793.
[http://dx.doi.org/10.1080/21655979.2022.2034565] [PMID: 35240920]
[182]
Feng, Y.; Ma, J.; Fan, H.; Liu, M.; Zhu, Y.; Li, Y.; Tang, H. TNF-α-induced lncRNA LOC105374902 promotes the malignant behavior of cervical cancer cells by acting as a sponge of miR-1285-3p. Biochem. Biophys. Res. Commun., 2019, 513(1), 56-63.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.079] [PMID: 30935691]
[183]
Xu, B.; Jin, X.; Yang, T.; Zhang, Y.; Liu, S.; Wu, L.; Ying, H.; Wang, Z. Upregulated lncRNA THRIL/TNF-α signals promote cell growth and predict poor clinical outcomes of osteosarcoma. OncoTargets Ther., 2020, 13, 119-129.
[http://dx.doi.org/10.2147/OTT.S235798] [PMID: 32021260]
[184]
Sun, Q.M.; Hu, B.; Fu, P.Y.; Tang, W.G.; Zhang, X.; Zhan, H.; Sun, C.; He, Y.F.; Song, K.; Xiao, Y.S.; Sun, J.; Xu, Y.; Zhou, J.; Fan, J. Long non-coding RNA 00607 as a tumor suppressor by modulating NF-κB p65/p53 signaling axis in hepatocellular carcinoma. Carcinogenesis, 2018, 39(12), 1438-1446.
[http://dx.doi.org/10.1093/carcin/bgy113] [PMID: 30169594]
[185]
Shen, J.; Xiao, Z.; Zhao, Q.; Li, M.; Wu, X.; Zhang, L.; Hu, W.; Cho, C.H. Anti-cancer therapy with TNFα and IFNγ: A comprehensive review. Cell Prolif., 2018, 51(4), e12441.
[http://dx.doi.org/10.1111/cpr.12441] [PMID: 29484738]
[186]
Cai, W.; Kerner, Z.J.; Hong, H.; Sun, J. Targeted cancer therapy with tumor necrosis factor-alpha. Biochem. Insights, 2008, 1, BCI.S901.
[http://dx.doi.org/10.4137/BCI.S901] [PMID: 24115841]
[187]
Gao, J.Q.; Eto, Y.; Yoshioka, Y.; Sekiguchi, F.; Kurachi, S.; Morishige, T.; Yao, X.; Watanabe, H.; Asavatanabodee, R.; Sakurai, F.; Mizuguchi, H.; Okada, Y.; Mukai, Y.; Tsutsumi, Y.; Mayumi, T.; Okada, N.; Nakagawa, S. Effective tumor targeted gene transfer using PEGylated adenovirus vector via systemic administration. J. Control. Release, 2007, 122(1), 102-110.
[http://dx.doi.org/10.1016/j.jconrel.2007.06.010] [PMID: 17628160]
[188]
Hwu, P.; Yannelli, J.; Kriegler, M.; Anderson, W.F.; Perez, C.; Chiang, Y.; Schwarz, S.; Cowherd, R.; Delgado, C.; Mulé, J. Functional and molecular characterization of tumor-infiltrating lymphocytes transduced with tumor necrosis factor-alpha cDNA for the gene therapy of cancer in humans. J. Immunol., 1993, 150(9), 4104-4115.
[http://dx.doi.org/10.4049/jimmunol.150.9.4104] [PMID: 8473752]
[189]
Vilaboa, N.; Voellmy, R. Regulatable gene expression systems for gene therapy. Curr. Gene Ther., 2006, 6(4), 421-438.
[http://dx.doi.org/10.2174/156652306777934829] [PMID: 16918333]
[190]
Kali, A. TNFerade, an innovative cancer immunotherapeutic. Indian J. Pharmacol., 2015, 47(5), 479-483.
[http://dx.doi.org/10.4103/0253-7613.165190] [PMID: 26600634]
[191]
Labialle, S.; Gayet, L.; Marthinet, E.; Rigal, D.; Baggetto, L.G. Transcriptional regulators of the human multidrug resistance 1 gene: recent views. Biochem. Pharmacol., 2002, 64(5-6), 943-948.
[http://dx.doi.org/10.1016/S0006-2952(02)01156-5] [PMID: 12213590]
[192]
Walther, W.; Wendt, J.; Stein, U. Employment of the mdr1 promoter for the chemotherapy-inducible expression of therapeutic genes in cancer gene therapy. Gene Ther., 1997, 4(6), 544-552.
[http://dx.doi.org/10.1038/sj.gt.3300451] [PMID: 9231070]
[193]
Cai, W.; Niu, G.; Chen, X. Imaging of integrins as biomarkers for tumor angiogenesis. Curr. Pharm. Des., 2008, 14(28), 2943-2973.
[http://dx.doi.org/10.2174/138161208786404308] [PMID: 18991712]
[194]
Jiang, Y.Y.; Liu, C.; Hong, M.H.; Zhu, S.J.; Pei, Y.Y. Tumor cell targeting of transferrin-PEG-TNF-alpha conjugate via a receptor-mediated delivery system: Design, synthesis, and biological evaluation. Bioconjug. Chem., 2007, 18(1), 41-49.
[http://dx.doi.org/10.1021/bc060135f] [PMID: 17226956]
[195]
Robert, B.; Mach, J.P.; Mani, J.C.; Ychou, M.; Folli, S.; Artus, J.C.; Pèlegrin, A. Cytokine targeting in tumors using a bispecific antibody directed against carcinoembryonic antigen and tumor necrosis factor alpha. Cancer Res., 1996, 56(20), 4758-4765.
[PMID: 8840995]
[196]
Rosenblum, M.G.; Horn, S.A.; Cheung, L.H. A novel recombinant fusion toxin targeting HER-2/NEU-over-expressing cells and containing human tumor necrosis factor. Int. J. Cancer, 2000, 88(2), 267-273.
[http://dx.doi.org/10.1002/1097-0215(20001015)88:2<267::AID-IJC19>3.0.CO;2-G] [PMID: 11004679]
[197]
Borsi, L.; Balza, E.; Carnemolla, B.; Sassi, F.; Castellani, P.; Berndt, A.; Kosmehl, H.; Birò, A.; Siri, A.; Orecchia, P.; Grassi, J.; Neri, D.; Zardi, L. Selective targeted delivery of TNFα to tumor blood vessels. Blood, 2003, 102(13), 4384-4392.
[http://dx.doi.org/10.1182/blood-2003-04-1039] [PMID: 12933583]
[198]
Corti, A.; Gasparri, A.M.; Sacchi, A.; Colombo, B.; Monieri, M.; Rrapaj, E.; Ferreri, A.J.M.; Curnis, F. NGR-TNF engineering with an n-terminal serine reduces degradation and post-translational modifications and improves its tumor-targeting activity. Mol. Pharm., 2020, 17(10), 3813-3824.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00579] [PMID: 32805112]
[199]
Di Matteo, P.; Hackl, C.; Jedeszko, C.; Valentinis, B.; Bordignon, C.; Traversari, C.; Kerbel, R.S.; Rizzardi, G-P. NGR-TNF, a novel vascular-targeting agent, does not induce cytokine recruitment of proangiogenic bone marrow-derived cells. Br. J. Cancer, 2013, 109(2), 360-369.
[http://dx.doi.org/10.1038/bjc.2013.347] [PMID: 23828516]
[200]
Porcellini, S.; Asperti, C.; Valentinis, B.; Tiziano, E.; Mangia, P.; Bordignon, C.; Rizzardi, G.P.; Traversari, C. The tumor vessel targeting agent NGR-TNF controls the different stages of the tumorigenic process in transgenic mice by distinct mechanisms. OncoImmunology., 2015, 4(10), e1041700.
[http://dx.doi.org/10.1080/2162402X.2015.1041700] [PMID: 26451306]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy