Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Nanotechnology-based Drug Delivery of Topical Antifungal Agents

Author(s): Sumita Singh, Vaishali M. Patil*, Sarvesh Kumar Paliwal and Neeraj Masand

Volume 12, Issue 3, 2024

Published on: 25 September, 2023

Page: [185 - 196] Pages: 12

DOI: 10.2174/2211738511666230818125031

Price: $65

Abstract

Among the various prominent fungal infections, superficial ones are widespread. A large number of antifungal agents and their formulations for topical use are commercially available. They have some pharmacokinetic limitations which cannot be retracted by conventional delivery systems. While nanoformulations composed of lipidic and polymeric nanoparticles have the potential to overcome the limitations of conventional systems. The broad spectrum category of antifungals i.e. azoles (ketoconazole, voriconazole, econazole, miconazole, etc.) nanoparticles have been designed, prepared and their pharmacokinetic and pharmacodynamic profile was established. This review briefly elaborates on the types of nano-based topical drug delivery systems and portrays their advantages for researchers in the related field to benefit the available antifungal therapeutics.

Next »
[1]
Increasing threat of spread of antimicrobial-resistant fungus in healthcare facilities. Available From: https://www.cdc.gov/media/releases/2023/p0320-cauris.html (Accessed on 15.01.2023)
[2]
Schmiedel Y, Zimmerli S. Common invasive fungal diseases: An overview of invasive candidiasis, aspergillosis, cryptococcosis, and Pneumocystis pneumonia. Swiss Med Wkly 2016; 146: w14281.
[http://dx.doi.org/10.4414/smw.2016.14281] [PMID: 26901377]
[3]
Oliveira M, Oliveira D, Lisboa C, Boechat JL, Delgado L. Clinical manifestations of human exposure to fungi. J Fungi 2023; 9(3): 381.
[http://dx.doi.org/10.3390/jof9030381] [PMID: 36983549]
[4]
Kwarteng Owusu S. Invasive fungal infections. Afr J Thorac Crit Care 2022; 28(3): 100-1.
[http://dx.doi.org/10.7196/AJTCCM.2022.v28i3.264] [PMID: 36285011]
[5]
Zhang Z, Bills GF, An Z. Advances in the treatment of invasive fungal disease. PLoS Pathog 2023; 19(5): e1011322.
[http://dx.doi.org/10.1371/journal.ppat.1011322] [PMID: 37141208]
[6]
Benitez LL, Carver PL. Adverse effects associated with long-term administration of azole antifungal agents. Drugs 2019; 79(8): 833-53.
[http://dx.doi.org/10.1007/s40265-019-01127-8] [PMID: 31093949]
[7]
Sahadevan NV. Drug interactions of azole antifungals. J Skin Sex Transm Dis 2023; 5: 50-4.
[8]
Kanafani ZA, Perfect JR. Resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis 2008; 46(1): 120-8.
[http://dx.doi.org/10.1086/524071] [PMID: 18171227]
[9]
Scorzoni L. de Paula e Silva ACA, Marcos CM, et al. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front Microbiol 2017; 8: 36.
[http://dx.doi.org/10.3389/fmicb.2017.00036] [PMID: 28167935]
[10]
Roberts MS, Cheruvu HS, Mangion SE, et al. Topical drug delivery: History, percutaneous absorption, and product development. Adv Drug Deliv Rev 2021; 177: 113929.
[http://dx.doi.org/10.1016/j.addr.2021.113929] [PMID: 34403750]
[11]
Sousa F, Ferreira D, Reis S, Costa P. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals 2020; 13(9): 248.
[http://dx.doi.org/10.3390/ph13090248] [PMID: 32942693]
[12]
Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett 2010; 10(9): 3223-30.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[13]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[14]
Mazayen ZM, Ghoneim AM, Elbatanony RS, Basalious EB, Bendas ER. Pharmaceutical nanotechnology: From the bench to the market. Future J Pharm Sci 2022; 8(1): 12.
[http://dx.doi.org/10.1186/s43094-022-00400-0] [PMID: 35071609]
[15]
Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Control Release 2016; 240: 77-92.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.049] [PMID: 26518723]
[16]
Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit Rev Ther Drug Carrier Syst 2009; 26(6): 523-80.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10] [PMID: 20402623]
[17]
Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao CX. Lipid nanoparticles for drug delivery. Adv NanoBiomed Res 2022; 2(2): 2100109.
[http://dx.doi.org/10.1002/anbr.202100109] [PMID: 35179344]
[18]
Montoto SS, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front Mol Biosci 2020; 7: 587997.
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]
[19]
Araujo VHS, Delello Di Filippo L, Duarte JL, et al. Exploiting solid lipid nanoparticles and nanostructured lipid carriers for drug delivery against cutaneous fungal infections. Crit Rev Microbiol 2021; 47(1): 79-90.
[http://dx.doi.org/10.1080/1040841X.2020.1843399] [PMID: 33156736]
[20]
Mosallam S, Albash R, Abdelbari MA. Advanced vesicular systems for antifungal drug delivery. AAPS PharmSciTech 2022; 23(6): 206.
[http://dx.doi.org/10.1208/s12249-022-02357-y] [PMID: 35896903]
[21]
Shukla R. The new era of vesicular drug delivery system: A review. Int J Innov Res Sci Eng Technol 2021; 8: 661-8.
[22]
Chinnappan S, Yi CL, Chen CJ, Hsia TW, Qi YH. Recent advances in delivery of antifungal agents: A review. J Young Pharm 2020; 12(3): 193-6.
[http://dx.doi.org/10.5530/jyp.2020.12.59]
[23]
Mezei M, Gulasekharam V. Liposomes: A selective drug delivery system for the topical route of administration I. Lotion dosage form. Life Sci 1980; 26(18): 1473-7.
[http://dx.doi.org/10.1016/0024-3205(80)90268-4] [PMID: 6893068]
[24]
Mezei M, Gulasekharam V. Liposomes—A selective drug delivery system for the topical route of administration: Gel dosage form. J Pharm Pharmacol 2011; 34(7): 473-4.
[http://dx.doi.org/10.1111/j.2042-7158.1982.tb04767.x] [PMID: 6126554]
[25]
Schwarz JC, Kählig H, Matsko NB, Kratzel M, Husa M, Valenta C. Decrease of liposomal size and retarding effect on fluconazole skin permeation by lysine derivatives. J Pharm Sci 2011; 100(7): 2911-9.
[http://dx.doi.org/10.1002/jps.22513] [PMID: 21319163]
[26]
El-Badry M, Fetih G, Shakeel F. Comparative topical delivery of antifungal drug croconazole using liposome and micro-emulsion-based gel formulations. Drug Deliv 2014; 21(1): 34-43.
[http://dx.doi.org/10.3109/10717544.2013.843610] [PMID: 24116896]
[27]
Kim MK, Chung SJ, Lee MH, Cho AR, Shim CK. Targeted and sustained delivery of hydrocortisone to normal and stratum corneum-removed skin without enhanced skin absorption using a liposome gel. J Control Release 1997; 46(3): 243-51.
[http://dx.doi.org/10.1016/S0168-3659(96)01604-5]
[28]
Ning M, Guo Y, Pan H, Chen X, Gu Z. Preparation, in vitro and in vivo evaluation of liposomal/niosomal gel delivery systems for clotrimazole. Drug Dev Ind Pharm 2005; 31(4-5): 375-83.
[http://dx.doi.org/10.1081/DDC-54315] [PMID: 16093203]
[29]
Asadi P, Mehravaran A, Soltanloo N, Abastabar M, Akhtari J. Nanoliposome-loaded antifungal drugs for dermal administration: A review. Curr Med Mycol 2021; 7(1): 71-8.
[http://dx.doi.org/10.18502/cmm.7.1.6247] [PMID: 34553102]
[30]
Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Control Release 1994; 30(1): 1-15.
[http://dx.doi.org/10.1016/0168-3659(94)90039-6]
[31]
Hamishehkar H, Rahimpour Y, Kouhsoltani M. Niosomes as a propitious carrier for topical drug delivery. Expert Opin Drug Deliv 2013; 10(2): 261-72.
[http://dx.doi.org/10.1517/17425247.2013.746310] [PMID: 23252629]
[32]
Choi MJ, Maibach HI. Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol Physiol 2005; 18(5): 209-19.
[http://dx.doi.org/10.1159/000086666] [PMID: 16015019]
[33]
Shatalebi MA, Mostafavi SA, Moghaddas A. Niosome as a drug carrier for topical delivery of N-acetyl glucosamine. Res Pharm Sci 2010; 5(2): 107-17.
[PMID: 21589799]
[34]
Gupta M, Vaidya B, Mishra N, Vyas SP. Effect of surfactants on the characteristics of fluconazole niosomes for enhanced cutaneous delivery. Artif Cells Blood Substit Immobil Biotechnol 2011; 39(6): 376-84.
[http://dx.doi.org/10.3109/10731199.2011.611476] [PMID: 21951195]
[35]
Neubert RHH. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm 2011; 77(1): 1-2.
[http://dx.doi.org/10.1016/j.ejpb.2010.11.003] [PMID: 21111043]
[36]
Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci 2006; 123-126: 369-85.
[http://dx.doi.org/10.1016/j.cis.2006.05.014] [PMID: 16843424]
[37]
Patel MR, Patel RB, Parikh JR. Effect of formulation components on the in-vitro permeation of microemulsion drug delivery system of fluconazole. AAPS PharmSciTech 2009; 10(3): 917-23.
[http://dx.doi.org/10.1208/s12249-009-9286-2] [PMID: 19609836]
[38]
Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev 2002; 54 (Suppl. 1): S77-98.
[http://dx.doi.org/10.1016/S0169-409X(02)00116-3] [PMID: 12460717]
[39]
Patel MR, Patel BR, Parikh RJ, Bhatt KK, Solanki BA. Investigating the effect of vehicle on in vitro skin permeation of ketoconazole applied in O/W micro emulsions. Acta Pharm Sci 2010; 52: 65-87.
[40]
Patel MR, Patel RB, Parikh JR, Solanki AB, Patel BG. Investigating effect of microemulsion components: In vitro permeation of ketoconazole. Pharm Dev Technol 2011; 16(3): 250-8.
[http://dx.doi.org/10.3109/10837451003610845] [PMID: 20146553]
[41]
Lee EA, Balakrishnan P, Song CK, et al. Microemulsion-based hydrogel formulation of itraconazole for topical delivery. J Pharm Investig 2010; 40(5): 305-11.
[http://dx.doi.org/10.4333/KPS.2010.40.5.305]
[42]
Shishoo C, Chudasama A, Patel V, Nivsarkar M, Vasu K. Investigation of microemulsion system for transdermal delivery of itraconazole. J Adv Pharm Technol Res 2011; 2(1): 30-8.
[http://dx.doi.org/10.4103/2231-4040.79802] [PMID: 22171289]
[43]
El-Hadidy GN, Ibrahim HK, Mohamed MI, El-Milligi MF. Microemulsions as vehicles for topical administration of voriconazole: Formulation and in vitro evaluation. Drug Dev Ind Pharm 2012; 38(1): 64-72.
[http://dx.doi.org/10.3109/03639045.2011.590731] [PMID: 21696340]
[44]
Ge S, Lin Y, Lu H, et al. Percutaneous delivery of econazole using microemulsion as vehicle: Formulation, evaluation and vesicle-skin interaction. Int J Pharm 2014; 465(1-2): 120-31.
[http://dx.doi.org/10.1016/j.ijpharm.2014.02.012] [PMID: 24530389]
[45]
Hashem FM, Shaker DS, Ghorab MK, Nasr M, Ismail A. Formulation, characterization, and clinical evaluation of microemulsion containing clotrimazole for topical delivery. AAPS PharmSciTech 2011; 12(3): 879-86.
[http://dx.doi.org/10.1208/s12249-011-9653-7] [PMID: 21725708]
[46]
Radwan SAA, ElMeshad AN, Shoukri RA. Microemulsion loaded hydrogel as a promising vehicle for dermal delivery of the antifungal sertaconazole: Design, optimization and ex vivo evaluation. Drug Dev Ind Pharm 2017; 43(8): 1351-65.
[http://dx.doi.org/10.1080/03639045.2017.1318899] [PMID: 28420288]
[47]
Kumari B, Kesavan K. Effect of chitosan coating on microemulsion for effective dermal clotrimazole delivery. Pharm Dev Technol 2017; 22(4): 617-26.
[http://dx.doi.org/10.1080/10837450.2016.1230629] [PMID: 27574791]
[48]
Gosecka M, Jaworska-Krych D, Gosecki M, et al. Self-Healable, injectable hydrogel with enhanced clotrimazole solubilization as a potential therapeutic platform for gynecology. Biomacromolecules 2022; 23(10): 4203-19.
[http://dx.doi.org/10.1021/acs.biomac.2c00691] [PMID: 36073031]
[49]
Jadhav KS, Shetye SV, Kadam V. Design and evaluation of micro emulsion based drug delivery system. Asian J Exp Biol Sci 2010; 1(2): 580-90.
[50]
Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J Control Release 2018; 270: 203-25.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.049] [PMID: 29199062]
[51]
Nastiti C, Ponto T, Abd E, Grice J, Benson H, Roberts M. Topical nano and microemulsions for skin delivery. Pharmaceutics 2017; 9(4): 37.
[http://dx.doi.org/10.3390/pharmaceutics9040037] [PMID: 28934172]
[52]
Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2007; 2: 147-57.
[http://dx.doi.org/10.1177/117739280700200002] [PMID: 21901071]
[53]
Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013; 5(3): 205-18.
[http://dx.doi.org/10.1002/wnan.1211] [PMID: 23386536]
[54]
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3): 329-47.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[55]
Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater 2022; 5(6): 1593-615.
[http://dx.doi.org/10.1007/s42247-021-00335-x] [PMID: 35005431]
[56]
Hasan S. A review on nanoparticles: Their synthesis and types. Res J Recent Sci 2015; 4: 1-3.
[57]
Vallabani NVS, Singh S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 2018; 8: 279.
[58]
Souza ACO, Amaral AC. Antifungal therapy for systemic mycosis and the nanobiotechnology era: Improving efficacy, biodistribution and toxicity. Front Microbiol 2017; 8: 336.
[http://dx.doi.org/10.3389/fmicb.2017.00336] [PMID: 28326065]
[59]
LiverTox. Clinical and research information on drug-induced liver injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases 2012.
[60]
El-Housiny S, Shams Eldeen MA, El-Attar YA, et al. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: Formulation and clinical study. Drug Deliv 2018; 25(1): 78-90.
[http://dx.doi.org/10.1080/10717544.2017.1413444] [PMID: 29239242]
[61]
Abbas N, Hussain A, Ahsan Hafiz M, Perveen K. Formulation and evaluation of fluconazole loaded nanospongies for improved topical drug delivery. Br J Pharm 2018; 2(2)
[http://dx.doi.org/10.5920/bjpharm.2017.29]
[62]
Khalid A, Ahmed N, Qindeel M, Asad MI, Khan GM, Ur Rehman A. Development of novel biopolymer-based nanoparticles loaded cream for potential treatment of topical fungal infections. Drug Dev Ind Pharm 2021; 47(7): 1090-9.
[http://dx.doi.org/10.1080/03639045.2021.1957914] [PMID: 34279160]
[63]
Fatima I, Rasul A, Shah S, et al. Novasomes as nano-vesicular carriers to enhance topical delivery of fluconazole: A new approach to treat fungal infections. Molecules 2022; 27(9): 2936.
[http://dx.doi.org/10.3390/molecules27092936] [PMID: 35566287]
[64]
Mosallam S, Ragaie MH, Moftah NH, Elshafeey AH, Abdelbary AA. Use of novasomes as a vesicular carrier for improving the topical delivery of terconazole: In vitro characterization, in vivo assessment and exploratory clinical experimentation. Int J Nanomedicine 2021; 16: 119-32.
[http://dx.doi.org/10.2147/IJN.S287383] [PMID: 33447031]
[65]
Sodeifian G, Sajadian SA, Razmimanesh F, Hazaveie SM. Solubility of Ketoconazole (antifungal drug) in SC-CO2 for binary and ternary systems: measurements and empirical correlations. Sci Rep 2021; 11(1): 7546.
[http://dx.doi.org/10.1038/s41598-021-87243-6] [PMID: 33824375]
[66]
Fothergill AW, Sutton DA, McCarthy DI, Wiederhold NP. Impact of new antifungal breakpoints on antifungal resistance in candida species. J Clin Microbiol 2014; 52(3): 994-7.
[http://dx.doi.org/10.1128/JCM.03044-13] [PMID: 24403302]
[67]
Sadozai SK, Khan SA, Karim N, et al. Ketoconazole-loaded PLGA nanoparticles and their synergism against candida albicans when combined with silver nanoparticles. J Drug Deliv Sci Technol 2020; 56: 101574.
[http://dx.doi.org/10.1016/j.jddst.2020.101574]
[68]
Sadozai SK, Khan SA, Baseer A, Ullah R, Zeb A, Schneider M. In vitro, ex vivo, and in vivo evaluation of nanoparticle-based topical formulation against Candida albicans infection. Front Pharmacol 2022; 13: 909851.
[http://dx.doi.org/10.3389/fphar.2022.909851] [PMID: 35873577]
[69]
Zonios D, Yamazaki H, Murayama N, et al. Voriconazole metabolism, toxicity, and the effect of cytochrome P450 2C19 genotype. J Infect Dis 2014; 209(12): 1941-8.
[http://dx.doi.org/10.1093/infdis/jiu017] [PMID: 24403552]
[70]
de Sá FAP, Taveira SF, Gelfuso GM, Lima EM, Gratieri T. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf B Biointerfaces 2015; 133: 331-8.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.036] [PMID: 26123854]
[71]
Song SH, Lee KM, Kang JB, Lee SG, Kang MJ, Choi YW. Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation. Chem Pharm Bull 2014; 62(8): 793-8.
[http://dx.doi.org/10.1248/cpb.c14-00202] [PMID: 25087631]
[72]
Rocha KAD, Krawczyk-Santos AP, Andrade LM, et al. Voriconazole-loaded nanostructured lipid carriers (NLC) for drug delivery in deeper regions of the nail plate. Int J Pharm 2017; 531(1): 292-8.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.115] [PMID: 28859937]
[73]
Santos GA, Angelo T, Andrade LM, et al. The role of formulation and follicular pathway in voriconazole cutaneous delivery from liposomes and nanostructured lipid carriers. Colloids Surf B Biointerfaces 2018; 170: 341-6.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.037] [PMID: 29940500]
[74]
Farooq M, Usman F, Zaib S, et al. Fabrication and evaluation of voriconazole loaded transethosomal gel for enhanced antifungal and antileishmanial activity. Molecules 2022; 27(10): 3347.
[http://dx.doi.org/10.3390/molecules27103347] [PMID: 35630825]
[75]
Hassanpour P, Hamishehkar H, Bahari Baroughi B, et al. Antifungal effects of voriconazole-loaded nano-liposome on fluconazole - resistant clinical isolates of candida albicans, biological activity and ERG11, CDR1, and CDR2 gene expression. Assay Drug Dev Technol 2021; 19(7): 453-62.
[http://dx.doi.org/10.1089/adt.2020.1057] [PMID: 34435891]
[76]
Aljaeid B, Hosny KM. Miconazole-loaded solid lipid nanoparticles: Formulation and evaluation of a novel formula with high bioavailability and antifungal activity. Int J Nanomedicine 2016; 11(11): 441-7.
[http://dx.doi.org/10.2147/IJN.S100625] [PMID: 26869787]
[77]
Jain S, Jain S, Khare P, Gulbake A, Bansal D, Jain SK. Design and development of solid lipid nanoparticles for topical delivery of an anti-fungal agent. Drug Deliv 2010; 17(6): 443-51.
[http://dx.doi.org/10.3109/10717544.2010.483252] [PMID: 20486871]
[78]
Qushawy M, Nasr A, Abd-Alhaseeb M, Swidan S. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics 2018; 10(1): 26.
[http://dx.doi.org/10.3390/pharmaceutics10010026] [PMID: 29473897]
[79]
Kenechukwu FC, Attama AA, Ibezim EC, et al. Novel intravaginal drug delivery system based on molecularly PEGylated lipid matrices for improved antifungal activity of miconazole nitrate. BioMed Res Int 2018; 2018: 1-18.
[http://dx.doi.org/10.1155/2018/3714329] [PMID: 29977910]
[80]
Firooz A, Namdar R, Nafisi S, Maibach HI. Nano-sized technologies for miconazole skin delivery. Curr Pharm Biotechnol 2016; 17(6): 524-31.
[http://dx.doi.org/10.2174/1389201017666160301102459] [PMID: 26927217]
[81]
Cerdeira AM, Mazzotti M, Gander B. Miconazole nanosuspensions: Influence of formulation variables on particle size reduction and physical stability. Int J Pharm 2010; 396(1-2): 210-8.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.020] [PMID: 20600732]
[82]
Ofokansi KC, Kenechukwu FC, Ogwu NN. Design of novel miconazole nitrate transdermal films based on Eudragit RS100 and HPMC hybrids: Preparation, physical characterization, in vitro and ex vivo studies. Drug Deliv 2015; 22(8): 1078-85.
[http://dx.doi.org/10.3109/10717544.2013.875604] [PMID: 24455998]
[83]
Pandit J, Garg M, Jain NK. Miconazole nitrate bearing ultraflexible liposomes for the treatment of fungal infection. J Liposome Res 2014; 24(2): 163-9.
[http://dx.doi.org/10.3109/08982104.2013.871025] [PMID: 24479833]
[84]
Bhalekar MR, Pokharkar V, Madgulkar A, Patil N, Patil N. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS PharmSciTech 2009; 10(1): 289-96.
[http://dx.doi.org/10.1208/s12249-009-9199-0] [PMID: 19294517]
[85]
Abdel-Rashid RS, Helal DA, Alaa-Eldin AA, Abdel-Monem R. Polymeric versus lipid nanocapsules for miconazole nitrate enhanced topical delivery: in vitro and ex vivo evaluation. Drug Deliv 2022; 29(1): 294-304.
[http://dx.doi.org/10.1080/10717544.2022.2026535] [PMID: 35037528]
[86]
Firooz A, Nafisi S, Maibach HI. Novel drug delivery strategies for improving econazole antifungal action. Int J Pharm 2015; 495(1): 599-607.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.015] [PMID: 26383840]
[87]
Sanna V, Gavini E, Cossu M, Rassu G, Giunchedi P. Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: In-vitro characterization, ex-vivo and in-vivo studies. J Pharm Pharmacol 2010; 59(8): 1057-64.
[http://dx.doi.org/10.1211/jpp.59.8.0002] [PMID: 17725847]
[88]
Waugh CD. Clotrimazole. XPharm Compr. Pharmacol Ref 2007; 2011: 1-4.
[89]
Alam MA, Al-Janoobi FI, Alzahrani KA, Al-Agamy MH, Abdelgalil AA, Al-Mohizea AM. In-vitro efficacies of topical microemulsions of clotrimazole and ketoconazole; and in-vivo performance of clotrimazole microemulsion. J Drug Deliv Sci Technol 2017; 39: 408-16.
[http://dx.doi.org/10.1016/j.jddst.2017.04.025]
[90]
Manca ML, Usach I, Peris JE, et al. Optimization of innovative three-dimensionally-structured hybrid vesicles to improve the cutaneous delivery of clotrimazole for the treatment of topical candidiasis. Pharmaceutics 2019; 11(6): 263.
[http://dx.doi.org/10.3390/pharmaceutics11060263] [PMID: 31174342]
[91]
Nagasa GD, Belete A. Review on nanomaterials and nano-scaled systems for topical and systemic delivery of antifungal drugs. J Multidiscip Healthc 2022; 15: 1819-40.
[http://dx.doi.org/10.2147/JMDH.S359282] [PMID: 36060421]
[92]
Bolla PK, Meraz CA, Rodriguez VA, et al. Clotrimazole loaded ufosomes for topical delivery: Formulation development and in-vitro studies. Molecules 2019; 24(17): 3139.
[http://dx.doi.org/10.3390/molecules24173139] [PMID: 31470517]
[93]
Kumar N, Goindi S. Development and optimization of itraconazole-loaded solid lipid nanoparticles for topical administration using high shear homogenization process by design of experiments: in vitro, ex vivo and in vivo evaluation. AAPS PharmSciTech 2021; 22(7): 248.
[http://dx.doi.org/10.1208/s12249-021-02118-3] [PMID: 34647162]
[94]
Kumar M, Tiwari A, Asdaq SMB, et al. Itraconazole loaded nano-structured lipid carrier for topical ocular delivery: Optimization and evaluation. Saudi J Biol Sci 2022; 29(1): 1-10.
[http://dx.doi.org/10.1016/j.sjbs.2021.11.006] [PMID: 35002390]
[95]
Hashem SM, Gad MK, Anwar HM, Saleh NM, Shamma RN, Elsherif NI. Itraconazole-loaded ufasomes: Evaluation, characterization, and anti-fungal activity against candida albicans. Pharmaceutics 2022; 15(1): 26.
[http://dx.doi.org/10.3390/pharmaceutics15010026] [PMID: 36678655]
[96]
Shahzadi I, Masood MI, Chowdhary F, et al. Microemulsion formulation for topical delivery of miconazole nitrate. Int J Pharm Sci Rev Res 2014; 24: 30-6.
[97]
Elmoslemany RM, Abdallah OY, El-Khordagui LK, Khalafallah NM. Propylene glycol liposomes as a topical delivery system for miconazole nitrate: Comparison with conventional liposomes. AAPS PharmSciTech 2012; 13(2): 723-31.
[http://dx.doi.org/10.1208/s12249-012-9783-6] [PMID: 22566173]
[98]
Maha HL, Sinaga KR, Sinaga KR, Masfria M, Masfria M. Formulation and evaluation of miconazole nitrate nanoemulsion and cream. Asian J Pharm Clin Res 2018; 11(3): 319-21.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i3.22056]
[99]
Evelyn D, Wooi CC, Kumar JR, Muralidharan S, Dhanaraj SA. Development and evaluation of microemulsion based gel (MBGs) containing econazole nitrate for nail fungal infection. J Pharm Res 2012; 5: 2385-90.
[100]
Keshri L, Pathak K. Development of thermodynamically stable nanostructured lipid carrier system using central composite design for zero order permeation of econazole nitrate through epidermis. Pharm Dev Technol 2013; 18(3): 634-44.
[http://dx.doi.org/10.3109/10837450.2012.659256] [PMID: 22339250]
[101]
Xianrong Q, Liu MH, Liu HY, Maitani Y, Nagai T. Topical econazole delivery using liposomal gel. S.T.P. Pharm Sci 2003; 13: 241-5.
[102]
Verma P, Pathak K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine 2012; 8(4): 489-96.
[http://dx.doi.org/10.1016/j.nano.2011.07.004] [PMID: 21839053]
[103]
Sharma R, Walker RB, Pathak K. Evaluation of the kinetics and mechanism of drug release from econazole nitrate nanosponge loaded carbapol hydrogel. Indian J Pharm Educ Res 2011; 45: 25-31.
[104]
Bachhav YG, Mondon K, Kalia YN, Gurny R, Möller M. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals. J Control Release 2011; 153(2): 126-32.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.003] [PMID: 21397643]
[105]
Youenang Piemi MP, Korner D, Benita S, Marty JP. Positively and negatively charged submicron emulsions for enhanced topical delivery of antifungal drugs. J Control Release 1999; 58(2): 177-87.
[http://dx.doi.org/10.1016/S0168-3659(98)00156-4] [PMID: 10053190]
[106]
Souto EB, Müller RH. SLN and NLC for topical delivery of ketoconazole. J Microencapsul 2005; 22(5): 501-10.
[http://dx.doi.org/10.1080/02652040500162436] [PMID: 16361193]
[107]
Shirsand SB, Kanani KM, Keerthy D, Nagendrakumar D, Para MS. Formulation and evaluation of ketoconazole niosomal gel drug delivery system. Int J Pharm Investig 2012; 2(4): 201-7.
[http://dx.doi.org/10.4103/2230-973X.107002] [PMID: 23580936]
[108]
Winnicka K, Wroblewska M, Wieczorek P, Sacha PT, Tryniszewska E. Hydrogel of ketoconazole and PAMAM dendrimers: Formulation and antifungal activity. Molecules 2012; 17(4): 4612-24.
[http://dx.doi.org/10.3390/molecules17044612] [PMID: 22513487]
[109]
Ashe S, Nayak D, Tiwari G, Rauta PR, Nayak B. Development of liposome‐encapsulated ketoconazole: formulation, characterisation and evaluation of pharmacological therapeutic efficacy. Micro & Nano Lett 2015; 10(2): 126-9.
[http://dx.doi.org/10.1049/mnl.2014.0198]
[110]
Kumar AS, Sheri PS, Kuriachan MA. Formulation and evaluation of antifungal nanosponge loaded hydrogel for topical delivery. Int J Pharm Pharm Res 2018; 13: 362-79.
[111]
Akhtar N, Pathak K. Cavamax W7 composite ethosomal gel of clotrimazole for improved topical delivery: Development and comparison with ethosomal gel. AAPS PharmSciTech 2012; 13(1): 344-55.
[http://dx.doi.org/10.1208/s12249-012-9754-y] [PMID: 22282041]
[112]
Shirsand SB, Kumar GR, Keshavshetti GG, Bushetti SS, Swamy PV. Formulation and evaluation of clotrimazole niosomal gel for topical application. RGUHS J Pharm Sci 2015; 5(1): 32-8.
[http://dx.doi.org/10.5530/rjps.2015.1.4]
[113]
Yassin G. Formulation and evaluation of optimized clotrimazole emulgel formulations. Br J Pharm Res 2014; 4(9): 1014-30.
[http://dx.doi.org/10.9734/BJPR/2014/8495]
[114]
Souto EB, Wissing SA, Barbosa CM, Müller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm 2004; 278(1): 71-7.
[http://dx.doi.org/10.1016/j.ijpharm.2004.02.032] [PMID: 15158950]
[115]
Maheshwari RGS, Tekade RK, Sharma PA, et al. Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: A comparative assessment. Saudi Pharm J 2012; 20(2): 161-70.
[http://dx.doi.org/10.1016/j.jsps.2011.10.001] [PMID: 23960788]
[116]
Wagh VD, Deshmukh OJ. Itraconazole niosomes drug delivery system and its antimycotic activity against candida albicans. ISRN Pharm 2012; 2012: 1-7.
[http://dx.doi.org/10.5402/2012/653465] [PMID: 23378932]
[117]
Leal AFG, Leite MC, Medeiros CSQ, et al. Antifungal activity of a liposomal itraconazole formulation in experimental Aspergillus flavus keratitis with endophthalmitis. Mycopathologia 2015; 179(3-4): 225-9.
[http://dx.doi.org/10.1007/s11046-014-9837-2] [PMID: 25431088]
[118]
Osmani RAM, Moin A, Deb TK, Bhosale R, Hani U. Fabrication, characterization, and evaluation of microsponge delivery system for facilitated fungal therapy. J Basic Clin Pharm 2016; 7(2): 39-48.
[http://dx.doi.org/10.4103/0976-0105.177705] [PMID: 27057125]
[119]
Indora N, Kaushik D. Design; development and evaluation of ethosomal gel of fluconazole for topical fungal infection. Int J Eng Sci Invent Res Dev 2015; 1: 280-306.
[120]
Lalit SK, Panwar AS, Darwhekar G, Jain DK. Formulation and evaluation of fluconazole amphiphilogel. Pharm Lett 2011; 3: 125-31.
[121]
Pandurangan DK, Bodagala P, Palanirajan VK, Govindaraj S. Formulation and evaluation of voriconazole ophthalmic solid lipid nanoparticles in situ gel. Int J Pharm Investig 2011; 6(1): 56-62.
[http://dx.doi.org/10.4103/2230-973X.176488] [PMID: 27014620]
[122]
Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces 2012; 92: 299-304.
[http://dx.doi.org/10.1016/j.colsurfb.2011.12.004] [PMID: 22205066]
[123]
Tanrıverdi ST, Hilmioğlu Polat S, Yeşim Metin D, Kandiloğlu G, Özer Ö. Terbinafine hydrochloride loaded liposome film formulation for treatment of onychomycosis: In vitro and in vivo evaluation. J Liposome Res 2016; 26(2): 163-73.
[http://dx.doi.org/10.3109/08982104.2015.1067892] [PMID: 26226352]
[124]
Chen Y-C, Liu D-Z, Liu J-J, Chang T-W, Ho H-O, Sheu M-T. Development of terbinafine solid lipid nanoparticles as a topical delivery system. Int J Nanomedicine 2012; 7: 4409-18.
[PMID: 22923986]
[125]
Ghannoum M, Isham N, Henry W, Kroon HA, Yurdakul S. Evaluation of the morphological effects of TDT 067 (terbinafine in Transfersome) and conventional terbinafine on dermatophyte hyphae in vitro and in vivo. Antimicrob Agents Chemother 2012; 56(5): 2530-4.
[http://dx.doi.org/10.1128/AAC.05998-11] [PMID: 22354309]
[126]
Özcan İ, Abacı Ö, Uztan AH, et al. Enhanced topical delivery of terbinafine hydrochloride with chitosan hydrogels. AAPS PharmSciTech 2009; 10(3): 1024-31.
[http://dx.doi.org/10.1208/s12249-009-9299-x] [PMID: 19662536]
[127]
Erdal MS, Özhan G, Mat C, Özsoy Y, Güngör S. Colloidal nanocarriers for the enhanced cutaneous delivery of naftifine: Characterization studies and in vitro and in vivo evaluations. Int J Nanomedicine 2016; 11: 1027-37.
[http://dx.doi.org/10.2147/IJN.S96243] [PMID: 27042058]
[128]
Barakat HS, Darwish IA, El-Khordagui LK, Khalafallah NM. Development of naftifine hydrochloride alcohol-free niosome gel. Drug Dev Ind Pharm 2009; 35(5): 631-7.
[http://dx.doi.org/10.1080/03639040802498864] [PMID: 18989805]
[129]
Pillai AB, Nair JV, Gupta NK, Gupta S. Microemulsion-loaded hydrogel formulation of butenafine hydrochloride for improved topical delivery. Arch Dermatol Res 2015; 307(7): 625-33.
[http://dx.doi.org/10.1007/s00403-015-1573-z] [PMID: 26006164]
[130]
Butani D, Yewale C, Misra A. Topical Amphotericin B solid lipid nanoparticles: Design and development. Colloids Surf B Biointerfaces 2016; 139: 17-24.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.032] [PMID: 26700229]
[131]
Sosa L, Clares B, Alvarado HL, Bozal N, Domenech O, Calpena AC. Amphotericin B releasing topical nanoemulsion for the treatment of candidiasis and aspergillosis. Nanomedicine 2017; 13: 2303-12.
[132]
Perez AP, Altube MJ, Schilrreff P, et al. Topical amphotericin B in ultradeformable liposomes: Formulation, skin penetration study, antifungal and antileishmanial activity in vitro. Colloids Surf B Biointerfaces 2016; 139: 190-8.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.003] [PMID: 26709977]
[133]
Khalil RM, Rahman AAAE, Kassem MA, et al. Preparation and in vivo assessment of nystatin-loaded solid lipid nanoparticles for topical delivery against cutaneous candidiasis. Int J Pharm Pharm Sci 2014; 8: 401-9.
[134]
Fernández-Campos F, Clares Naveros B, López Serrano O, Alonso Merino C, Calpena Campmany AC. Evaluation of novel nystatin nanoemulsion for skin candidosis infections. Mycoses 2013; 56(1): 70-81.
[http://dx.doi.org/10.1111/j.1439-0507.2012.02202.x] [PMID: 22574899]
[135]
Shirsand SB, Keshavshetti GG. Formulaiton and characterization of drug loaded niosomes for antifungal activity. Sper J Adv Nov Drug Deliv 2016; 1: 12-7.
[136]
Almawash S, Osman SK, Mustafa G, El Hamd MA. Current and future prospective of injectable hydrogels—design challenges and limitations. Pharmaceuticals 2022; 15(3): 371.
[http://dx.doi.org/10.3390/ph15030371] [PMID: 35337169]
[137]
Li Q, Song Q, Zhao Z, et al. Genetically engineered artificial exosome-constructed hydrogel for ovarian cancer therapy. ACS Nano 2023; 17(11): 10376-92.
[http://dx.doi.org/10.1021/acsnano.3c00804] [PMID: 37194951]
[138]
Ren X, Wang N, Zhou Y, et al. An injectable hydrogel using an immunomodulating gelator for amplified tumor immunotherapy by blocking the arginase pathway. Acta Biomater 2021; 124: 179-90.
[http://dx.doi.org/10.1016/j.actbio.2021.01.041] [PMID: 33524560]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy