Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Naphthoquinone Derivatives Targeting Melanoma

Author(s): Jéssica Alves Nunes, Adrielle Firmino da Silva Nunes, Dimas José da Paz Lima and Edeildo Ferreira da Silva-Júnior*

Volume 23, Issue 30, 2023

Published on: 11 September, 2023

Page: [2863 - 2876] Pages: 14

DOI: 10.2174/1568026623666230901124059

Price: $65

Abstract

Cancer is responsible for high mortality rates worldwide, representing a serious health problem. In this sense, melanoma corresponds to the most aggressive type of skin cancer, being the cause of the highest death rates. Therapeutic strategies for the treatment of melanoma remain limited, with problems associated with toxicity, serious side effects, and mechanisms of resistance. The potential of natural products for the prevention and treatment of melanoma has been reported in different studies. Among these compounds, naphthoquinones (1,2-naphthoquinones and 1,4-naphthoquinones) stand out for their diverse pharmacological properties, including their antitumor activity. Thus, this review covers different studies found in the literature on the application of natural naphthoquinones targeting melanoma, providing information regarding the mechanisms of action investigated for these compounds. Finally, we believe that this review provides a comprehensive basis for the use of natural naphthoquinones against melanoma and that it may contribute to the discovery of promising compounds, specifically naphthoquinones, aimed at the treatment of this cancer.

Graphical Abstract

[1]
WHO. Cancer, Available From: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed Apr 8, 2023)
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
CDC. Cancer, Available From: https://www.cdc.gov/tobacco/basic_information/health_effects/cancer/index.htm (Accessed Apr 8 2023)
[4]
Iqbal, J.; Abbasi, B.A.; Ahmad, R.; Batool, R.; Mahmood, T.; Ali, B.; Khalil, A.T.; Kanwal, S.; Afzal Shah, S.; Alam, M.M.; Bashir, S.; Badshah, H.; Munir, A. Potential phytochemicals in the fight against skin cancer: Current landscape and future perspectives. Biomed. Pharmacother., 2019, 109, 1381-1393.
[http://dx.doi.org/10.1016/j.biopha.2018.10.107] [PMID: 30551389]
[5]
Craythorne, E.; Nicholson, P. Diagnosis and management of skin cancer. Medicine, 2021, 49(7), 435-440.
[http://dx.doi.org/10.1016/j.mpmed.2021.04.007]
[6]
CDC. What is skin cancer?, Available From: https://www.cdc.gov/cancer/skin/basic_info/what-is-skin-cancer.htm (Accessed Apr 8 2023).
[7]
ACS. Key statistics for melanoma skin cancer., Available From: https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html (Accessed Apr 8 2023).
[8]
Schadendorf, D.; Fisher, D.E.; Garbe, C.; Gershenwald, J.E.; Grob, J.J.; Halpern, A.; Herlyn, M.; Marchetti, M.A.; McArthur, G.; Ribas, A.; Roesch, A.; Hauschild, A. Melanoma. Nat. Rev. Dis. Primers, 2015, 1(1), 15003.
[http://dx.doi.org/10.1038/nrdp.2015.3] [PMID: 27188223]
[9]
Schadendorf, D.; van Akkooi, A.C.J.; Berking, C.; Griewank, K.G.; Gutzmer, R.; Hauschild, A.; Stang, A.; Roesch, A.; Ugurel, S. Melanoma. Lancet, 2018, 392(10151), 971-984.
[http://dx.doi.org/10.1016/S0140-6736(18)31559-9] [PMID: 30238891]
[10]
Dzwierzynski, W.W. Melanoma risk factors and prevention. Clin. Plast. Surg., 2021, 48(4), 543-550.
[http://dx.doi.org/10.1016/j.cps.2021.05.001] [PMID: 34503715]
[11]
Carr, S.; Smith, C.; Wernberg, J. Epidemiology and risk factors of melanoma. Surg. Clin. North Am., 2020, 100(1), 1-12.
[http://dx.doi.org/10.1016/j.suc.2019.09.005] [PMID: 31753105]
[12]
Azoury, S.C.; Lange, J.R. Epidemiology, risk factors, prevention, and early detection of melanoma. Surg. Clin. North Am., 2014, 94(5), 945-962, vii.
[http://dx.doi.org/10.1016/j.suc.2014.07.013] [PMID: 25245960]
[13]
Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther., 2019, 20(11), 1366-1379.
[http://dx.doi.org/10.1080/15384047.2019.1640032] [PMID: 31366280]
[14]
Ascierto, P.A.; Kirkwood, J.M.; Grob, J.J.; Simeone, E.; Grimaldi, A.M.; Maio, M.; Palmieri, G.; Testori, A.; Marincola, F.M.; Mozzillo, N. The role of BRAF V600 mutation in melanoma. J. Transl. Med., 2012, 10(1), 85.
[http://dx.doi.org/10.1186/1479-5876-10-85] [PMID: 22554099]
[15]
Alqathama, A. BRAF in malignant melanoma progression and metastasis: potentials and challenges. Am. J. Cancer Res., 2020, 10(4), 1103-1114.
[PMID: 32368388]
[16]
Tanda, E.T.; Vanni, I.; Boutros, A.; Andreotti, V.; Bruno, W.; Ghiorzo, P.; Spagnolo, F. Current state of target treatment in BRAF mutated melanoma. Front. Mol. Biosci., 2020, 7, 154.
[http://dx.doi.org/10.3389/fmolb.2020.00154] [PMID: 32760738]
[17]
Subbiah, V.; Baik, C.; Kirkwood, J.M. Clinical development of BRAF plus MEK inhibitor combinations. Trends Cancer, 2020, 6(9), 797-810.
[http://dx.doi.org/10.1016/j.trecan.2020.05.009] [PMID: 32540454]
[18]
Rossi, A.; Roberto, M.; Panebianco, M.; Botticelli, A.; Mazzuca, F.; Marchetti, P. Drug resistance of BRAF-mutant melanoma: Review of up-to-date mechanisms of action and promising targeted agents. Eur. J. Pharmacol., 2019, 862, 172621.
[http://dx.doi.org/10.1016/j.ejphar.2019.172621] [PMID: 31446019]
[19]
Adams, R.; Coumbe, J.E.M.; Coumbe, B.G.T.; Thomas, J.; Willsmore, Z.; Dimitrievska, M.; Yasuzawa-Parker, M.; Hoyle, M.; Ingar, S.; Geh, J.L.C.; MacKenzie Ross, A.D.; Healy, C.; Papa, S.; Lacy, K.E.; Karagiannis, S.N. BRAF inhibitors and their immunological effects in malignant melanoma. Expert Rev. Clin. Immunol., 2022, 18(4), 347-362.
[http://dx.doi.org/10.1080/1744666X.2022.2044796] [PMID: 35195495]
[20]
Aly, A.A.; El-Sheref, E.M.; Bakheet, M.E.M.; Mourad, M.A.E.; Bräse, S.; Ibrahim, M.A.A.; Nieger, M.; Garvalov, B.K.; Dalby, K.N.; Kaoud, T.S. Design, synthesis and biological evaluation of fused naphthofuro[3,2-c] quinoline-6,7,12-triones and pyrano[3,2-c]quinoline-6,7,8,13-tetraones derivatives as ERK inhibitors with efficacy in BRAF-mutant melanoma. Bioorg. Chem., 2019, 82, 290-305.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.044] [PMID: 30396063]
[21]
Wellbrock, C.; Hurlstone, A. BRAF as therapeutic target in melanoma. Biochem. Pharmacol., 2010, 80(5), 561-567.
[http://dx.doi.org/10.1016/j.bcp.2010.03.019] [PMID: 20350535]
[22]
Dcruz, A.C.; Manandhar, S.; Kumar, A.; Gujaran, T.V.; Hedayat, P.; Pai, K.S.R.; Pai, K.S.R. BRAF gene as a potential target to attenuate drug resistance and treat cancer. Gene Rep., 2023, 30, 101740.
[http://dx.doi.org/10.1016/j.genrep.2023.101740]
[23]
Domingues, B.; Lopes, J.; Soares, P.; Pópulo, H. Melanoma treatment in review. ImmunoTargets Ther., 2018, 7, 35-49.
[http://dx.doi.org/10.2147/ITT.S134842] [PMID: 29922629]
[24]
Bomar, L.; Senithilnathan, A.; Ahn, C. Systemic therapies for advanced melanoma. Dermatol. Clin., 2019, 37(4), 409-423.
[http://dx.doi.org/10.1016/j.det.2019.05.001] [PMID: 31466582]
[25]
Dhanyamraju, P.K.; Patel, T.N. Melanoma therapeutics: A literature review. J. Biomed. Res., 2022, 36(2), 77-97.
[http://dx.doi.org/10.7555/JBR.36.20210163] [PMID: 35260531]
[26]
Manzano, J.L.; Layos, L.; Bugés, C.; de los Llanos Gil, M.; Vila, L.; Martínez-Balibrea, E.; Martínez-Cardús, A. Resistant mechanisms to BRAF inhibitors in melanoma. Ann. Transl. Med., 2016, 4(12), 237-237.
[http://dx.doi.org/10.21037/atm.2016.06.07] [PMID: 27429963]
[27]
Zhang, W. BRAF inhibitors: The current and the future. Curr. Opin. Pharmacol., 2015, 23, 68-73.
[http://dx.doi.org/10.1016/j.coph.2015.05.015] [PMID: 26072431]
[28]
Gouda, M.A.; Subbiah, V. Precision oncology for BRAF-mutant cancers with BRAF and MEK inhibitors: From melanoma to tissue-agnostic therapy. ESMO Open, 2023, 8(2), 100788.
[http://dx.doi.org/10.1016/j.esmoop.2023.100788] [PMID: 36842301]
[29]
Munhoz, R.R.; Postow, M.A. Combinatorial approaches to the treatment of advanced melanoma. Hematol. Oncol. Clin. North Am., 2021, 35(1), 145-158.
[http://dx.doi.org/10.1016/j.hoc.2020.08.015] [PMID: 33759771]
[30]
Jenkins, R.W.; Fisher, D.E. Treatment of advanced melanoma in 2020 and beyond. J. Invest. Dermatol., 2021, 141(1), 23-31.
[http://dx.doi.org/10.1016/j.jid.2020.03.943] [PMID: 32268150]
[31]
Mishra, H.; Mishra, P.K.; Ekielski, A.; Jaggi, M.; Iqbal, Z.; Talegaonkar, S. Melanoma treatment: From conventional to nanotechnology. J. Cancer Res. Clin. Oncol., 2018, 144(12), 2283-2302.
[http://dx.doi.org/10.1007/s00432-018-2726-1] [PMID: 30094536]
[32]
Curti, B.D.; Faries, M.B. Recent advances in the treatment of melanoma. N. Engl. J. Med., 2021, 384(23), 2229-2240.
[http://dx.doi.org/10.1056/NEJMra2034861] [PMID: 34107182]
[33]
Wang, S.J.; Dougan, S.K.; Dougan, M. Immune mechanisms of toxicity from checkpoint inhibitors. Trends Cancer, 2023, 9(7), 543-553.
[http://dx.doi.org/10.1016/j.trecan.2023.04.002] [PMID: 37117135]
[34]
Ziogas, D.C.; Theocharopoulos, C.; Koutouratsas, T.; Haanen, J.; Gogas, H. Mechanisms of resistance to immune checkpoint inhibitors in melanoma: What we have to overcome? Cancer Treat. Rev., 2023, 113, 102499.
[http://dx.doi.org/10.1016/j.ctrv.2022.102499] [PMID: 36542945]
[35]
Garbe, C.; Dummer, R.; Amaral, T.; Amaria, R.N.; Ascierto, P.A.; Burton, E.M.; Dreno, B.; Eggermont, A.M.M.; Hauschild, A.; Hoeller, C.; Kaufmann, R.; Lebbe, C.; Mandala, M.; Menzies, A.M.; Moreno, D.; Michielin, O.; Nathan, P.; Patel, S.P.; Robert, C.; Schadendorf, D.; Lorigan, P.C.; Scolyer, R.A.; Tawbi, H.A.; van de Wiel, B.A.; Blank, C.; Long, G.V. Neoadjuvant immunotherapy for melanoma is now ready for clinical practice. Nat. Med., 2023, 29(6), 1310-1312.
[http://dx.doi.org/10.1038/s41591-023-02336-1] [PMID: 37193799]
[36]
Sharon, C.E.; Beasley, G.M.; Karakousis, G.C. Clinical trials in melanoma. Surg. Oncol. Clin. N. Am., 2023, 32(1), 47-63.
[http://dx.doi.org/10.1016/j.soc.2022.07.005] [PMID: 36410921]
[37]
Kozar, I.; Margue, C.; Rothengatter, S.; Haan, C.; Kreis, S. Many ways to resistance: How melanoma cells evade targeted therapies. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 313-322.
[http://dx.doi.org/10.1016/j.bbcan.2019.02.002] [PMID: 30776401]
[38]
Ahmed, S.; Alam, W.; Alsharif, K.F.; Aschner, M.; Alzahrani, F.M.; Saso, L.; Khan, H. Therapeutic potential of marine peptides in malignant melanoma. Environ. Res., 2023, 227, 115771.
[http://dx.doi.org/10.1016/j.envres.2023.115771] [PMID: 36967001]
[39]
Prajapat, V.M.; Mahajan, S.; Paul, P.G.; Aalhate, M.; Mehandole, A.; Madan, J.; Dua, K.; Chellappan, D.K.; Singh, S.K.; Singh, P.K. Nanomedicine: A pragmatic approach for tackling melanoma skin cancer. J. Drug Deliv. Sci. Technol., 2023, 83, 104394.
[http://dx.doi.org/10.1016/j.jddst.2023.104394]
[40]
Fontana, F.; Raimondi, M.; Di Domizio, A.; Moretti, R.M.; Montagnani Marelli, M.; Limonta, P. Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin. Cancer Biol., 2019, 59, 266-282.
[http://dx.doi.org/10.1016/j.semcancer.2019.06.011] [PMID: 31233829]
[41]
Pereyra, C.E.; Dantas, R.F.; Ferreira, S.B.; Gomes, L.P.; Silva-Jr, F.P. The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell Int., 2019, 19(1), 207.
[http://dx.doi.org/10.1186/s12935-019-0925-8] [PMID: 31388334]
[42]
Pathirana, C.; Jensen, P.R.; Fenical, W. Marinone and debromomarinone: Antibiotic sesquiterpenoid naphthoquinones of a new structure class from a marine bacterium. Tetrahedron Lett., 1992, 33(50), 7663-7666.
[http://dx.doi.org/10.1016/0040-4039(93)88010-G]
[43]
Gritsan, N.P.; Klimenko, L.S. Photochromism of quinoid compounds: Properties of photo-induced ana-quinones. J. Photochem. Photobiol. Chem., 1993, 70(2), 103-117.
[http://dx.doi.org/10.1016/1010-6030(93)85030-C]
[44]
Khan, F.A.; Choudhury, S. Synthesis and electrochemical properties of substituted para-benzoquinone derivatives. Tetrahedron Lett., 2010, 51(18), 2541-2544.
[http://dx.doi.org/10.1016/j.tetlet.2010.03.007]
[45]
Ravichandiran, P.; Kannan, R.; Ramasubbu, A.; Muthusubramanian, S.; Samuel, V.K. Green synthesis of 1,4-quinone derivatives and evaluation of their fluorescent and electrochemical properties. J. Saudi Chem. Soc., 2016, 20, S93-S99.
[http://dx.doi.org/10.1016/j.jscs.2012.09.011]
[46]
Okamoto, S.; Taguchi, T.; Ochi, K.; Ichinose, K. Biosynthesis of actinorhodin and related antibiotics: Discovery of alternative routes for quinone formation encoded in the act gene cluster. Chem. Biol., 2009, 16(2), 226-236.
[http://dx.doi.org/10.1016/j.chembiol.2009.01.015] [PMID: 19246012]
[47]
Demir, Y. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases. Drug Dev. Res., 2020, 81(5), 628-636.
[http://dx.doi.org/10.1002/ddr.21667] [PMID: 32232985]
[48]
Rahman, M.M.; Islam, M.R.; Akash, S.; Shohag, S.; Ahmed, L.; Supti, F.A.; Rauf, A.; Aljohani, A.S.M.; Al Abdulmonem, W.; Khalil, A.A.; Sharma, R.; Thiruvengadam, M. Naphthoquinones and derivatives as potential anticancer agents: An updated review. Chem. Biol. Interact., 2022, 368, 110198.
[http://dx.doi.org/10.1016/j.cbi.2022.110198] [PMID: 36179774]
[49]
Bakery, H.H.; Allam, G.A.; Abuelsaad, A.S.A.; Abdel-Latif, M.; Elkenawy, A.E.; Khalil, R.G. Anti-inflammatory, antioxidant, anti-fibrotic and schistosomicidal properties of plumbagin in murine schistosomiasis. Parasite Immunol., 2022, 44(11), e12945.
[http://dx.doi.org/10.1111/pim.12945] [PMID: 36066812]
[50]
Lajubutu, B.A.; Pinney, R.J.; Roberts, M.F.; Odelola, H.A.; Oso, B.A. Antibacterial activity of diosquinone and plumbagin from the root of Diospyros mespiliformis (Hostch) (Ebenaceae). Phytother. Res., 1995, 9(5), 346-350.
[http://dx.doi.org/10.1002/ptr.2650090508]
[51]
Kumar, S.; Gautam, S.; Sharma, A. Antimutagenic and antioxidant properties of plumbagin and other naphthoquinones. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2013, 755(1), 30-41.
[http://dx.doi.org/10.1016/j.mrgentox.2013.05.007] [PMID: 23688616]
[52]
Aithal, K.B.; Kumar, S.M.R.; Rao, N.B.; Udupa, N.; Rao, S.B.S. Juglone, a naphthoquinone from walnut, exerts cytotoxic and genotoxic effects against cultured melanoma tumor cells. Cell Biol. Int., 2009, 33(10), 1039-1049.
[http://dx.doi.org/10.1016/j.cellbi.2009.06.018] [PMID: 19555768]
[53]
Liu, B.; Jin, J.; Zhang, Z.; Zuo, L.; Jiang, M.; Xie, C. Shikonin exerts antitumor activity by causing mitochondrial dysfunction in hepatocellular carcinoma through PKM2–AMPK–PGC1α signaling pathway. Biochem. Cell Biol., 2019, 97(4), 397-405.
[http://dx.doi.org/10.1139/bcb-2018-0310] [PMID: 30475643]
[54]
Eyong, K.O.; Ketsemen, H.L.; Zhao, Z.; Du, L.; Ingels, A.; Mathieu, V.; Kornienko, A.; Hull, K.G.; Folefoc, G.N.; Baskaran, S.; Romo, D. Antiproliferative activity of naphthoquinones and indane carboxylic acids from lapachol against a panel of human cancer cell lines. Med. Chem. Res., 2020, 29(6), 1058-1066.
[http://dx.doi.org/10.1007/s00044-020-02545-0]
[55]
Couladouros, E.A.; Strongilos, A.T. Synthesis of hydroxylated naphthoquinone derivatives. Eur. J. Org. Chem., 2002, 2002(19), 3341-3350.
[http://dx.doi.org/10.1002/1099-0690(200210)2002:19<3341::AID-EJOC3341>3.0.CO;2-K]
[56]
Kim, S.; Matsubara, R.; Hayashi, M. Activated carbon-promoted dehydrogenation of hydroquinones to benzoquinones, naphthoquinones, and anthraquinones under molecular oxygen atmosphere. J. Org. Chem., 2019, 84(5), 2997-3003.
[http://dx.doi.org/10.1021/acs.joc.8b02961] [PMID: 30730743]
[57]
Witayakran, S.; Zettili, A.; Ragauskas, A.J. Laccase-generated quinones in naphthoquinone synthesis via diels–alder reaction. Tetrahedron Lett., 2007, 48(17), 2983-2987.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.013]
[58]
Mishra, A.K.; Moorthy, J.N. o-iodoxybenzoic acid-initiated one-pot synthesis of 4-arylthio-1,2-naphthoquinones, 4-arylthio-1,2-diacetoxynaphthalenes, and 5-arylthio-/5-aminobenzo[a]phenazines. J. Org. Chem., 2016, 81(15), 6472-6480.
[http://dx.doi.org/10.1021/acs.joc.6b01105] [PMID: 27409144]
[59]
Takai, T.; Hata, E.; Mukaiyama, T. The Formation of 1,4-Quinones by Oxovanadium(IV)-complexes catalyzed aerobic oxygenation of fused aromatic compounds. Chem. Lett., 1994, 23(5), 885-888.
[http://dx.doi.org/10.1246/cl.1994.885]
[60]
Shu, C.; Shi, C.Y.; Sun, Q.; Zhou, B.; Li, T.Y.; He, Q.; Lu, X.; Liu, R.S.; Ye, L.W. Generation of endocyclic vinyl carbene complexes via gold-catalyzed oxidative cyclization of terminal diynes: Toward naphthoquinones and carbazolequinones. ACS Catal., 2019, 9(2), 1019-1025.
[http://dx.doi.org/10.1021/acscatal.8b04455]
[61]
Kumar, T.; Satam, N.; Namboothiri, I.N.N. Hauser-kraus annulation of phthalides with nitroalkenes for the synthesis of fused and spiro heterocycles. Eur. J. Org. Chem., 2016, 2016(20), 3316-3321.
[http://dx.doi.org/10.1002/ejoc.201600390]
[62]
He, G.; He, G.; Zhou, R.; Pi, Z.; Zhu, T.; Jiang, L.; Xie, Y. Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo. Biochem. Biophys. Res. Commun., 2016, 469(4), 1075-1082.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.100] [PMID: 26740178]
[63]
Manu, K.A.; Shanmugam, M.K.; Rajendran, P.; Li, F.; Ramachandran, L.; Hay, H.S.; Kannaiyan, R.; Swamy, S.N.; Vali, S.; Kapoor, S.; Ramesh, B.; Bist, P.; Koay, E.S.; Lim, L.H.K.; Ahn, K.S.; Kumar, A.P.; Sethi, G. Plumbagin inhibits invasion and migration of breast and gastric cancer cells by downregulating the expression of chemokine receptor CXCR4. Mol. Cancer, 2011, 10(1), 107.
[http://dx.doi.org/10.1186/1476-4598-10-107] [PMID: 21880153]
[64]
Xu, T.P.; Shen, H.; Liu, L.X.; Shu, Y.Q. Plumbagin from Plumbago Zeylanica L induces apoptosis in human non-small cell lung cancer cell lines through NF- κB inactivation. Asian Pac. J. Cancer Prev., 2013, 14(4), 2325-2331.
[http://dx.doi.org/10.7314/APJCP.2013.14.4.2325] [PMID: 23725135]
[65]
Li, Z.; Liu, X.; Li, M.; Chai, J.; He, S.; Wu, J.; Xu, J. Juglone potentiates BRAF inhibitor-induced apoptosis in melanoma through reactive oxygen species and the p38-p53 pathway. Mol. Med. Rep., 2020, 22(1), 566-574.
[http://dx.doi.org/10.3892/mmr.2020.11095] [PMID: 32377702]
[66]
Wellington, K.W. Understanding cancer and the anticancer activities of naphthoquinones: A review. RSC Advances, 2015, 5(26), 20309-20338.
[http://dx.doi.org/10.1039/C4RA13547D]
[67]
Kumagai, Y.; Shinkai, Y.; Miura, T.; Cho, A.K. The chemical biology of naphthoquinones and its environmental implications. Annu. Rev. Pharmacol. Toxicol., 2012, 52(1), 221-247.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134517] [PMID: 21942631]
[68]
Vasconcellos, M.C.; Bezerra, D.P.; Fonseca, A.M.; Araújo, A.J.; Pessoa, C.; Lemos, T.L.G.; Costa-Lotufo, L.V.; de Moraes, M.O.; Montenegro, R.C. The in-vitro and in-vivo inhibitory activity of biflorin in melanoma. Melanoma Res., 2011, 21(2), 106-114.
[http://dx.doi.org/10.1097/CMR.0b013e328343ecc4] [PMID: 21346641]
[69]
Andrade Carvalho, A.; da Costa, P.M.; Da Silva Souza, L.G.; Lemos, T.L.G.; Alves, A.P.N.N.; Pessoa, C.; de Moraes, M.O. Inhibition of metastatic potential of B16-F10 melanoma cell line in vivo and in vitro by biflorin. Life Sci., 2013, 93(5-6), 201-207.
[http://dx.doi.org/10.1016/j.lfs.2013.05.018] [PMID: 23743169]
[70]
Montenegro, R.C.; de Vasconcellos, M.C.; Barbosa, G.S.; Burbano, R.M.R.; Souza, L.G.S.; Lemos, T.L.G.; Costa-Lotufo, L.V.; de Moraes, M.O. A novel o-naphtoquinone inhibits N-cadherin expression and blocks melanoma cell invasion via AKT signaling. Toxicol. in vitro, 2013, 27(7), 2076-2083.
[http://dx.doi.org/10.1016/j.tiv.2013.07.011] [PMID: 23912027]
[71]
Ralph, A.C.L.; Calcagno, D.Q.; da Silva Souza, L.G.; de Lemos, T.L.G.; Montenegro, R.C.; de Arruda Cardoso Smith, M.; de Vasconcellos, M.C. Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines. Toxicol. in vitro, 2016, 34, 237-245.
[http://dx.doi.org/10.1016/j.tiv.2016.04.007] [PMID: 27079618]
[72]
Kim, J.H.; Lee, S.M.; Myung, C.H.; Lee, K.R.; Hyun, S.M.; Lee, J.E.; Park, Y.S.; Jeon, S.R.; Park, J.I.; Chang, S.E.; Hwang, J.S. Melanogenesis inhibition of β-lapachone, a natural product from Tabebuia avellanedae, with effective in vivo lightening potency. Arch. Dermatol. Res., 2015, 307(3), 229-238.
[http://dx.doi.org/10.1007/s00403-015-1543-5] [PMID: 25663088]
[73]
Prasad, V.S.; Devi, P.U.; Rao, B.S.; Kamath, R. Radiosensitizing effect of plumbagin on mouse melanoma cells grown in vitro. Indian J. Exp. Biol., 1996, 34(9), 857-858.
[PMID: 9014520]
[74]
Sand, J.M.; Hafeez, B.B.; Jamal, M.S.; Witkowsky, O.; Siebers, E.M.; Fischer, J.; Verma, A.K. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), isolated from Plumbago zeylanica, inhibits ultraviolet radiation-induced development of squamous cell carcinomas. Carcinogenesis, 2012, 33(1), 184-190.
[http://dx.doi.org/10.1093/carcin/bgr249] [PMID: 22072620]
[75]
Sakpakdeejaroen, I.; Somani, S.; Laskar, P.; Mullin, M.; Dufès, C. Regression of melanoma following intravenous injection of plumbagin entrapped in transferrin-conjugated, lipid–polymer hybrid nanoparticles. Int. J. Nanomedicine, 2021, 16, 2615-2631.
[http://dx.doi.org/10.2147/IJN.S293480] [PMID: 33854311]
[76]
Nair, A.; Nair, S.C.; Banerji, A.; Biswas, R.; Mony, U. Development and evaluation of plumbagin loaded chitin hydrogel for the treatment of skin cancer. J. Drug Deliv. Sci. Technol., 2021, 66, 102804.
[http://dx.doi.org/10.1016/j.jddst.2021.102804]
[77]
Wang, C.C.C.; Chiang, Y.M.; Sung, S.C.; Hsu, Y.L.; Chang, J.K.; Kuo, P.L. Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cells. Cancer Lett., 2008, 259(1), 82-98.
[http://dx.doi.org/10.1016/j.canlet.2007.10.005] [PMID: 18023967]
[78]
Sunil Kumar, M.R.; Kiran Aithal, B.; Udupa, N.; Sreenivasulu Reddy, M.; Raakesh, V.; Murthy, R.S.R.; Prudhvi Raju, D.; Satish Rao, B.S. Formulation of plumbagin loaded long circulating pegylated liposomes: in vivo evaluation in C57BL/6J mice bearing B16F1 melanoma. Drug Deliv., 2011, 18(7), 511-522.
[http://dx.doi.org/10.3109/10717544.2011.595840] [PMID: 21793763]
[79]
Alem, F.Z.; Bejaoui, M.; Villareal, M.O.; Rhourri-Frih, B.; Isoda, H. Elucidation of the effect of plumbagin on the metastatic potential of B16F10 murine melanoma cells via MAPK signalling pathway. Exp. Dermatol., 2020, 29(4), 427-435.
[http://dx.doi.org/10.1111/exd.14079] [PMID: 32012353]
[80]
Oh, T.I.; Yun, J.M.; Park, E.J.; Kim, Y.S.; Lee, Y.M.; Lim, J.H. Plumbagin suppresses α-msh-induced melanogenesis in B16F10 mouse melanoma cells by inhibiting tyrosinase activity. Int. J. Mol. Sci., 2017, 18(2), 320.
[http://dx.doi.org/10.3390/ijms18020320] [PMID: 28165370]
[81]
Rao, B.S.S.; Rayabandla Sunil Kumar, M.; Das, S.; Aithal, K.; Udupa, N. Radiosensitizing potential of Plumbagin in B16F1 melanoma tumor cells through mitochondrial mediated programmed cell death. J. Appl. Biomed., 2015, 13(4), 279-288.
[http://dx.doi.org/10.1016/j.jab.2015.07.003]
[82]
Tiwari, S.B.; Pai, R.M.; Udupa, N. Temperature sensitive liposomes of plumbagin: characterization and in vivo evaluation in mice bearing melanoma B16F1. J. Drug Target., 2002, 10(8), 585-591.
[http://dx.doi.org/10.1080/1061186021000054924] [PMID: 12683662]
[83]
Chandrasekaran, B.; Nagarajan, B. Metabolism of echitamine and plumbagin in rats. J. Biosci., 1981, 3(4), 395-400.
[http://dx.doi.org/10.1007/BF02702627]
[84]
Tripathi, S.K.; Panda, M.; Biswal, B.K. Emerging role of plumbagin: Cytotoxic potential and pharmaceutical relevance towards cancer therapy. Food Chem. Toxicol., 2019, 125, 566-582.
[http://dx.doi.org/10.1016/j.fct.2019.01.018] [PMID: 30685472]
[85]
Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science, 2004, 303, 1818-1822.
[86]
Ho, J.A.; Wang, L.S.; Chuang, M.C. Nanotheranostics: A review of recent publications. Int. J. Nanomedicine, 2012, (7), 4679-4695.
[http://dx.doi.org/10.2147/IJN.S33065]
[87]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[88]
Crosasso, P.; Ceruti, M.; Brusa, P.; Arpicco, S.; Dosio, F.; Cattel, L. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J. Control. Release, 2000, 63(1-2), 19-30.
[http://dx.doi.org/10.1016/S0168-3659(99)00166-2] [PMID: 10640577]
[89]
Paiva, S.R.; Figueiredo, M.R.; Aragão, T.V.; Kaplan, M.A.C. Antimicrobial activity in vitro of plumbagin isolated from Plumbago species. Mem. Inst. Oswaldo Cruz, 2003, 98(7), 959-961.
[http://dx.doi.org/10.1590/S0074-02762003000700017] [PMID: 14762525]
[90]
Padhye, S.; Dandawate, P.; Yusufi, M.; Ahmad, A.; Sarkar, F.H. Perspectives on medicinal properties of plumbagin and its analogs. Med. Res. Rev., 2012, 32(6), 1131-1158.
[http://dx.doi.org/10.1002/med.20235] [PMID: 23059762]
[91]
Suri, R.; Beg, S.; Kohli, K. Target strategies for drug delivery bypassing ocular barriers. J. Drug Deliv. Sci. Technol., 2020, 55, 101389.
[http://dx.doi.org/10.1016/j.jddst.2019.101389]
[92]
Liu, X.; Chen, Y.; Zhang, Y.; Du, J.; Lv, Y.; Mo, S.; Liu, Y.; Ding, F.; Wu, J.; Li, J. Juglone potentiates TRAIL-induced apoptosis in human melanoma cells via activating the ROS-p38-p53 pathway. Mol. Med. Rep., 2017, 16(6), 9645-9651.
[http://dx.doi.org/10.3892/mmr.2017.7806] [PMID: 29039537]
[93]
Yue, W.; Qin, L.; Cai, J.; Mei, R.; Qian, H.; Zou, Z. Jug-PLGA-NPs, a new form of juglone with enhanced efficiency and reduced toxicity on melanoma. Chin. J. Integr. Med., 2022, 28(10), 909-917.
[http://dx.doi.org/10.1007/s11655-021-3461-y] [PMID: 34913148]
[94]
Zielińska, A.; Płonka-Czerw, J.; Kuśmierz, D. Effect of juglone on C-32 and COLO 829 melanoma cells in in vitro cultures. BioTechnologia, 2022, 103(1), 29-39.
[http://dx.doi.org/10.5114/bta.2022.113913] [PMID: 36605377]
[95]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[96]
Wu, Z.; Wu, L.; Li, L.; Tashiro, S.; Onodera, S.; Ikejima, T. p53-mediated cell cycle arrest and apoptosis induced by shikonin via a caspase-9-dependent mechanism in human malignant melanoma A375-S2 cells. J. Pharmacol. Sci., 2004, 94(2), 166-176.
[http://dx.doi.org/10.1254/jphs.94.166] [PMID: 14978355]
[97]
Zhao, X.; Zhu, Y.; Hu, J.; Jiang, L.; Li, L.; Jia, S.; Zen, K. Shikonin inhibits tumor growth in mice by suppressing pyruvate kinase M2-mediated aerobic glycolysis. Sci. Rep., 2018, 8(1), 14517.
[http://dx.doi.org/10.1038/s41598-018-31615-y] [PMID: 30266938]
[98]
Liu, Y.; Kang, X.; Niu, G.; He, S.; Zhang, T.; Bai, Y.; Li, Y.; Hao, H.; Chen, C.; Shou, Z.; Li, B. Shikonin induces apoptosis and prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 626-635.
[http://dx.doi.org/10.1080/21691401.2019.1575229] [PMID: 30873870]
[99]
Cao, H.H.; Liu, D.Y.; Lai, Y.C.; Chen, Y.Y.; Yu, L.Z.; Shao, M.; Liu, J.S. Inhibition of the STAT3 signaling pathway contributes to the anti-melanoma activities of shikonin. Front. Pharmacol., 2020, 11, 748.
[http://dx.doi.org/10.3389/fphar.2020.00748] [PMID: 32536866]
[100]
Lee, J.H.; Han, S.H.; Kim, Y.M.; Kim, S.H.; Yoo, E.S.; Woo, J.S.; Jung, G.H.; Jung, S.H.; Kim, B.S.; Jung, J.Y. Shikonin inhibits proliferation of melanoma cells by MAPK pathway-mediated induction of apoptosis. Biosci. Rep., 2021, 41(1), BSR20203834.
[http://dx.doi.org/10.1042/BSR20203834] [PMID: 33403388]
[101]
Kretschmer, N.; Rinner, B.; Deutsch, A.J.A.; Lohberger, B.; Knausz, H.; Kunert, O.; Blunder, M.; Boechzelt, H.; Schaider, H.; Bauer, R. Naphthoquinones from Onosma paniculata induce cell-cycle arrest and apoptosis in melanoma Cells. J. Nat. Prod., 2012, 75(5), 865-869.
[http://dx.doi.org/10.1021/np2006499] [PMID: 22530779]
[102]
Maeda, M.; Murakami, M.; Takegami, T.; Ota, T. Promotion or suppression of experimental metastasis of B16 melanoma cells after oral administration of lapachol. Toxicol. Appl. Pharmacol., 2008, 229(2), 232-238.
[http://dx.doi.org/10.1016/j.taap.2008.01.008] [PMID: 18294668]
[103]
Siripong, P.; Yahuafai, J.; Piyaviriyakul, S.; Kanokmedhakul, K.; Koide, H.; Ishii, T.; Shimizu, K.; Ruchirawat, S.; Oku, N. Inhibitory effect of liposomal rhinacanthin-N isolated from Rhinacanthus nasutus on pulmonary metastasis in mice. Biol. Pharm. Bull., 2012, 35(7), 1197-1200.
[http://dx.doi.org/10.1248/bpb.b12-00244] [PMID: 22791173]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy