Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Juglone Mediates Inflammatory Bowel Disease Through Inhibition of TLR-4/NF KappaB Pathway in Acetic Acid-induced Colitis in Rats

Author(s): Neda Agha Alizadeh Nobakht, Naser-Aldin Lashgari, Nazanin Momeni Roudsari, Amirhossein Niknejad, Danial Khayatan, Saeed Tavakoli, Ali Reza Abdollahi, Niusha Esmaealzadeh, Saeideh Momtaz* and Amir Hossein Abdolghaffari*

Volume 22, Issue 2, 2023

Published on: 03 November, 2023

Page: [92 - 103] Pages: 12

DOI: 10.2174/1871523022666230825105223

Price: $65

Abstract

Background: Juglone is a phenolic bioactive compound with antimicrobial, antitumour, antioxidant, and anti-inflammatory characteristics. Given its anti-inflammatory and antioxidant effects, it was selected for evaluation in the inflammatory bowel diseases (IBD) model.

Objective: The current study was performed to evaluate the therapeutic impacts of the juglone in acetic acid-induced colitis in male Wistar rats.

Methods: Juglone was extracted from Pterocarya fraxinifolia via maceration method. Colitis was induced in 36 male Wistar rats (n = 6), except in the sham group, 1 ml of acetic acid 4% was administered intrarectally. Twenty-four hours after induction of colitis, in 3 groups, juglone was administered orally (gavage) at 3 doses of 50, 100, and 150 mg/kg for 2 successive days (once a day). Other groups included the control group (only treated with acetic acid), sham group (normal saline), and standard group (Dexamethasone). To evaluate the inflammation sites, macroscopic and microscopic markers were assessed. The mRNA expression of interleukin (IL)-1β, and tumor necrosis factor-alpha (TNF)-α were assessed by real-time PCR, while myeloperoxidase (MPO) was measured spectrophotometrically. ELISA assay kits were used to determine the colonic levels of SOD, ROS, NF-κB, and TLR-4.

Results: Macroscopic and microscopic assessments revealed that juglone significantly decreased colonic tissue damage and inflammation at 150 mg/kg. Juglone at 100, 150 mg/kg significantly decreased the TNF-α, MPO, and TLR-4 levels, as well as the SOD activity. All juglone-treated groups reduced the NF-κB levels compared to the control group (p < 0.001). The compound decreased the IL-1β, and ROS levels at the concentration of 150 mg/kg. Juglone attenuated colitis symptoms, reduced inflammation cytokines, declined neutrophil infiltration, and suppressed IL- 1β and TNF-α expressions in acetic acid-induced colitis rats. It may be proposed that juglone improved colitis in animal model through suppression of inflammatory parameters and downregulation of the NF-κB-TLR-4 pathway.

Conclusion: Juglone exhibited anti-inflammatory and antioxidant effects in the experimental colitis model and could be a therapeutic candidate for IBD. Juglone should be a subject for further animal and clinical trials in IBD models and for safety concerns.

Graphical Abstract

[1]
Guan, Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J. Immunol. Res., 2019, 2019, 7247238.
[http://dx.doi.org/10.1155/2019/7247238] [PMID: 31886308]
[2]
Kaplan, G.G.; Windsor, J.W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(1), 56-66.
[http://dx.doi.org/10.1038/s41575-020-00360-x] [PMID: 33033392]
[3]
Mukherjee, S.; Mukherjee, S.; Maiti, T.K.; Bhattacharya, S.; Sinha Babu, S.P. A novel ligand of toll-like receptor 4 from the sheath of wuchereria bancrofti microfilaria induces proinflammatory response in macrophages. J. Infect. Dis., 2017, 215(6), 954-965.
[http://dx.doi.org/10.1093/infdis/jix067] [PMID: 28453850]
[4]
Mukherjee, S.; Mukherjee, S.; Bhattacharya, S.; Sinha Babu, S.P. Surface proteins of Setaria cervi induce inflammation in macrophage through Toll-like receptor 4 (TLR4)-mediated signalling pathway. Parasite Immunol., 2017, 39(1), e12389.
[http://dx.doi.org/10.1111/pim.12389] [PMID: 27659561]
[5]
Patra, R.; Das, N.C.; Mukherjee, S. Toll-Like Receptors (TLRs) as therapeutic targets for treating SARS-CoV-2: An immunobiological perspective. In: Advances in Experimental Medicine and Biology; Asea, A.A.A.; Kaur, P., Eds.; Springer: Cham,; , 2021; 1352, pp. 87-109.
[6]
Chen, Y.; Li, D.; Sun, L.; Qi, K.; Shi, L. Pharmacological inhibition of toll-like receptor 4 with TLR4-IN-C34 modulates the intestinal flora homeostasis and the MyD88/NF-κB axis in ulcerative colitis. Eur. J. Pharmacol., 2022, 934, 175294.
[http://dx.doi.org/10.1016/j.ejphar.2022.175294] [PMID: 36152840]
[7]
Kordjazy, N.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Rohani, M.M.; Gelfand, E.W.; Rezaei, N.; Abdolghaffari, A.H. Role of toll-like receptors in inflammatory bowel disease. Pharmacol. Res., 2018, 129, 204-215.
[http://dx.doi.org/10.1016/j.phrs.2017.11.017] [PMID: 29155256]
[8]
Rogler, G.; Singh, A.; Kavanaugh, A.; Rubin, D.T. Extraintestinal manifestations of inflammatory bowel disease: Current concepts, treatment, and implications for disease management. Gastroenterology, 2021, 161(4), 1118-1132.
[http://dx.doi.org/10.1053/j.gastro.2021.07.042] [PMID: 34358489]
[9]
Khan, I.; Ullah, N.; Zha, L.; Bai, Y.; Khan, A.; Zhao, T.; Che, T.; Zhang, C. Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens, 2019, 8(3), 126.
[http://dx.doi.org/10.3390/pathogens8030126] [PMID: 31412603]
[10]
Das, N.C. Probiotics as efficacious therapeutic option for treating gut-related diseases: Molecular and immunobiological perspectives. In: Prebiotics, Probiotics and Nutraceuticals; Behera, K.K., Ed.; Springer: Singapore, 2022, pp. 69-93.
[http://dx.doi.org/10.1007/978-981-16-8990-1_5]
[11]
Lashgari, N.A.; Roudsari, N.M.; Zandi, N.; Pazoki, B.; Rezaei, A.; Hashemi, M.; Momtaz, S.; Rahimi, R.; Shayan, M.; Dehpour, A.R.; Abdolghaffari, A.H. Current overview of opioids in progression of inflammatory bowel disease; pharmacological and clinical considerations. Mol. Biol. Rep., 2021, 48(1), 855-874.
[http://dx.doi.org/10.1007/s11033-020-06095-x] [PMID: 33394234]
[12]
Lashgari, N.A. Ginger and its constituents: Role in treatment of inflammatory bowel disease. Biofactors, 2022, 48(1), 7-21.
[http://dx.doi.org/10.1002/biof.1808] [PMID: 34882874]
[13]
Ebrahimi, I.; Parvinzadeh Gashti, M. Extraction of juglone from Pterocarya fraxinifolia leaves for dyeing, anti‐fungal finishing, and solar UV protection of wool. Color. Technol., 2015, 131(6), 451-457.
[http://dx.doi.org/10.1111/cote.12180]
[14]
Ahmad, T.; Suzuki, Y.J. Juglone in oxidative stress and cell signaling. Antioxidants, 2019, 8(4), 91.
[http://dx.doi.org/10.3390/antiox8040091] [PMID: 30959841]
[15]
Fang, F.; Chen, S.; Ma, J.; Cui, J.; Li, Q.; Meng, G.; Wang, L. Juglone suppresses epithelial mesenchymal transition in prostate cancer cells via the protein kinase B/glycogen synthase kinase 3β/Snail signaling pathway. Oncol. Lett., 2018, 16(2), 2579-2584.
[http://dx.doi.org/10.3892/ol.2018.8885] [PMID: 30013652]
[16]
Strugstad, M.; Despotovski, S. A summary of extraction, synthesis, properties, and potential uses of juglone: A literature review. J. Ecosyst. Manag., 2012, 13(3)
[17]
Gohil, D.; Panigrahi, G.C.; Gupta, S.K.; Gandhi, K.A.; Gera, P.; Chavan, P.; Sharma, D.; Sandur, S.; Gota, V. Acute and sub-acute oral toxicity assessment of 5-hydroxy-1,4-naphthoquinone in mice. Drug Chem. Toxicol., 2022, 1-14.
[PMID: 35899689]
[18]
Westfall, B.A.; Russell, R.L.; Auyong, T.K. Depressant agent from walnut hulls. Science, 1961, 134(3490), 1617.
[http://dx.doi.org/10.1126/science.134.3490.1617.a] [PMID: 14006337]
[19]
Tavakoli, S.; Delnavazi, M.R.; Yassa, N. Phytochemical and antimicrobial investigation of pterocarya fraxinifolia Leaves. Chem. Nat. Compd., 2016, 52(1), 101-103.
[http://dx.doi.org/10.1007/s10600-016-1558-y]
[20]
Patra, R.; Padma, S.; Mukherjee, S. An improved method for experimental induction of ulcerative colitis in Sprague Dawley rats. MethodsX, 2023, 10, 102158.
[http://dx.doi.org/10.1016/j.mex.2023.102158] [PMID: 37091959]
[21]
Randhawa, P.K.; Singh, K.; Singh, N.; Jaggi, A.S. A review on chemical-induced inflammatory bowel disease models in rodents. Korean J. Physiol. Pharmacol., 2014, 18(4), 279-288.
[http://dx.doi.org/10.4196/kjpp.2014.18.4.279] [PMID: 25177159]
[22]
Fakhraei, N.; Abdolghaffari, A.H.; Delfan, B.; Abbasi, A.; Rahimi, N.; Khansari, A.; Rahimian, R.; Dehpour, A.R. Protective effect of hydroalcoholic olive leaf extract on experimental model of colitis in rat: Involvement of nitrergic and opioidergic systems. Phytother. Res., 2014, 28(9), 1367-1373.
[http://dx.doi.org/10.1002/ptr.5139] [PMID: 24590915]
[23]
Gharazi, P. Protective effect of a formulation containing Pistacia atlantica oleo-gum-resin and honey on experimental model of acetic acid-induced colitis in rats. Res. J. Pharmacogn., 2021, 8(2), 37-49.
[24]
Zhou, D.J.; Mu, D.; Jiang, M.D.; Zheng, S.M.; Zhang, Y.; He, S.; Weng, M.; Zeng, W.Z. Hepatoprotective effect of juglone on dimethylnitrosamine-induced liver fibrosis and its effect on hepatic antioxidant defence and the expression levels of α-SMA and collagen III. Mol. Med. Rep., 2015, 12(3), 4095-4102.
[http://dx.doi.org/10.3892/mmr.2015.3992] [PMID: 26126609]
[25]
Hu, Q.; Yang, C.; Zheng, F.; Duan, H.; Fu, Y.; Cheng, Z. Acute lung injury inhibition by juglone in LPS induced sepsis mouse model involves Sirt1 activation. Trop. J. Pharm. Res., 2020, 19(5), 1001-1007.
[http://dx.doi.org/10.4314/tjpr.v19i5.14]
[26]
Shahraki, F.N.; Momtaz, S.; Baeeri, M.; Khayatan, D.; Lashgari, N.A.; Roudsari, N.M.; Abdollahi, A.R.; Dehpour, A.R.; Abdolghaffari, A.H. Licofelone attenuates acetic acid-induced colitis in rats through suppression of the inflammatory mediators. Inflammation, 2023.
[http://dx.doi.org/10.1007/s10753-023-01835-0] [PMID: 37233919]
[27]
Momtaz, S.; Navabakhsh, M.; Bakouee, N.; Dehnamaki, M.; Rahimifard, M.; Baeeri, M.; Abdollahi, A.; Abdollahi, M.; Farzaei, M.H.; Abdolghaffari, A.H. Cinnamaldehyde targets TLR-4 and inflammatory mediators in acetic-acid induced ulcerative colitis model. Biologia, 2021, 76(6), 1817-1827.
[http://dx.doi.org/10.1007/s11756-021-00725-w]
[28]
Morris, G.P.; Beck, P.L.; Herridge, M.S.; Depew, W.T.; Szewczuk, M.R.; Wallace, J.L. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology, 1989, 96(3), 795-803.
[http://dx.doi.org/10.1016/0016-5085(89)90904-9] [PMID: 2914642]
[29]
Nakhai, L.A.; Mohammadirad, A.; Yasa, N.; Minaie, B.; Nikfar, S.; Ghazanfari, G.; Zamani, M.J.; Dehghan, G.; Jamshidi, H.; Boushehri, V.S.; Khorasani, R.; Abdollahi, M. Benefits of Zataria multiflora Boiss in experimental model of mouse inflammatory bowel disease. Evid. Based Complement. Alternat. Med., 2007, 4(1), 43-50.
[http://dx.doi.org/10.1093/ecam/nel051] [PMID: 17342240]
[30]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[31]
Jagtap, A.G.; Shirke, S.S.; Phadke, A.S. Effect of polyherbal formulation on experimental models of inflammatory bowel diseases. J. Ethnopharmacol., 2004, 90(2-3), 195-204.
[http://dx.doi.org/10.1016/j.jep.2003.09.042] [PMID: 15013181]
[32]
Momtaz, S.; Baeeri, M.; Rahimifard, M.; Haghi-Aminjan, H.; Hassani, S.; Abdollahi, M. Manipulation of molecular pathways and senescence hallmarks by natural compounds in fibroblast cells. J. Cell. Biochem., 2019, 120(4), 6209-6222.
[http://dx.doi.org/10.1002/jcb.27909] [PMID: 30474871]
[33]
Kamm, M.A. Rapid changes in epidemiology of inflammatory bowel disease. Lancet, 2017, 390(10114), 2741-2742.
[http://dx.doi.org/10.1016/S0140-6736(17)32669-7] [PMID: 29050647]
[34]
Friedrich, M.; Pohin, M.; Powrie, F. Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity, 2019, 50(4), 992-1006.
[http://dx.doi.org/10.1016/j.immuni.2019.03.017] [PMID: 30995511]
[35]
Peng, X.; Nie, Y.; Wu, J.; Huang, Q.; Cheng, Y. Juglone prevents metabolic endotoxemia-induced hepatitis and neuroinflammation via suppressing TLR4/NF-κB signaling pathway in high-fat diet rats. Biochem. Biophys. Res. Commun., 2015, 462(3), 245-250.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.124] [PMID: 25964086]
[36]
Hua, Y.; Liu, R.; Lu, M.; Guan, X.; Zhuang, S.; Tian, Y.; Zhang, Z.; Cui, L. Juglone regulates gut microbiota and Th17/Treg balance in DSS-induced ulcerative colitis. Int. Immunopharmacol., 2021, 97, 107683.
[http://dx.doi.org/10.1016/j.intimp.2021.107683] [PMID: 33915494]
[37]
Wang, H. Zou, C.; Zhao, W.; Yu, Y.; Cui, Y.; Zhang, H.; e, F.; Qiu, Z.; Zou, C.; Gao, X. Juglone eliminates MDSCs accumulation and enhances antitumor immunity. Int. Immunopharmacol., 2019, 73, 118-127.
[http://dx.doi.org/10.1016/j.intimp.2019.04.058] [PMID: 31085459]
[38]
Kim, N.H.; Kim, H.K.; Lee, J.H.; Jo, S.I.; Won, H.M.; Lee, G.S.; Lee, H.S.; Nam, K.W.; Kim, W.J.; Han, M.D. Juglone suppresses LPS-induced inflammatory responses and NLRP3 activation in macrophages. Molecules, 2020, 25(13), 3104.
[http://dx.doi.org/10.3390/molecules25133104] [PMID: 32646056]
[39]
Wi, S.M.; Moon, G.; Kim, J.; Kim, S.T.; Shim, J.H.; Chun, E.; Lee, K.Y. TAK1-ECSIT-TRAF6 complex plays a key role in the TLR4 signal to activate NF-κB. J. Biol. Chem., 2014, 289(51), 35205-35214.
[http://dx.doi.org/10.1074/jbc.M114.597187] [PMID: 25371197]
[40]
Barnabei, L.; Laplantine, E.; Mbongo, W.; Rieux-Laucat, F.; Weil, R. NF-κB: At the borders of autoimmunity and inflammation. Front. Immunol., 2021, 12, 716469.
[http://dx.doi.org/10.3389/fimmu.2021.716469] [PMID: 34434197]
[41]
Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2(1), 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[42]
Thippeswamy, B.S.; Mahendran, S.; Biradar, M.I.; Raj, P.; Srivastava, K.; Badami, S.; Veerapur, V.P. Protective effect of embelin against acetic acid induced ulcerative colitis in rats. Eur. J. Pharmacol., 2011, 654(1), 100-105.
[http://dx.doi.org/10.1016/j.ejphar.2010.12.012] [PMID: 21185828]
[43]
González, R.; Rodríguez, S.; Romay, C.; González, A.; Armesto, J.; Remirez, D.; Merino, N.; Merino, N. Anti-inflammatory activity of phycocyanin extract in acetic acid-induced colitis in rats. Pharmacol. Res., 1999, 39(1), 55-59.
[http://dx.doi.org/10.1006/phrs.1998.0409] [PMID: 10366332]
[44]
Hosseini, R.; Fakhraei, N.; Malekisarvar, H.; Mansourpour, D.; Nili, F.; Farahani, M.; Dehpour, A.R. Effect of sumatriptan on acetic acid-induced experimental colitis in rats: A possible role for the 5‐HT1B/1D receptors. Naunyn Schmiedebergs Arch. Pharmacol., 2022, 395(5), 563-577.
[http://dx.doi.org/10.1007/s00210-022-02215-5] [PMID: 35171300]
[45]
Herr, S.A.; Gardeen, S.S.; Low, P.S.; Shi, R. Targeted delivery of acrolein scavenger hydralazine in spinal cord injury using folate-linker-drug conjugation. Free Radic. Biol. Med., 2022, 184, 66-73.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.04.003] [PMID: 35398493]
[46]
Mouithys-Mickalad, A.; Storms, N.; Franck, T.; Ceusters, J.; de la Rebière de Pouyade, G.; Deby-Dupont, G.; Serteyn, D. Effects of juglone on neutrophil degranulation and myeloperoxidase activity related to equine laminitis. Front. Vet. Sci., 2021, 8, 677675.
[http://dx.doi.org/10.3389/fvets.2021.677675] [PMID: 34336974]
[47]
Dahan, A.; Amidon, G.L.; Zimmermann, E.M. Drug targeting strategies for the treatment of inflammatory bowel disease: A mechanistic update. Expert Rev. Clin. Immunol., 2010, 6(4), 543-550.
[http://dx.doi.org/10.1586/eci.10.30] [PMID: 20594127]
[48]
Novak, E.A.; Mollen, K.P. Mitochondrial dysfunction in inflammatory bowel disease. Front. Cell Dev. Biol., 2015, 3, 62.
[http://dx.doi.org/10.3389/fcell.2015.00062] [PMID: 26484345]
[49]
Wang, P.; Chang, G.; Wei, W.; Li-Ping, Y.; Jing, Z.; Sun-Dong, Z.; Ji, L.; Shao-Hong, F.; Yu-Jie, F. Juglone induces apoptosis and autophagy via modulation of mitogen-activated protein kinase pathways in human hepatocellular carcinoma cells., Food Chem Toxicol., 2018, 116(Pt B), 40-50.
[http://dx.doi.org/10.1016/j.fct.2018.04.004]
[50]
Reese, S.; Vidyasagar, A.; Jacobson, L.; Acun, Z.; Esnault, S.; Hullett, D.; Malter, J.S.; Djamali, A. The Pin 1 inhibitor juglone attenuates kidney fibrogenesis via Pin 1-independent mechanisms in the unilateral ureteral occlusion model. Fibrogenesis Tissue Repair, 2010, 3(1), 1.
[http://dx.doi.org/10.1186/1755-1536-3-1] [PMID: 20047646]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy