Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Current State and Future Perspective of Diabetic Wound Healing Treatment: Present Evidence from Clinical Trials

Author(s): Jyotsana Dwivedi*, Pranjal Sachan, Pranay Wal, Ankita Wal and A. K. Rai

Volume 20, Issue 5, 2024

Published on: 17 October, 2023

Article ID: e280823220405 Pages: 21

DOI: 10.2174/1573399820666230828091708

Price: $65

Abstract

Diabetes is a chronic metabolic condition that is becoming more common and is characterised by sustained hyperglycaemia and long-term health effects. Diabetes-related wounds often heal slowly and are more susceptible to infection because of hyperglycaemia in the wound beds. The diabetic lesion becomes harder to heal after planktonic bacterial cells form biofilms. A potential approach is the creation of hydrogels with many functions. High priority is given to a variety of processes, such as antimicrobial, pro-angiogenesis, and general pro-healing. Diabetes problems include diabetic amputations or chronic wounds (DM). Chronic diabetes wounds that do not heal are often caused by low oxygen levels, increased reactive oxygen species, and impaired vascularization. Several types of hydrogels have been developed to get rid of contamination by pathogens; these hydrogels help to clean up the infection, reduce wound inflammation, and avoid necrosis. This review paper will focus on the most recent improvements and breakthroughs in antibacterial hydrogels for treating chronic wounds in people with diabetes. Prominent and significant side effects of diabetes mellitus include foot ulcers. Antioxidants, along with oxidative stress, are essential to promote the healing of diabetic wounds. Some of the problems that can come from a foot ulcer are neuropathic diabetes, ischemia, infection, inadequate glucose control, poor nutrition, also very high morbidity. Given the worrying rise in diabetes and, by extension, diabetic wounds, future treatments must focus on the rapid healing of diabetic wounds.

[1]
Clements JM, West BT, Yaker Z, et al. Disparities in diabetes-related multiple chronic conditions and mortality: The influence of race. Diabetes Res Clin Pract 2020; 159: 107984.
[http://dx.doi.org/10.1016/j.diabres.2019.107984] [PMID: 31846667]
[2]
Hong HS, Kim S, Jin Y, Son Y. Substance P enhances the therapeutic effect of MSCs by modulating their angiogenic potential. J Cell Mol Med 2020; 24(21): 12560-71.
[http://dx.doi.org/10.1111/jcmm.15804] [PMID: 32985796]
[3]
Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003; 83(3): 835-70.
[http://dx.doi.org/10.1152/physrev.2003.83.3.835] [PMID: 12843410]
[4]
Zheng C, Liu C, Chen H, et al. Effective wound dressing based on Poly (vinyl alcohol)/Dextran-aldehyde composite hydrogel. Int J Biol Macromol 2019; 132: 1098-105.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.038] [PMID: 30974136]
[5]
Zhao H, Huang J, Li Y, et al. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. Biomaterials 2020; 258: 120286.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120286] [PMID: 32798744]
[6]
Li W, Wang S, Zhong D, Du Z, Zhou M. A bioactive living hydrogel: Photosynthetic bacteria mediated hypoxia elimination and bacteria‐killing to promote infected wound healing. Adv Ther 2021; 4(1): 2000107.
[http://dx.doi.org/10.1002/adtp.202000107]
[7]
Lee PY, Li Z, Huang L. Thermosensitive hydrogel as a Tgf-β1 gene delivery vehicle enhances diabetic wound healing. Pharm Res 2003; 20(12): 1995-2000.
[http://dx.doi.org/10.1023/B:PHAM.0000008048.58777.da] [PMID: 14725365]
[8]
Ochoa O, Torres FM, Shireman PK. Chemokines and diabetic wound healing. Vascular 2007; 15(6): 350-5.
[http://dx.doi.org/10.2310/6670.2007.00056] [PMID: 18053419]
[9]
Shanmugam N, Figarola JL, Li Y, Swiderski PM, Rahbar S, Natarajan R. Proinflammatory effects of advanced lipoxidation end products in monocytes. Diabetes 2008; 57(4): 879-88.
[http://dx.doi.org/10.2337/db07-1204] [PMID: 18003754]
[10]
Laine PS, Schwartz EA, Wang Y, et al. Palmitic acid induces IP-10 expression in human macrophages via NF-κB activation. Biochem Biophys Res Commun 2007; 358(1): 150-5.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.092] [PMID: 17467667]
[11]
Lateef H, Aslam MN, Stevens MJ, Varani J. Pretreatment of diabetic rats with lipoic acid improves healing of subsequently-induced abrasion wounds. Arch Dermatol Res 2005; 297(2): 75-83.
[http://dx.doi.org/10.1007/s00403-005-0576-6] [PMID: 15986218]
[12]
Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J 2017; 14(1): 89-96.
[http://dx.doi.org/10.1111/iwj.12557] [PMID: 26688157]
[13]
Cano Sanchez M, Lancel S, Boulanger E, Neviere R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review. Antioxidants 2018; 7(8): 98.
[http://dx.doi.org/10.3390/antiox7080098] [PMID: 30042332]
[14]
Dworzański J, Strycharz-Dudziak M, Kliszczewska E. et al.Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity in patients with diabetes mellitus type 2 infected with Epstein-Barr virus. PLoS One 2020; 15(3): e0230374.
[http://dx.doi.org/10.1371/journal.pone.0230374] [PMID: 32210468]
[15]
Han X, Tao Y, Deng Y, Yu J, Sun Y, Jiang G. Metformin accelerates wound healing in type 2 diabetic db/db mice. Mol Med Rep 2017; 16(6): 8691-8.
[http://dx.doi.org/10.3892/mmr.2017.7707] [PMID: 28990070]
[16]
Oelze M, Kröller-Schön S, Welschof P, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One 2014; 9(11): e112394.
[http://dx.doi.org/10.1371/journal.pone.0112394] [PMID: 25402275]
[17]
Liu Q, Zhang X, Cheng R, Ma J, Yi J, Li J. Salutary effect of fenofibrate on type 1 diabetic retinopathy via inhibiting oxidative stress–mediated Wnt/β-catenin pathway activation. Cell Tissue Res 2019; 376(2): 165-77.
[http://dx.doi.org/10.1007/s00441-018-2974-z] [PMID: 30610453]
[18]
Asai J, Takenaka H, Hirakawa S, et al. Topical simvastatin accelerates wound healing in diabetes by enhancing angiogenesis and lymphangiogenesis. Am J Pathol 2012; 181(6): 2217-24.
[http://dx.doi.org/10.1016/j.ajpath.2012.08.023] [PMID: 23138019]
[19]
Sadeghiyan Galeshkalami N, Abdollahi M, Najafi R, et al. Alpha-lipoic acid and coenzyme Q10 combination ameliorates experimental diabetic neuropathy by modulating oxidative stress and apoptosis. Life Sci 2019; 216: 101-10.
[http://dx.doi.org/10.1016/j.lfs.2018.10.055] [PMID: 30393023]
[20]
Srivastava SK, Yadav UCS, Reddy ABM, et al. Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem Biol Interact 2011; 191(1-3): 330-8.
[http://dx.doi.org/10.1016/j.cbi.2011.02.023] [PMID: 21354119]
[21]
Mirenda F, La Spada M, Baccellieri D, Stilo F, Benedetto F, Spinelli F. Iloprost infusion in diabetic patients with peripheral arterial occlusive disease and foot ulcers. Chir Ital 2005; 57(6): 731-5.
[PMID: 16400768]
[22]
Deng L, Du C, Song P, et al. The role of oxidative stress and antioxidants in diabetic wound healing. Oxid Med Cell Longev 2021; 2021: 1-11.
[http://dx.doi.org/10.1155/2021/8852759] [PMID: 33628388]
[23]
Ojalvo AG, Acosta JB, Marí YM, et al. Healing enhancement of diabetic wounds by locally infiltrated epidermal growth factor is associated with systemic oxidative stress reduction. Int Wound J 2017; 14(1): 214-25.
[http://dx.doi.org/10.1111/iwj.12592] [PMID: 27002919]
[24]
Demirci S. Doğan A, Aydın S, Dülger EÇ, Şahin F. Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation. Mol Cell Biochem 2016; 417(1-2): 119-33.
[http://dx.doi.org/10.1007/s11010-016-2719-9] [PMID: 27206737]
[25]
Ambrosch A, Halevy D, Fwity B, Brin T, Lobmann R. Effect of daptomycin on local interleukin-6, matrix metalloproteinase-9, and metallopeptidase inhibitor 1 in patients with MRSA-infected diabetic foot. Int J Low Extrem Wounds 2014; 13(1): 12-6.
[http://dx.doi.org/10.1177/1534734614523126] [PMID: 24659622]
[26]
Ren J, Yang M, Xu F, Chen J, Ma S. Acceleration of wound healing activity with syringic acid in streptozotocin induced diabetic rats. Life Sci 2019; 233: 116728.
[http://dx.doi.org/10.1016/j.lfs.2019.116728] [PMID: 31386877]
[27]
Chen S, Wang H, Su Y, et al. Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing. Acta Biomater 2020; 108: 153-67.
[http://dx.doi.org/10.1016/j.actbio.2020.03.035] [PMID: 32268240]
[28]
Duscher D, Trotsyuk AA, Maan ZN, et al. Optimization of transdermal deferoxamine leads to enhanced efficacy in healing skin wounds. J Control Release 2019; 308: 232-9.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.009] [PMID: 31299261]
[29]
Mujica V, Orrego R, Fuentealba R, Leiva E, Zúñiga-Hernández J. Propolis as an adjuvant in the healing of human diabetic foot wounds receiving care in the diagnostic and treatment centre from the regional hospital of Talca. J Diabetes Res 2019; 2019: 1-10.
[http://dx.doi.org/10.1155/2019/2507578] [PMID: 31612147]
[30]
Babizhayev MA, Strokov IA, Nosikov VV, et al. The role of oxidative stress in diabetic neuropathy: generation of free radical species in the glycation reaction and gene polymorphisms encoding antioxidant enzymes to genetic susceptibility to diabetic neuropathy in population of type I diabetic patients. Cell Biochem Biophys 2015; 71(3): 1425-43.
[http://dx.doi.org/10.1007/s12013-014-0365-y] [PMID: 25427889]
[31]
Mulder G, Jones R, Cederholm-Williams S, Cherry G, Ryan T. Fibrin cuff lysis in chronic venous ulcers treated with a hydrocolloid dressing. Int J Dermatol 1993; 32(4): 304-6.
[http://dx.doi.org/10.1111/j.1365-4362.1993.tb04275.x] [PMID: 8486467]
[32]
Han G, Ceilley R. Chronic wound healing: A review of current management and treatments. Adv Ther 2017; 34(3): 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[33]
Salazar JJ, Ennis WJ, Koh TJ. Diabetes medications: Impact on inflammation and wound healing. J Diabetes Complications 2016; 30(4): 746-52.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.12.017] [PMID: 26796432]
[34]
Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Perspective article: Growth factors and cytokines in wound healing. Wound Repair Regen 2008; 16(5): 585-601.
[http://dx.doi.org/10.1111/j.1524-475X.2008.00410.x] [PMID: 19128254]
[35]
Martí-Carvajal AJ, Gluud C, Nicola S, et al. Growth factors for treating diabetic foot ulcers. Cochrane Libr 2015; 2015(10): CD008548.
[http://dx.doi.org/10.1002/14651858.CD008548.pub2] [PMID: 26509249]
[36]
Laiva AL, O’Brien FJ, Keogh MB. Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med 2018; 12(1): e296-312.
[http://dx.doi.org/10.1002/term.2443] [PMID: 28482114]
[37]
Kirana S, Stratmann B, Prante C, et al. Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract 2012; 66(4): 384-93.
[http://dx.doi.org/10.1111/j.1742-1241.2011.02886.x] [PMID: 22284892]
[38]
Gorecka J, Kostiuk V, Fereydooni A, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther 2019; 10(1): 87.
[http://dx.doi.org/10.1186/s13287-019-1185-1] [PMID: 30867069]
[39]
Guo Q, Sun H, Wu X, et al. In situ clickable purely zwitterionic hydrogel for peritoneal adhesion prevention. Chem Mater 2020; 32(15): 6347-57.
[http://dx.doi.org/10.1021/acs.chemmater.0c00889]
[40]
Thallinger B, Prasetyo EN, Nyanhongo GS, Guebitz GM. Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnol J 2013; 8(1): 97-109.
[http://dx.doi.org/10.1002/biot.201200313] [PMID: 23281326]
[41]
Peng L, Chang L, Si M, et al. Hydrogel-coated dental device with adhesion-inhibiting and colony-suppressing properties. ACS Appl Mater Interfaces 2020; 12(8): 9718-25.
[http://dx.doi.org/10.1021/acsami.9b19873] [PMID: 32027112]
[42]
Hu SCS, Lan CCE. High-glucose environment disturbs the physiologic functions of keratinocytes: Focusing on diabetic wound healing. J Dermatol Sci 2016; 84(2): 121-7.
[http://dx.doi.org/10.1016/j.jdermsci.2016.07.008] [PMID: 27461757]
[43]
Tellechea A, Silva EA, Min J, et al. Alginate and DNA gels are suitable delivery systems for diabetic wound healing. Int J Low Extrem Wounds 2015; 14(2): 146-53.
[http://dx.doi.org/10.1177/1534734615580018] [PMID: 26032947]
[44]
Deshpande R, Kanitkar M, Kadam S, et al. Matrix-entrapped cellular secretome rescues diabetes-induced EPC dysfunction and accelerates wound healing in diabetic mice. PLoS One 2018; 13(8): e0202510.
[http://dx.doi.org/10.1371/journal.pone.0202510] [PMID: 30153276]
[45]
Zhang S, Ge G, Qin Y, et al. Recent advances in responsive hydrogels for diabetic wound healing. Mater Today Bio 2023; 18: 100508.
[http://dx.doi.org/10.1016/j.mtbio.2022.100508] [PMID: 36504542]
[46]
Taub A, Bucay V, Keller G, Williams J, Mehregan D. Multi-center, double-blind, vehicle-controlled clinical trial of an alpha and beta defensin-containing anti-aging skin care regimen with clinical, histopathologic, immunohistochemical, photographic, and ultrasound evaluation. J Drugs Dermatol 2018; 17(4): 426-41.
[PMID: 29601620]
[47]
Peppa M, Raptis SA. Glycoxidation and wound healing in diabetes: an interesting relationship. Curr Diabetes Rev 2011; 7(6): 416-25.
[http://dx.doi.org/10.2174/157339911797579188] [PMID: 21846325]
[48]
Rana S, Burke SD, Karumanchi SA. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. American J Obstet Gynecol 2022; Feb 1;226(2): S1019-34.
[http://dx.doi.org/10.1016/j.ajog.2020.10.022] [PMID: 33096092]
[49]
Vågesjö E, Öhnstedt E, Mortier A, et al. Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria. Proc Natl Acad Sci 2018; 115(8): 1895-900.
[http://dx.doi.org/10.1073/pnas.1716580115] [PMID: 29432190]
[50]
Burrows PE, Mason KP. Percutaneous treatment of low flow vascular malformations. J Vasc Interv Radiol 2004; 15(5): 431-45.
[http://dx.doi.org/10.1097/01.RVI.0000124949.24134.CF] [PMID: 15126652]
[51]
Prado-Prone G, Silva-Bermudez P, Bazzar M, et al. Antibacterial composite membranes of polycaprolactone/gelatin loaded with zinc oxide nanoparticles for guided tissue regeneration. Biomed Mater 2020; 15(3): 035006.
[http://dx.doi.org/10.1088/1748-605X/ab70ef] [PMID: 31995538]
[52]
Wang X, Liu S, Li M, et al. The synergistic antibacterial activity and mechanism of multicomponent metal ions-containing aqueous solutions against Staphylococcus aureus. J Inorg Biochem 2016; 163: 214-20.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.07.019] [PMID: 27569414]
[53]
Kulakovskaya T. Inorganic polyphosphates and heavy metal resistance in microorganisms. World J Microbiol Biotechnol 2018; 34(9): 139.
[http://dx.doi.org/10.1007/s11274-018-2523-7] [PMID: 30151754]
[54]
Kalantari K, Mostafavi E, Afifi AM, et al. Wound dressings functionalized with silver nanoparticles: Promises and pitfalls. Nanoscale 2020; 12(4): 2268-91.
[http://dx.doi.org/10.1039/C9NR08234D] [PMID: 31942896]
[55]
Lee YH, Hong YL, Wu TL. Novel silver and nanoparticle-encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing. Mater Sci Eng C 2021; 118: 111385.
[http://dx.doi.org/10.1016/j.msec.2020.111385] [PMID: 33254992]
[56]
Masood N, Ahmed R, Tariq M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm 2019; 559: 23-36.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.019] [PMID: 30668991]
[57]
Vijayakumar V, Samal SK, Mohanty S, Nayak SK. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int J Biol Macromol 2019; 122: 137-48.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.120] [PMID: 30342131]
[58]
Ahmed R, Tariq M, Ali I, et al. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol 2018; 120(Pt A): 385-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.057] [PMID: 30110603]
[59]
Siebert L, Luna-Cerón E, García-Rivera LE, et al. Light-controlled growth factors release on tetrapodal ZnO-incorporated 3D-printed hydrogels for developing smart wound scaffold. Adv Funct Mater 2021; 31(22): 2007555.
[http://dx.doi.org/10.1002/adfm.202007555] [PMID: 36213489]
[60]
Li Y, Xu T, Tu Z, et al. Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair. Theranostics 2020; 10(11): 4929-43.
[http://dx.doi.org/10.7150/thno.41839] [PMID: 32308759]
[61]
Chen S, Shi J, Zhang M, et al. Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing. Sci Rep 2015; 5(1): 18104.
[http://dx.doi.org/10.1038/srep18104] [PMID: 26643550]
[62]
Gwon K, Han I, Lee S, Kim Y, Lee DN. Novel metal–organic framework-based photocrosslinked hydrogel system for efficient antibacterial applications. ACS Appl Mater Interfaces 2020; 12(18): 20234-42.
[http://dx.doi.org/10.1021/acsami.0c03187] [PMID: 32285658]
[63]
Xu FW, Lv YL, Zhong YF, et al. Beneficial effects of green tea EGCG on skin wound healing: A comprehensive review. Molecules 2021; 26(20): 6123.
[http://dx.doi.org/10.3390/molecules26206123] [PMID: 34684703]
[64]
Zhao X, Pei D, Yang Y, et al. Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment. Adv Funct Mater 2021; 31(18): 2009442.
[http://dx.doi.org/10.1002/adfm.202009442]
[65]
Chen S, Huang S, Li Y, Zhou C. Recent advances in epsilon-poly-L-lysine and L-lysine-based dendrimer synthesis, modification, and biomedical applications. Front Chem 2021; 9: 659304.
[http://dx.doi.org/10.3389/fchem.2021.659304] [PMID: 33869146]
[66]
Wang C, Wang M, Xu T, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration: Erratum. Theranostics 2021; 11(20): 10174-5.
[http://dx.doi.org/10.7150/thno.68432] [PMID: 34815812]
[67]
Liu H, Li Z, Zhao Y, et al. Novel diabetic foot wound dressing based on multifunctional hydrogels with extensive temperature-tolerant, durable, adhesive, and intrinsic antibacterial properties. ACS Appl Mater Interfaces 2021; 13(23): 26770-81.
[http://dx.doi.org/10.1021/acsami.1c05514] [PMID: 34096258]
[68]
Patch JA, Barron AE. Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Curr Opin Chem Biol 2002; 6(6): 872-7.
[http://dx.doi.org/10.1016/S1367-5931(02)00385-X] [PMID: 12470744]
[69]
Cheng H, Shi Z, Yue K, et al. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater 2021; 124: 219-32.
[http://dx.doi.org/10.1016/j.actbio.2021.02.002] [PMID: 33556605]
[70]
Kaczmarek B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials—A minireview. Materials 2020; 13(14): 3224.
[http://dx.doi.org/10.3390/ma13143224] [PMID: 32698426]
[71]
Li Y, Fu R, Zhu C, Fan D. An antibacterial bilayer hydrogel modified by tannic acid with oxidation resistance and adhesiveness to accelerate wound repair. Colloids Surf B Biointerfaces 2021; 205: 111869.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111869] [PMID: 34044334]
[72]
Kamar SS, Abdel-Kader DH, Rashed LA. Beneficial effect of Curcumin Nanoparticles-Hydrogel on excisional skin wound healing in type-I diabetic rat: Histological and immunohistochemical studies. Ann Anat 2019; 222: 94-102.
[http://dx.doi.org/10.1016/j.aanat.2018.11.005] [PMID: 30521949]
[73]
Shah SA, Sohail M, Khan S, et al. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. Int J Biol Macromol 2019; 139: 975-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.007] [PMID: 31386871]
[74]
Guo Z, Liu H, Shi Z, et al. Responsive hydrogel-based microneedle dressing for diabetic wound healing. J Mater Chem B Mater Biol Med 2022; 10(18): 3501-11.
[http://dx.doi.org/10.1039/D2TB00126H] [PMID: 35416225]
[75]
Bennett SP, Griffiths GD, Schor AM, Leese GP, Schor SL. Growth factors in the treatment of diabetic foot ulcers. Br J Surg 2003; 90(2): 133-46.
[http://dx.doi.org/10.1002/bjs.4019] [PMID: 12555288]
[76]
Wang X, Song R, Johnson M, et al. An injectable chitosan-based self-healable hydrogel system as an antibacterial wound dressing. Materials 2021; 14(20): 5956.
[http://dx.doi.org/10.3390/ma14205956] [PMID: 34683575]
[77]
Dissemond J, Kröger K, Storck M, Risse A, Engels P. Topical oxygen wound therapies for chronic wounds: A review. J Wound Care 2015; 24(2): 53-63, 56-60, 62-63.
[http://dx.doi.org/10.12968/jowc.2015.24.2.53] [PMID: 25647433]
[78]
Ji JY, Ren DY, Weng YZ. Efficiency of multifunctional antibacterial hydrogels for chronic wound healing in diabetes: A comprehensive review. Int J Nanomedicine 2022; 17: 3163-76.
[http://dx.doi.org/10.2147/IJN.S363827] [PMID: 35909814]
[79]
Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care 2005; 28(9): 2155-60.
[http://dx.doi.org/10.2337/diacare.28.9.2155] [PMID: 16123483]
[80]
Dubsky M, Jirkovska A, Bem R, et al. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metab Res Rev 2013; 29(5): 369-76.
[http://dx.doi.org/10.1002/dmrr.2399] [PMID: 23390092]
[81]
Humpert P, Bärtsch U, Konrade I, et al. Locally applied mononuclear bone marrow cells restore angiogenesis and promote wound healing in a type 2 diabetic patient. Exp Clin Endocrinol Diabetes 2005; 113(9): 538-40.
[http://dx.doi.org/10.1055/s-2005-872886] [PMID: 16235157]
[82]
Falanga V, Iwamoto S, Chartier M, et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 2007; 13(6): 1299-312.
[http://dx.doi.org/10.1089/ten.2006.0278] [PMID: 17518741]
[83]
O’Loughlin A, Kulkarni M, Creane M, et al. Topical administration of allogeneic mesenchymal stromal cells seeded in a collagen scaffold augments wound healing and increases angiogenesis in the diabetic rabbit ulcer. Diabetes 2013; 62(7): 2588-94.
[http://dx.doi.org/10.2337/db12-1822] [PMID: 23423568]
[84]
Mulder G, Tallis AJ, Marshall VT, et al. Treatment of nonhealing diabetic foot ulcers with a platelet-derived growth factor gene-activated matrix (GAM501): Results of a Phase 1/2 trial. Wound Repair Regen 2009; 17(6): 772-9.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00541.x] [PMID: 19821960]
[85]
Brem H, Kodra A, Golinko MS, et al. Mechanism of sustained release of vascular endothelial growth factor in accelerating experimental diabetic healing. J Invest Dermatol 2009; 129(9): 2275-87.
[http://dx.doi.org/10.1038/jid.2009.26] [PMID: 19282838]
[86]
Steckelings UM, Henz BM, Wiehstutz S, Unger T, Artuc M. Differential expression of angiotensin receptors in human cutaneous wound healing. Br J Dermatol 2005; 153(5): 887-93.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06806.x] [PMID: 16225596]
[87]
Steckelings UM, Wollschläger T, Peters J, Henz BM, Hermes B, Artuc M. Human skin: Source of and target organ for angiotensin II. Exp Dermatol 2004; 13(3): 148-54.
[http://dx.doi.org/10.1111/j.0906-6705.2004.0139.x] [PMID: 14987254]
[88]
Rodgers K, Verco S, Bolton L, diZerega G. Accelerated healing of diabetic wounds by NorLeu -angiotensin (1-7). Expert Opin Investig Drugs 2011; 20(11): 1575-81.
[http://dx.doi.org/10.1517/13543784.2011.619976] [PMID: 21973177]
[89]
Rodgers KE, Roda N, Felix JC, Espinoza T, Maldonado S, diZerega G. Histological evaluation of the effects of angiotensin peptides on wound repair in diabetic mice. Exp Dermatol 2003; 12(6): 784-90.
[http://dx.doi.org/10.1111/j.0906-6705.2003.00087.x] [PMID: 14714558]
[90]
Rodgers KE, Espinoza T, Felix J, Roda N, Maldonado S, diZerega G. Acceleration of healing, reduction of fibrotic scar, and normalization of tissue architecture by an angiotensin analogue, NorLeu3-A(1-7). Plast Reconstr Surg 2003; 111(3): 1195-206.
[http://dx.doi.org/10.1097/01.PRS.0000047403.23105.66] [PMID: 12621191]
[91]
Balingit PP, Armstrong DG, Reyzelman AM, et al. NorLeu3-A(1-7) stimulation of diabetic foot ulcer healing: Results of a randomized, parallel-group, double-blind, placebo-controlled phase 2 clinical trial. Wound Repair Regen 2012; 20(4): n/a.
[http://dx.doi.org/10.1111/j.1524-475X.2012.00804.x] [PMID: 22672145]
[92]
Kant V, Gopal A, Kumar D, et al. Topically applied substance P enhanced healing of open excision wound in rats. Eur J Pharmacol 2013; 715(1-3): 345-53.
[http://dx.doi.org/10.1016/j.ejphar.2013.04.042] [PMID: 23684543]
[93]
Mirza RE, Fang MM, Ennis WJ, Koh TJ. Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes 2013; 62(7): 2579-87.
[http://dx.doi.org/10.2337/db12-1450] [PMID: 23493576]
[94]
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J Cellu Physiol 2018; Sep; 233(9): 6425-40.
[95]
Yazdanpanah L, Nasiri M, Adarvishi S. Literature review on the management of diabetic foot ulcer. World J Diabetes 2015; 6(1): 37-53.
[http://dx.doi.org/10.4239/wjd.v6.i1.37] [PMID: 25685277]
[96]
Lopes L, Setia O, Aurshina A, et al. Stem cell therapy for diabetic foot ulcers: A review of preclinical and clinical research. Stem Cell Res Ther 2018; 9(1): 188.
[http://dx.doi.org/10.1186/s13287-018-0938-6] [PMID: 29996912]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy