Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Nanobiosensors: Concepts and Emerging Clinical Applications

Author(s): Sagar Desai, Raghavendra Naveen*, Prakash S Goudanavar and Buduru Gowthami

Volume 12, Issue 3, 2024

Published on: 25 September, 2023

Page: [197 - 205] Pages: 9

DOI: 10.2174/2211738511666230901160530

Price: $65

Abstract

Biosensors have been one of the most fascinating topics for scientists for a long time. This is because biological moieties are multifaceted and are unswervingly related to the presence of a healthy atmosphere. The biosensor approach has also endured profound changes in recent years. Biosensors have been emphasized for various applications, including food quality estimation, surveillance systems, and health and metabolic abnormality diagnostics. The advances in nanotechnology have led to a considerable potential to enhance biosensors' sensitivity, robustness, and anti-interference capabilities. Several new nanomaterials (such as nanoparticles, nanotubes, nanorods, and nanowires) have been fabricated due to the evolution of nanotechnology, and their unique features are gradually being identified, allowing for much faster detection and reproducibility. Biosensor performance has also been enhanced substantially as a result of their use. Because of their capacity to detect a wide range of compounds at deficient concentrations, nanobiosensors have sparked much interest. This article discusses biosensors based on various nanomaterials, their evolution, accompanying features, and their applications in multiple fields.

Graphical Abstract

[1]
Reese M. Nanotechnology: Using co-regulation to bring regulation of modern technologies into the 21st century. Health Matrix Clevel 2013; 23(2): 537-72.
[2]
Maduraiveeran G, Sasidharan M, Ganesan V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 2018; 103: 113-29.
[http://dx.doi.org/10.1016/j.bios.2017.12.031] [PMID: 29289816]
[3]
Lan L, Yao Y, Ping J, Ying Y. Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens Bioelectron 2017; 91: 504-14.
[http://dx.doi.org/10.1016/j.bios.2017.01.007] [PMID: 28082239]
[4]
Ye S, Feng S, Huang L, Bian S. Recent progress in wearable biosensors: From healthcare monitoring to sports analytics. Biosensors 2020; 10(12): 205.
[http://dx.doi.org/10.3390/bios10120205] [PMID: 33333888]
[5]
Kim J, Campbell AS, de Ávila BEF, Wang J. Wearable biosensors for healthcare monitoring. Nat Biotechnol 2019; 37(4): 389-406.
[http://dx.doi.org/10.1038/s41587-019-0045-y] [PMID: 30804534]
[6]
Pohanka M, Skládal P. Electrochemical biosensors - principles and applications. J Appl Biomed 2008; 6(2): 57-64.
[http://dx.doi.org/10.32725/jab.2008.008]
[7]
Clark LC Jr, Wolf R, Granger D, Taylor Z. Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 1953; 6(3): 189-93.
[http://dx.doi.org/10.1152/jappl.1953.6.3.189]
[8]
Clark LC Jr, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 1962; 102(1): 29-45.
[http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x] [PMID: 14021529]
[9]
Updike SJ, Hicks GP. The enzyme electrode. Nature 1967; 214(5092): 986-8.
[http://dx.doi.org/10.1038/214986a0] [PMID: 6055414]
[10]
Wang J. Electrochemical glucose biosensors. Chem Rev 2008; 108(2): 814-25.
[http://dx.doi.org/10.1021/cr068123a] [PMID: 18154363]
[11]
Farka Z. Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem Rev 2017; 117(15): 9973-10042.
[http://dx.doi.org/10.1021/acs.chemrev.7b00037] [PMID: 28753280]
[12]
Choi JW, Oh BK, Kim YK, Min J. Nanotechnology in biodevices. J Microbiol Biotechnol 2007; 17(1): 5-14.
[PMID: 18051347]
[13]
Fernández-Baldo MA, Messina GA, Sanz MI, Raba J. Screen-printed immunosensor modified with carbon nanotubes in a continuous-flow system for the Botrytis cinerea determination in apple tissues. Talanta 2009; 79(3): 681-6.
[http://dx.doi.org/10.1016/j.talanta.2009.04.059] [PMID: 19576430]
[14]
Bravo K, Ortega FG, Messina GA, Sanz MI, Fernández-Baldo MA, Raba J. Integrated bio-affinity nano-platform into a microfluidic immunosensor based on monoclonal bispecific trifunctional antibodies for the electrochemical determination of epithelial cancer biomarker. Clin Chim Acta 2017; 464: 64-71.
[http://dx.doi.org/10.1016/j.cca.2016.11.012] [PMID: 27836687]
[15]
Ahmad F, Ahmad S. Biosynthetic route for the functionalization of nanomaterials. Functionalized Nanomaterials II 2021; 207-20.
[http://dx.doi.org/10.1201/9781351021388-12]
[16]
Taylor R, Coulombe S, Otanicar T, et al. Small particles, big impacts: A review of the diverse applications of nanofluids. J Appl Phys 2013; 113(1): 011301.
[http://dx.doi.org/10.1063/1.4754271]
[17]
Nayl AA, Abd-Elhamid AI, El-Moghazy AY, et al. The nanomaterials and recent progress in biosensing systems: A review. Trends in Environmental Analytical Chemistry 2020; 26: e00087.
[http://dx.doi.org/10.1016/j.teac.2020.e00087]
[18]
Sha R, Badhulika S. Recent advancements in fabrication of nanomaterial based biosensors for diagnosis of ovarian cancer: A comprehensive review. Mikrochim Acta 2020; 187(3): 181.
[http://dx.doi.org/10.1007/s00604-020-4152-8] [PMID: 32076837]
[19]
Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L. Nanotechnology and biosensors. Biotechnol Adv 2004; 22(7): 505-18.
[http://dx.doi.org/10.1016/j.biotechadv.2004.03.004] [PMID: 15262314]
[20]
Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem 2016; 60(1): 1-8.
[http://dx.doi.org/10.1042/EBC20150001] [PMID: 27365030]
[21]
Mousavi AK, Leseman ZC, Palacio MLB, et al. Biosensors. In: Encyclopedia of Nanotechnology. Dordrecht: Springer 2012; pp. 329-45.
[http://dx.doi.org/10.1007/978-90-481-9751-4_129]
[22]
Karunakaran R, Keskin M. Biosensors: Components, mechanisms, and applications. Analytical techniques in biosciences: From basics to applications 2022; (Jan): 179-90.
[http://dx.doi.org/10.1016/B978-0-12-822654-4.00011-7]
[23]
Vering T, Schuhmann W, Schmidt H-L, et al. Field-Effect transistors as transducers in biosensors for substrates of dehydrogenases. Electroanalysis 1994; 6(11-12): 953-6.
[http://dx.doi.org/10.1002/elan.1140061106]
[24]
Lim JW, Ha D, Lee J, Lee SK, Kim T. Review of micro/nanotechnologies for microbial biosensors. Front Bioeng Biotechnol 2015; 3(MAY): 61.
[http://dx.doi.org/10.3389/fbioe.2015.00061] [PMID: 26029689]
[25]
Van Gerwen P, Laureyn W, Laureys W, et al. Nanoscaled interdigitated electrode arrays for biochemical sensors. Sens Actuators B Chem 1998; 49(1-2): 73-80.
[http://dx.doi.org/10.1016/S0925-4005(98)00128-2]
[26]
Pak SC, Penrose W, Hesketh PJ. An ultrathin platinum film sensor to measure biomolecular binding. Biosens Bioelectron 2001; 16(6): 371-9.
[http://dx.doi.org/10.1016/S0956-5663(01)00152-X] [PMID: 11672651]
[27]
Bhushan B. Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron Eng 2007; 84(3): 387-412.
[http://dx.doi.org/10.1016/j.mee.2006.10.059]
[28]
Zeng S, Yong KT, Roy I, Dinh XQ, Yu X, Luan F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 2011; 6(3): 491-506.
[http://dx.doi.org/10.1007/s11468-011-9228-1]
[29]
Su X, Chew FT, Li SFY. Design and application of piezoelectric quartz crystal-based immunoassay. Anal Sci 2000; 16(2): 107-14.
[http://dx.doi.org/10.2116/analsci.16.107]
[30]
Liu T, Tang J, Jiang L. The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochem Biophys Res Commun 2004; 313(1): 3-7.
[http://dx.doi.org/10.1016/j.bbrc.2003.11.098] [PMID: 14672689]
[31]
Richardson J, Hawkins P, Luxton R. The use of coated paramagnetic particles as a physical label in a magneto-immunoassay. Biosens Bioelectron 2001; 16(9-12): 989-93.
[http://dx.doi.org/10.1016/S0956-5663(01)00201-9]
[32]
Chemla YR, Grossman HL, Poon Y, et al. Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc Natl Acad Sci USA 2000; 97(26): 14268-72.
[http://dx.doi.org/10.1073/pnas.97.26.14268] [PMID: 11121032]
[33]
Mehrvar M, Abdi M. Recent developments, characteristics, and potential applications of electrochemical biosensors. Anal Sci 2004; 20(8): 1113-26.
[http://dx.doi.org/10.2116/analsci.20.1113] [PMID: 15352497]
[34]
Cai H, Xu C, He P, Fang Y. Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J Electroanal Chem 2001; 510(1-2): 78-85.
[http://dx.doi.org/10.1016/S0022-0728(01)00548-4]
[35]
Crumbliss AL, Perine SC, Stonehuerner J, et al. Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol Bioeng 1992; 40(4): 483-90.
[http://dx.doi.org/10.1002/bit.260400406] [PMID: 18601142]
[36]
Zhao J, O’Daly JP, Henkens RW, Stonehuerner J, Crumbliss AL. A xanthine oxidase/colloidal gold enzyme electrode for amperometric biosensor applications. Biosens Bioelectron 1996; 11(5): 493-502.
[http://dx.doi.org/10.1016/0956-5663(96)86786-8]
[37]
Xu X, Liu S, Ju H. A novel hydrogen peroxide sensor via the direct electrochemistry of horseradish peroxidase immobilized on colloidal gold modified screen-printed electrode. Sensors 2003; 3(9): 350-60.
[http://dx.doi.org/10.3390/s30900350]
[38]
Curri ML, Agostiano A, Leo G, Mallardi A, Cosma P, Della Monica M. Development of a novel enzyme/semiconductor nanoparticles system for biosensor application. Mater Sci Eng C 2002; 22(2): 449-52.
[http://dx.doi.org/10.1016/S0928-4931(02)00191-1]
[39]
González-García M, Fernández-Sánchez C, Costa-García A. Colloidal gold as an electrochemical label of streptavidin–biotin interaction. Biosens Bioelectron 2000; 15(5-6): 315-21.
[http://dx.doi.org/10.1016/S0956-5663(00)00074-9] [PMID: 11219743]
[40]
Walt DR. Fiber optic array biosensors. Biotechniques 2006; 41(5): 529-35.
[http://dx.doi.org/10.2144/000112303] [PMID: 17140107]
[41]
Meadows D, Schultz JS. Fiber-optic biosensors based on fluorescence energy transfer. Talanta 1988; 35(2): 145-50.
[http://dx.doi.org/10.1016/0039-9140(88)80053-5] [PMID: 18964483]
[42]
Odom TW, Huang JL, Kim P, Lieber CM. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998; 391(6662): 62-4.
[http://dx.doi.org/10.1038/34145]
[43]
Wu K, Ji X, Fei J, Hu S. The fabrication of a carbon nanotube film on a glassy carbon electrode and its application to determining thyroxine. Nanotechnology 2004; 15(3): 287-91.
[http://dx.doi.org/10.1088/0957-4484/15/3/010]
[44]
Ajayan PM, Zhou OZ. Applications of carbon nanotubes. In: Carbon Nanotubes Topics in Applied Physics, . Berlin, Heidelberg: Springer 2001; vol 80.
[45]
Sánchez-Pomales G, Cabrera CR. Vertical attachment of DNA–CNT hybrids on gold. J Electroanal Chem 2007; 606(1): 47-54.
[http://dx.doi.org/10.1016/j.jelechem.2007.04.010]
[46]
Raoof JB, Ojani R, Chekin F. Fabrication of functionalized carbon nanotube modified glassy carbon electrode and its application for selective oxidation and voltammetric determination of cysteamine. J Electroanal Chem 2009; 633(1): 187-92.
[http://dx.doi.org/10.1016/j.jelechem.2009.05.011]
[47]
Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354(6348): 56-8.
[http://dx.doi.org/10.1038/354056a0]
[48]
Goyanes S, Rubiolo GR, Salazar A, Jimeno A, Corcuera MA, Mondragon I. Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diam Relat Mater 2007; 16(2): 412-7.
[http://dx.doi.org/10.1016/j.diamond.2006.08.021]
[49]
Cui Y, Lieber CM. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001; 291(5505): 851-3.
[http://dx.doi.org/10.1126/science.291.5505.851] [PMID: 11157160]
[50]
Wang J. Electrochemical nucleic acid biosensors. Anal Chim Acta 2002; 469(1): 63-71.
[http://dx.doi.org/10.1016/S0003-2670(01)01399-X]
[51]
Cullum BM, Griffin GD, Miller GH, Vo-Dinh T. Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. Anal Biochem 2000; 277(1): 25-32.
[http://dx.doi.org/10.1006/abio.1999.4341] [PMID: 10610686]
[52]
Umar A, Rahman M, Alhajry A, Hahn Y. Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. Talanta 2009; 78(1): 284-9.
[http://dx.doi.org/10.1016/j.talanta.2008.11.018] [PMID: 19174239]
[53]
Yang S. Sulphide nanowires. In: Nanowires and Nanobelts. Boston, MA: Springer 2003.
[http://dx.doi.org/10.1007/978-0-387-28747-8_12]
[54]
Cui Y, Wei Q, Park H, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001; 293(5533): 1289-92.
[http://dx.doi.org/10.1126/science.1062711] [PMID: 11509722]
[55]
Huang B, Yu F, Zare RN. Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal Chem 2007; 79(7): 2979-83.
[http://dx.doi.org/10.1021/ac062284x] [PMID: 17309232]
[56]
Stern E, Klemic JF, Routenberg DA, et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007; 445(7127): 519-22.
[http://dx.doi.org/10.1038/nature05498] [PMID: 17268465]
[57]
Ramanathan S, Patibandla S, Bandyopadhyay S, Edwards JD, Anderson J. Fluorescence and infrared spectroscopy of electrochemically self assembled ZnO nanowires: Evidence of the quantum confined Stark effect. J Mater Sci Mater Electron 2006; 17(9): 651-5.
[http://dx.doi.org/10.1007/s10854-006-0021-4]
[58]
Liao JC, Mastali M, Gau V, et al. Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens. J Clin Microbiol 2006; 44(2): 561-70.
[http://dx.doi.org/10.1128/JCM.44.2.561-570.2006] [PMID: 16455913]
[59]
Ponmozhi J, Frias C, Marques T, Frazão O. Smart sensors/actuators for biomedical applications (Review). Measurement 2012; 45(7): 1675-88.
[http://dx.doi.org/10.1016/j.measurement.2012.02.006]
[60]
Grodzinski P, Silver M, Molnar LK. Nanotechnology for cancer diagnostics: Promises and challenges. Expert Rev Mol Diagn 2006; 6(3): 307-18.
[http://dx.doi.org/10.1586/14737159.6.3.307] [PMID: 16706735]
[61]
Kim EJ, Lee Y, Lee JE, Gu MB. Application of recombinant fluorescent mammalian cells as a toxicity biosensor. Water Sci Technol 2002; 21(1): 90-117.
[http://dx.doi.org/10.2166/wst.2002.0052]
[62]
Purohit HJ. Biosensors as molecular tools for use in bioremediation. J Clean Prod 2003; 11(3): 293-301.
[http://dx.doi.org/10.1016/S0959-6526(02)00072-0]
[63]
Larsen LH, Kjær T, Revsbech NP. A microscale NO 3- biosensor for environmental applications. Anal Chem 1997; 69(17): 3527-31.
[http://dx.doi.org/10.1021/ac9700890] [PMID: 21639276]
[64]
Kulys J, Higgins IJ, Bannister JV. Amperometric determination of phosphate ions by biosensor. Biosens Bioelectron 1992; 7(3): 187-91.
[http://dx.doi.org/10.1016/0956-5663(92)87014-G]
[65]
Wollenberger U, Schubert F, Scheller FW. Biosensor for sensitive phosphate detection. Sens Actuators B Chem 1992; 7(1-3): 412-5.
[http://dx.doi.org/10.1016/0925-4005(92)80335-U]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy