Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Comprehensive Introspection of Magnetoresistive Sensors Applied in Biomedical Diagnostics

Author(s): S. Vimala Gayathri and D. Subbulekshmi*

Volume 20, 2024

Published on: 25 August, 2023

Article ID: e250823220366 Pages: 19

DOI: 10.2174/1573405620666230825113444

Price: $65

Abstract

Over the recent years, magnetoresistive (MR) sensors in biosensing technologies have played a pivotal role in detecting and quantifying biomarkers. The article highly focuses on the potential implications of tunneling magnetoresistance (TMR), giant magnetoresistance (GMR), anisotropic magnetoresistance (AMR), and hybrid MR sensors over conventional prototypes. The study mainly elaborates on the sensor characteristics and their implementation in the biomedical domain. The encompassing evaluation reveals the findings that the TMR sensors are remarkably stable and sensitive, whereas the GMR sensors are highly robust and inexpensive, as determined by the detection level, accuracy, sensing distance, and sensitivity. In addition, it is stated that hybrid MR sensors have lower error rates than AMR sensors utilized in the limited research area.

[1]
Han T, Kundu S, Nag A, Xu Y. 3D printed sensors for biomedical applications: A review. Sensors 2019; 19(7): 1706.
[http://dx.doi.org/10.3390/s19071706] [PMID: 30974757]
[2]
Malik PK, Sharma R, Singh R, et al. Industrial Internet of Things and its applications in industry 4.0: State of the art. Comput Commun 2021; 166: 125-39.
[http://dx.doi.org/10.1016/j.comcom.2020.11.016]
[3]
Xu Y, Hu X, Kundu S, et al. Silicon-based sensors for biomedical applications: a review. Sensors (Basel) 2019; 19(13): 2908.
[http://dx.doi.org/10.3390/s19132908] [PMID: 31266148]
[4]
Nag A. Flexible Sensors for Energy-Harvesting Applications. Cham: Springer 2022; pp. 153-68.
[http://dx.doi.org/10.1007/978-3-030-99600-0]
[5]
Hu Q, Nag A, Zhang L, Wang K. Reduced graphene oxide-based composites for wearable strain-sensing applications. Sens Actuators A Phys 2022; 345: 113767.
[http://dx.doi.org/10.1016/j.sna.2022.113767]
[6]
Sheeparamatti BG, Balavalad KB. Fabrication and characterization of polysilicon-on-insulator (PolySOI) and a-SOI based micro piezoresistive pressure sensor for harsh environment applications. Microsyst Technol 2019; 25(11): 4119-33.
[http://dx.doi.org/10.1007/s00542-019-04358-7]
[7]
Algamili AS, Khir MHM, Dennis JO, et al. A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Res Lett 2021; 16(1): 16.
[http://dx.doi.org/10.1186/s11671-021-03481-7] [PMID: 33496852]
[8]
Lee CS, Bai B, Song QR, Wang ZQ, Li GF. Open complementary split-ring resonator sensor for dropping-based liquid dielectric characterization. IEEE Sens J 2019; 19(24): 11880-90.
[http://dx.doi.org/10.1109/JSEN.2019.2938184]
[9]
Han ST, Peng H, Sun Q, et al. An overview of the development of flexible sensors. Adv Mater 2017; 29(33): 1700375.
[http://dx.doi.org/10.1002/adma.201700375] [PMID: 28671711]
[10]
Nag A, Alahi MEE, Feng S, Mukhopadhyay SC. IoT-based sensing system for phosphate detection using Graphite/PDMS sensors. Sens Actuators A Phys 2019; 286: 43-50.
[http://dx.doi.org/10.1016/j.sna.2018.12.020]
[11]
Nag A, Afasrimanesh N, Feng S, Mukhopadhyay SC. Strain induced graphite/PDMS sensors for biomedical applications. Sens Actuators A Phys 2018; 271: 257-69.
[http://dx.doi.org/10.1016/j.sna.2018.01.044]
[12]
Alahi MEE, Pereira-Ishak N, Mukhopadhyay SC, Burkitt L. An internet-of-things enabled smart sensing system for nitrate monitoring. IEEE Internet Things J 2018; 5(6): 4409-17.
[http://dx.doi.org/10.1109/JIOT.2018.2809669]
[13]
Agarwal PB, Alam B, Sharma DS, Sharma S, Mandal S, Agarwal A. Flexible NO 2 gas sensor based on single-walled carbon nanotubes on polytetrafluoroethylene substrates. Flex Print Electron 2018; 3(3): 035001.
[http://dx.doi.org/10.1088/2058-8585/aacc8f]
[14]
Khan MA, Sun J, Li B, Przybysz A, Kosel J. Magnetic sensors-A review and recent technologies. Engineering Research Express 2021; 3(2): 022005.
[http://dx.doi.org/10.1088/2631-8695/ac0838]
[15]
Sobczak-Kupiec A, Venkatesan J, Alhathal AlAnezi A, et al. Magnetic nanomaterials and sensors for biological detection. Nanomedicine 2016; 12(8): 2459-73.
[http://dx.doi.org/10.1016/j.nano.2016.07.003] [PMID: 27456162]
[16]
Alcantara D, Josephson L. Magnetic nanoparticles for application in biomedical sensing. In: InFrontiers of Nanoscience. Elsevier 2012; 4: pp. 269-89.
[http://dx.doi.org/10.1016/B978-0-12-415769-9.00011-X]
[17]
Mishra RK, Rajakumari R. Nanobiosensors for biomedical application: present and future prospects. In: Characterization and Biology of Nanomaterials for Drug Delivery. Elsevier 2019; pp. 1-23.
[18]
Ortega G, Reguera E. Biomedical applications of magnetite nanoparticles. In: Materials for Biomedical Engineering. Elsevier 2019; pp. 397-434.
[http://dx.doi.org/10.1016/B978-0-12-816913-1.00013-1]
[19]
Quynh LK, Tu BD, Anh CV, et al. Design optimization of an anisotropic magnetoresistance sensor for detection of magnetic nanoparticles. J Electron Mater 2019; 48(2): 997-1004.
[http://dx.doi.org/10.1007/s11664-018-6822-4]
[20]
Crescentini M, Ramilli R, Gibiino GP, et al. The X-Hall sensor: Toward integrated broadband current sensing. IEEE Trans Instrum Meas 2020; 70: 1-2.
[21]
Wang K, Li T, Cao B, et al. Simulation and improvements of a magnetic flux sensor for application in immunomagnetic biosensing platforms. Sens Actuators A Phys 2022; 333: 113299.
[http://dx.doi.org/10.1016/j.sna.2021.113299]
[22]
Qiu W, Chang L, Liang YC, et al. Spin-Valve based magnetoresistive nanoparticle detector for applications in biosensing. Sens Actuators A Phys 2017; 265: 174-80.
[http://dx.doi.org/10.1016/j.sna.2017.08.018]
[23]
Gudoshnikov S, Tarasov V, Liubimov B, Odintsov V, Venediktov S, Nozdrin A. Scanning magnetic microscope based on magnetoimpedance sensor for measuring of local magnetic fields. J Magn Magn Mater 2020; 510: 166938.
[http://dx.doi.org/10.1016/j.jmmm.2020.166938]
[24]
Vyas KN, Hong B, Cooper JFK, Palfreyman JJ, Barnes CHW. Detection of magnetically labelled microcarriers for suspension-based bioassay technologies. IEEE Trans Magn 2011; 47(6): 1571-4.
[http://dx.doi.org/10.1109/TMAG.2010.2103397]
[25]
Chen Y, Wang X, Sun Z, Li H. The application of spintronic devices in magnetic bio-sensing. In 2nd Asia Symposium on Quality Electronic Design (ASQED). 2010 Aug 3; In: IEEE; 230-4.
[http://dx.doi.org/10.1109/ASQED.2010.5548244]
[26]
Tanwear A, Liang X, Liu Y, et al. Spintronic sensors based on magnetic tunnel junctions for wireless eye movement gesture control. IEEE Trans Biomed Circuits Syst 2020; 14(6): 1299-310.
[http://dx.doi.org/10.1109/TBCAS.2020.3027242] [PMID: 32991289]
[27]
Garcia-Barnes J, Gil D, Badiella L, et al. A normalized framework for the design of feature spaces assessing the left ventricular function. IEEE Trans Med Imaging 2010; 29(3): 733-45.
[http://dx.doi.org/10.1109/TMI.2009.2034653] [PMID: 20199911]
[28]
Lv B, Chen Y, Dai H, Su S, Lin M. PKBPNN-based tracking range extending approach for TMR magnetic tracking system. IEEE Access 2019; 7: 63123-32.
[http://dx.doi.org/10.1109/ACCESS.2019.2917140]
[29]
Bhaskarrao NK, Anoop CS, Dutta PK. A simplified linearizer for tmr angle sensor-design and performance verification. 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). 2019 May 20; In: IEEE; 1-6.
[http://dx.doi.org/10.1109/I2MTC.2019.8827176]
[30]
Liu J, Liang J, Xu Z, Zhou Z, Zhai J. Development of static characteristic test system for TMR sensors. 2021 4th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM). 2021 Nov 12; In: IEEE; 506-10.
[http://dx.doi.org/10.1109/WCMEIM54377.2021.00109]
[31]
Khokle RP, Franco F, de Freitas SC, Esselle KP, Heimlich MC, Bokor DJ. Eddy current–tunnelling magneto-resistive sensor for micromotion detection of a tibial orthopedic implant. IEEE Sens J 2019; 19(4): 1285-92.
[http://dx.doi.org/10.1109/JSEN.2018.2881957]
[32]
Zuo S, Nazarpour K, Böhnert T, et al. Integrated pico-tesla resolution magnetoresistive sensors for miniaturized magnetomyography. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2020 Jul 20; In: IEEE; 3415-9.
[33]
Lei H, Wang K, Ji X, Cui D. Contactless measurement of magnetic nanoparticles on lateral flow strips using tunnelling magnetoresistance (TMR) sensors in a differential configuration. Sensors 2016; 16(12): 2130.
[http://dx.doi.org/10.3390/s16122130] [PMID: 27983659]
[34]
Wang C, He H, Cui Z, Cao Q, Zou P, Wang H. A novel EMT system based on TMR sensors for reconstruction of permeability distribution. Meas Sci Technol 2018; 29(10): 104008.
[http://dx.doi.org/10.1088/1361-6501/aad8ea]
[35]
Wang M, Tao X, Peng L, Ye C. Imaging of Magnetic Nanoparticles Using Small TMR Sensor With an Excitation-Compensation Scheme. IEEE Sens J 2020; 20(19): 11082-9.
[http://dx.doi.org/10.1109/JSEN.2020.2996741]
[36]
Guo C, Chen L, Zhang H. Current Measurement for Curved Conductor based on 3-D Coreless TMR Sensor Array. J Phys Conf Ser 2021; 1887(1): 012025.
[37]
Mohamed A, Schmid M, Tanwear A, Heidari H, Anders J. A Low Noise CMOS Sensor Frontend for a TMR-based Biosensing Platform. 2020 IEEE SENSORS 2020; 1-4.
[http://dx.doi.org/10.1109/SENSORS47125.2020.9278826]
[38]
Behera B, Borole UP, Sivaji A, et al. Design and development of GMR based low range pressure sensor for medical ventilator application. Sens Actuators A Phys 2021; 321: 112581.
[http://dx.doi.org/10.1016/j.sna.2021.112581]
[39]
Volmer M, Avram M. Micromagnetic simulations on detection of magnetic labelled biomolecules using MR sensors. J Magn Magn Mater 2009; 321(10): 1683-5.
[http://dx.doi.org/10.1016/j.jmmm.2009.02.114]
[40]
Park J. Superparamagnetic nanoparticle quantification using a giant magnetoresistive sensor and permanent magnets. J Magn Magn Mater 2015; 389: 56-60.
[http://dx.doi.org/10.1016/j.jmmm.2015.04.049]
[41]
Rife JC, Miller MM, Sheehan PE, Tamanaha CR, Tondra M, Whitman LJ. Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors. Sens Actuators A Phys 2003; 107(3): 209-18.
[http://dx.doi.org/10.1016/S0924-4247(03)00380-7]
[42]
Kokkinis G, Cardoso S, Keplinger F, Giouroudi I. Microfluidic platform with integrated GMR sensors for quantification of cancer cells. Sens Actuators B Chem 2017; 241: 438-45.
[http://dx.doi.org/10.1016/j.snb.2016.09.189]
[43]
Xu L, Yu H, Akhras MS, et al. Giant magnetoresistive biochip for DNA detection and HPV genotyping. Biosens Bioelectron 2008; 24(1): 99-103.
[http://dx.doi.org/10.1016/j.bios.2008.03.030] [PMID: 18457945]
[44]
Mak AC, Osterfeld SJ, Yu H, et al. Sensitive giant magnetoresistive-based immunoassay for multiplex mycotoxin detection. Biosens Bioelectron 2010; 25(7): 1635-9.
[http://dx.doi.org/10.1016/j.bios.2009.11.028] [PMID: 20047828]
[45]
Shoshi A, Schotter J, Schroeder P, et al. Magnetoresistive-based real-time cell phagocytosis monitoring. Biosens Bioelectron 2012; 36(1): 116-22.
[http://dx.doi.org/10.1016/j.bios.2012.04.002] [PMID: 22560105]
[46]
Wang Y, Wang W, Yu L, et al. Giant magnetoresistive-based biosensing probe station system for multiplex protein assays. Biosens Bioelectron 2015; 70: 61-8.
[http://dx.doi.org/10.1016/j.bios.2015.03.011] [PMID: 25794959]
[47]
Zhang L, Huo W, Gao Y, Shi S, Gao Y. Determination of affinity and kinetic constants of the biotin-streptavidin complex using microfluidic GMR biosensors. IEEE Trans Magn 2015; 51(11): 1-4.
[PMID: 26203196]
[48]
Paixao FC, Silva FM, Jose RD, Baffa O. Magnetoresistive sensors in a new biomagnetic instrumentation for applications in gastroenterology. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Aug 22, 2007, pp. 2948-2951.
[http://dx.doi.org/10.1109/IEMBS.2007.4352947]
[49]
Monshat H, Qian J, Pang J, et al. Integration of nucleic acid amplification, detection, and melting curve analysis for rapid genotyping of antimicrobial resistance. IEEE Sens J 2022; 22(8): 7534-41.
[http://dx.doi.org/10.1109/JSEN.2022.3156378]
[50]
Paixão FC, Corá LA, Américo MF, de Oliveira RB, Baffa O, Miranda JRA. Development of an AMR-ACB array for gastrointestinal motility studies. IEEE Trans Biomed Eng 2012; 59(10): 2737-43.
[http://dx.doi.org/10.1109/TBME.2012.2208748] [PMID: 22996723]
[51]
Paixao FC, Quini CC, Baffa O, Miranda JR. A novel device with 36 channels for imaging and signal acquisition of the gastrointestinal tract based on AC biosusceptometry. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. 2010 Aug 31; In: Ieee; 6457-60.
[http://dx.doi.org/10.1109/IEMBS.2010.5627341]
[52]
Paixão FC, de Moraes R, Stelzer M, et al. A novel biomagnetic instrumentation with four magnetoresistive sensors to evaluate gastric motility. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2007 Aug 22; In: IEEE; 2215-8.
[http://dx.doi.org/10.1109/IEMBS.2007.4352764]
[53]
Arami A, Vallet A, Aminian K. Accurate measurement of concurrent flexion-extension and internal-external rotations in smart knee prostheses. IEEE Trans Biomed Eng 2013; 60(9): 2504-10.
[http://dx.doi.org/10.1109/TBME.2013.2259489] [PMID: 23962985]
[54]
Jesus Prates LD, Paixão FC, Moraes ML, Coelho RC, Silva RR, Godoy CM. Assessment of AMR-ACB system using maghemite nanoparticles in theranostic concentration. VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering. Cham: Springer 2019; pp. 611-5.
[55]
Rizzi G, Westergaard Østerberg F, Dufva M, Fougt Hansen M. Magnetoresistive sensor for real-time single nucleotide polymorphism genotyping. Biosens Bioelectron 2014; 52: 445-51.
[http://dx.doi.org/10.1016/j.bios.2013.09.026] [PMID: 24094523]
[56]
Wirix-Speetjens R, Reekmans G, De Palma R, Liu C, Laureyn W, Borghs G. Magnetoresistive biosensors based on active guiding of magnetic particles towards the sensing zone. Sens Actuators B Chem 2007; 128(1): 1-4.
[http://dx.doi.org/10.1016/j.snb.2007.05.023]
[57]
Ferrigno L, Laracca M, Milano F, et al. Magnetic localization system for short-range positioning: A ready-to-use design tool. IEEE Trans Instrum Meas 2021; 70: 1-9.
[http://dx.doi.org/10.1109/TIM.2020.3035397]
[58]
Ogiri Y, Yamanoi Y, Nishino W, Kato R, Takagi T, Yokoi H. Development of an upper limb neuroprosthesis to voluntarily control elbow and hand. 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (ROMAN). 2017 Aug 28; In: IEEE; 298-303.
[http://dx.doi.org/10.1109/ROMAN.2017.8172317]
[59]
Moataz A, Soliman A, Ghanem AM, al-Shatouri M, Atia A, Rashed EA. Three-dimensional angiography using mobile C-arm with IMU sensor attached: Initial study. 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). 1-3.
[http://dx.doi.org/10.1109/NSSMIC.2015.7582155]
[60]
Bolus NB, Kogler GF, Inan OT. A novel method to assess angle sensor performance for wearable exoskeletal joint kinematics. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2016 Aug 16; In: IEEE; 3109-12.
[http://dx.doi.org/10.1109/EMBC.2016.7591387]
[61]
Ren C, Bayin Q, Feng S, Fu Y, Ma X, Guo J. Biomarkers detection with magnetoresistance-based sensors. Biosens Bioelectron 2020; 165: 112340.
[http://dx.doi.org/10.1016/j.bios.2020.112340] [PMID: 32729483]
[62]
Wang CW, Ahmed A, Hunter A. Vision analysis in detecting abnormal breathing activity in application to diagnosis of obstructive sleep apnoea. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. 4469-73.
[http://dx.doi.org/10.1109/IEMBS.2006.260648]
[63]
Elkholy A, Hussein ME, Gomaa W, Damen D, Saba E. Efficient and robust skeleton-based quality assessment and abnormality detection in human action performance. IEEE J Biomed Health Inform 2020; 24(1): 280-91.
[http://dx.doi.org/10.1109/JBHI.2019.2904321] [PMID: 30869634]
[64]
Elkholy A, Hussein ME, Gomaa W, Damen D, Saba E. A general descriptor for detecting abnormal action performance from skeletal data. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2017: 1401-4.
[http://dx.doi.org/10.1109/EMBC.2017.8037095]
[65]
Srinivas H, Al-Abed A, Ladouceur F, Lovell NH, Silvestri L. Modeling the Debye dielectric response in the time domain for a liquid crystal-based biopotential optrode. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 4857-60.
[http://dx.doi.org/10.1109/EMBC.2016.7591815] [PMID: 2906089]
[66]
Smetana M, Capova K, Behun L, Palcek P, Orsulova T. 3D GMR sensor detection ability in nondestructive evaluation of austenitic biomaterials. 2018 ELEKTRO, Mikulov, Czech Republic 2018; 1-5.
[67]
Murzin D, Mapps DJ, Levada K, et al. Ultrasensitive magnetic field sensors for biomedical applications. Sensors 2020; 20(6): 1569.
[http://dx.doi.org/10.3390/s20061569] [PMID: 32168981]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy