Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Cross-Sectional Study

Anti- SARS-CoV-2 IgG and IgM Levels in Iraqi General Population

Author(s): Amina Hamed Alobaidi*, Hussein Inam Mustafa, Ahmed Mutar Salih and Abdulghani Mohamed Alsamarai

Volume 22, Issue 2, 2023

Published on: 11 October, 2023

Page: [113 - 129] Pages: 17

DOI: 10.2174/0118715230269593230928095153

Price: $65

Abstract

Background: Acquired immunity plays an important role in the prevention of viral infections. SARS-CoV-2 is an infection that leads to a pandemic. The development of specific anti-SARSCoV- 2 antibodies may play a vital role in disease prevention and control. Thus IgG antibody screening in the general population provides information on the immunological status of the community.

Aim: To clarify the SARS-CoV-2 immune status in the general population.

Methods: A cross-sectional study was conducted in Kirkuk province during the period from 15 May 2022 to 11 September 2022. The samples were collected from voluntary subjects and informed consent was taken from each participant before their enrolment in the study. SARS-CoV-2 IgG, SARSCoV- 2 IgM, 25-OH Vitamin D, Vitamin B12, and Folate were determined using the Electrochemiluminescence Immunoassay (eCLIA) technique with the instrument NIPIGON-Robot R1Automated ECL Analyzer (Canada).

Results: The overall IgG mean concentration was 37.75 ± 23.18 COI, with a median of 39.99 COI and a range of 0.25 - 87.23 COI. Additionally, 93% of tested samples were with concentrations of more than 1 COI. The highest frequency (18.2%) was for the IgG concentration of 51 to 60 COI, while the lowest frequency (1.3%) was for the concentration of 81 - 90 COI. The IgG was significantly higher (P = 0.046) in males (39.87 ± 24.04 COI) than that in females (35.12 ± 21.89 COI). The IgM overall concentration was 0.569 ± 0.456 COI, with a median of 0.489 COI and a range of 0.17 - 6.40 COI. The mean serum level of folic acid concentration was 9.03 ± 5.72 ng/ml, with a median of 7.476 ng/ml and a range of 0.60 - 20.00 ng/ml. The mean serum concentration of vitamin B12 was 462.65 ± 349.18 pg/ml, with a median of 353 pg/ml and a range of 13.05 - 2000 pg/ml. The mean serum concentration of vitamin D was 18.29 ± 18.42 ng/ml with a median of 12.44 ng/ml and a range of 3 - 100 ng/ml. IgG and IgM serum levels did not show a significant correlation with serum levels of folic acid, vitamin D, and vitamin B12. However, there was a significant correlation between folic acid and vitamin D (r = 0.197; P = 0.012); vitamin B12 and vitamin D (r = 0.253, P = 0.001). While there was a non-significant correlation between folic acid and vitamin D serum levels (r = 0.129, P = 0.10).

Conclusion: General population IgG antibody concentration reflects a high rate of herd immunity. Folic acid was with a mean value of about half of the upper normal limit and only 17.7% were with low values. Vitamin B12, only 6.3% of the population had values lower than normal. However, the range of vitamin B12 was wide. While vitamin D values were lower than the normal limit at 82.6%. However, a large scale well designed was warranted to evaluate COVID-19 national immune response.

Erratum In:
Anti- SARS-CoV-2 IgG and IgM Levels in Iraqi General Population

Graphical Abstract

[1]
Campos, F.S.; de Arruda, L.B.; da Fonseca, F.G. Special issue “viral infections in developing countries”. Viruses, 2022, 14(2), 405.
[http://dx.doi.org/10.3390/v14020405] [PMID: 35215998]
[2]
Peltola, V.; Ruuskanen, O. Editorial commentary: Respiratory viral infections in developing countries: Common, severe, and unrecognized. Clin. Infect. Dis., 2008, 46(1), 58-60.
[http://dx.doi.org/10.1086/524020] [PMID: 18171214]
[3]
Corman, VM.; Lienau, J.; Witzenrath, M. Coronaviruses as a cause of respiratory infections. Internist., 2017, 60, 1136-1145.
[http://dx.doi.org/10.1007/s00108-019-00671-5]
[4]
WHO announces COVID-19 outbreak a pandemic. March 12, 2020. 2020. http://www.who.int/
[5]
Alsamarai, A.G.M. Coronavirus-2019 (COVID-19): A novel pandemic disease with global health care burden. AAJMS, 2020, 3(3), 1-19.
[http://dx.doi.org/10.32441/aajms.3.3.1]
[6]
Alsamarai, A.G.M. COVID-19 in Iraq: What is behind uncontrolled infection pattern. AAJMS, 2021, 4(2), 1-2. [Formerly IJMS]
[http://dx.doi.org/10.32441/aajms.4.2.1]
[7]
Löfström, E.; Eringfält, A.; Kötz, A.; Wickbom, F.; Tham, J.; Lingman, M.; Nygren, J.M.; Undén, J. Dynamics of IgG-avidity and antibody levels after Covid-19. J. Clin. Virol., 2021, 144, 104986.
[http://dx.doi.org/10.1016/j.jcv.2021.104986] [PMID: 34563862]
[8]
Nielsen, SS.; Vibholm, LK.; Monrad, I.; Olesen, R.; Frattari, GS.; Pahus, MH. SARS-CoV-2 elicits robust adaptive immune responses regardless of disease severity. EBioMedicine, 2021, 68, 103410.
[9]
Koelle, K.; Martin, M.A.; Antia, R.; Lopman, B.; Dean, N.E. The changing epidemiology of SARS-CoV-2. Science, 2022, 375(6585), 1116-1121.
[http://dx.doi.org/10.1126/science.abm4915] [PMID: 35271324]
[10]
Chavda, V.P.; Patel, A.B.; Vaghasiya, D.D. SARS‐CoV‐2 variants and vulnerability at the global level. J. Med. Virol., 2022, 94(7), 2986-3005.
[http://dx.doi.org/10.1002/jmv.27717] [PMID: 35277864]
[11]
Mińko, A.; Turoń-Skrzypińska, A.; Rył, A.; Tomska, N.; Bereda, Z.; Rotter, I. Searching for factors influencing the severity of the symptoms of Long COVID. Int. J. Environ. Res. Public Health, 2022, 19(13), 8013.
[http://dx.doi.org/10.3390/ijerph19138013] [PMID: 35805671]
[12]
Alsamarai, A.G.M.; Alobaidi, A.H.A.; Alsamarai, M.A.A. SARS-CoV-2: Treatment and therapeutic approaches. AAJMS, 2020, 3(3), 159-190.
[http://dx.doi.org/10.32441/aajms.3.3.11]
[13]
Diamond, M.S.; Kanneganti, T.D. Innate immunity: the first line of defense against SARS-CoV-2. Nat. Immunol., 2022, 23(2), 165-176.
[http://dx.doi.org/10.1038/s41590-021-01091-0] [PMID: 35105981]
[14]
Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol., 2022, 23(2), 186-193.
[http://dx.doi.org/10.1038/s41590-021-01122-w] [PMID: 35105982]
[15]
Batiha, G.E.S.; Al-Gareeb, A.I.; Qusti, S.; Alshammari, E.M.; Kaushik, D.; Verma, R.; Al-kuraishy, H.M. Deciphering the immunoboosting potential of macro and micronutrients in COVID support therapy. Environ. Sci. Pollut. Res. Int., 2022, 29(29), 43516-43531.
[http://dx.doi.org/10.1007/s11356-022-20075-7] [PMID: 35391642]
[16]
Diyya, A.S.M.; Thomas, N.V. Multiple micronutrient supplementation: As a supportive therapy in the treatment of COVID-19. BioMed Res. Int., 2022, 2022, 1-7.
[http://dx.doi.org/10.1155/2022/3323825] [PMID: 35355818]
[17]
Djordjevic, B.; Milenkovic, J.; Stojanovic, D.; Velickov, A.; Djindjic, B.; Jevtovic Stoimenov, T. Vitamins, microelements and the immune system: Current standpoint in the fight against coronavirus disease 2019. Br. J. Nutr., 2022, 128(11), 2131-2146.
[http://dx.doi.org/10.1017/S0007114522000083] [PMID: 35057876]
[18]
Ali, H.; Alahmad, B.; Al-Shammari, A.A.; Alterki, A.; Hammad, M.; Cherian, P.; Alkhairi, I.; Sindhu, S.; Thanaraj, T.A.; Mohammad, A.; Alghanim, G.; Deverajan, S.; Ahmad, R.; El-Shazly, S.; Dashti, A.A.; Shehab, M.; Al-Sabah, S.; Alkandari, A.; Abubaker, J.; Abu-Farha, M.; Al-Mulla, F. Previous COVID-19 infection and antibody levels after vaccination. Front. Public Health, 2021, 9, 778243.
[http://dx.doi.org/10.3389/fpubh.2021.778243] [PMID: 34926392]
[19]
Mubarak, A.; Almutairi, S.; Al-Dhabbah, A.D.; Aldabas, S.Y.; Bhat, R.; Alqoufail, M.M.; Abdel-Maksoud, M.A.; Almanaa, T.N.; Farrag, M.A.; Alturaiki, W. Durability of SARS-CoV-2 specific IgG antibody responses following two doses of match and mixed COVID-19 vaccines regimens in Saudi population. Infect. Drug Resist., 2022, 15, 3791-3800.
[http://dx.doi.org/10.2147/IDR.S369769] [PMID: 35875613]
[20]
Chen, F.; Zhong, Y.; Li, J.; Luo, J. Dynamic changes of SARS-CoV-2 specific IgM and IgG among population vaccinated with COVID-19 vaccine. Epidemiol. Infect., 2022, 150, 1-17.
[http://dx.doi.org/10.1017/S0950268822001388] [PMID: 35392994]
[21]
Tretyn, A.; Szczepanek, J.; Skorupa, M.; Jarkiewicz-Tretyn, J.; Sandomierz, D.; Dejewska, J.; Ciechanowska, K.; Jarkiewicz-Tretyn, A.; Koper, W.; Pałgan, K. Differences in the concentration of anti-SARS-CoV-2 IgG antibodies post-COVID-19 recovery or post-vaccination. Cells, 2021, 10(8), 1952.
[http://dx.doi.org/10.3390/cells10081952] [PMID: 34440721]
[22]
Smoot, K.; Yang, J.; Tacker, D.H.; Welch, S.; Khodaverdi, M.; Kimble, W.; Wen, S.; Amjad, A.; Marsh, C.; Perrotta, P.L.; Hodder, S. Persistence and protective potential of SARS-CoV-2 antibody levels after COVID-19 vaccination in a west virginia nursing home cohort. JAMA Netw. Open, 2022, 5(9), e2231334.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.31334] [PMID: 36098966]
[23]
Mahdi, M.H.; Hantoosh, H.A.; Imran, B.; Yahya, A. Prevalence of vitamin D deficiency in Iraqi female at reproductive age. Med. J. Babylon, 2019, 16(2), 119-122.
[http://dx.doi.org/10.4103/MJBL.MJBL_9_19]
[24]
Abdulrahman, M.A.; Alkass, S.Y.; Mohammed, N.I.; Mohamed, I.; Abdulrahman, M. Total and free vitamin D status among apparently healthy adults living in Duhok Governorate. Sci. Rep., 2022, 12(1), 1778.
[http://dx.doi.org/10.1038/s41598-022-05775-x] [PMID: 35110608]
[25]
Mohammed, L.Y.; Jamal, S.A.; Hussein, N.R.; Naqid, I.A. Prevalence of Vitamin D deficiency and associated risk factors among general populations in Duhok province, Kurdistan Region, Iraq: Prevalence of vitamin D deficiency in Duhok Province, Iraq. J. Contemp. Med. Sci., 2021, 7(6)
[26]
Chiodini, I.; Gatti, D.; Soranna, D.; Merlotti, D.; Mingiano, C.; Fassio, A.; Adami, G.; Falchetti, A.; Eller-Vainicher, C.; Rossini, M.; Persani, L.; Zambon, A.; Gennari, L. Vitamin D status and SARS-CoV-2 infection and COVID-19 clinical outcomes. Front. Public Health, 2021, 9, 736665.
[http://dx.doi.org/10.3389/fpubh.2021.736665] [PMID: 35004568]
[27]
Sooriyaarachchi, P.; Jeyakumar, D.T.; King, N.; Jayawardena, R. Impact of vitamin D deficiency on COVID-19. Clin. Nutr. ESPEN, 2021, 44, 372-378.
[http://dx.doi.org/10.1016/j.clnesp.2021.05.011] [PMID: 34330492]
[28]
Khalil, M.A.; Alobaidi, A.H.; Alsamarrai, A.H. Evaluation of vitamin D in COVID-19 patients. AIP Conference Proceedings, 2022. 2394, 040008
[http://dx.doi.org/10.1063/5.0122108]
[29]
Mohamed Hussein, A.A.R.; Galal, I.; Amin, M.T.; Moshnib, A.A.; Makhlouf, N.A.; Makhlouf, H.A.; Abd-Elaal, H.K.; Kholief, K.M.S.; Abdel Tawab, D.A.; Kamal Eldin, K.A.; Attia, A.M.; Othman, A.E.A.; Shah, J.; Aiash, H. Prevalence of vitamin D deficiency among patients attending Post COVID-19 follow-up clinic: A cross-sectional study. Eur. Rev. Med. Pharmacol. Sci., 2022, 26(8), 3038-3045.
[http://dx.doi.org/10.26355/eurrev_202204_28635] [PMID: 35503606]
[30]
Jayawardena, R.; Jeyakumar, D.T.; Francis, T.V.; Misra, A. Impact of the vitamin D deficiency on COVID-19 infection and mortality in Asian countries. Diabetes Metab. Syndr., 2021, 15(3), 757-764.
[http://dx.doi.org/10.1016/j.dsx.2021.03.006] [PMID: 33823331]
[31]
Szarpak, L.; Rafique, Z.; Gasecka, A.; Chirico, F.; Gawel, W.; Hernik, J.; Kaminska, H.; Filipiak, K.J.; Jaguszewski, M.J.; Szarpak, L. A systematic review and meta-analysis of effect of vitamin D levels on the incidence of COVID-19. Cardiol. J., 2021, 28(5), 647-654.
[http://dx.doi.org/10.5603/CJ.a2021.0072] [PMID: 34308537]
[32]
Batista, K.S.; Cintra, V.M.; Lucena, P.A.F.; Manhães-de-Castro, R.; Toscano, A.E.; Costa, L.P.; Queiroz, M.E.B.S.; de Andrade, S.M.; Guzman-Quevedo, O.; Aquino, J.S. The role of vitamin B12 in viral infections: A comprehensive review of its relationship with the muscle-gut-brain axis and implications for SARS-CoV-2 infection. Nutr. Rev., 2022, 80(3), 561-578.
[http://dx.doi.org/10.1093/nutrit/nuab092] [PMID: 34791425]
[33]
Aslaner, H.; İnanç, N.; Gökçek, M.B.; Aykemat, Y.; Aslaner, H.A.; Benli̇, A.R. The effect of vitamin B12 levels on prognosis in COVID-19 patients. Int. J. Contemp. Med, 2022, 12(2), 359-363.
[http://dx.doi.org/10.16899/jcm.1035078]
[34]
Darand, M.; Hassanizadeh, S.; Martami, F.; Shams-Rad, S.; Mirzaei, M.; Hosseinzadeh, M. The association between B vitamins and the risk of COVID-19. Br. J. Nutr., 2022, 1-26.
[http://dx.doi.org/10.1017/S0007114522003075] [PMID: 36348570]
[35]
Zhang, Y.; Guo, R.; Kim, S.H.; Shah, H.; Zhang, S.; Liang, J.H.; Fang, Y.; Gentili, M.; Leary, C.N.O.; Elledge, S.J.; Hung, D.T.; Mootha, V.K.; Gewurz, B.E. SARS-CoV-2 hijacks folate and one-carbon metabolism for viral replication. Nat. Commun., 2021, 12(1), 1676.
[http://dx.doi.org/10.1038/s41467-021-21903-z] [PMID: 33723254]
[36]
Acosta-Elias, J.; Espinosa-Tanguma, R. The folate concentration and/or folic acid metabolites in plasma as factor for COVID-19 infection. Front. Pharmacol., 2020, 11, 1062.
[http://dx.doi.org/10.3389/fphar.2020.01062] [PMID: 32765270]
[37]
Keskin, O. Association between low serum folic acid and vitamin B12 levels with COVID-19 prognosis. ProgrNutr, 2022, 24(3), e2022104.
[38]
Meisel, E.; Efros, O.; Bleier, J.; Beit Halevi, T.; Segal, G.; Rahav, G.; Leibowitz, A.; Grossman, E. Folate levels in patients hospitalized with coronavirus disease 2019. Nutrients, 2021, 13(3), 812.
[http://dx.doi.org/10.3390/nu13030812] [PMID: 33801194]
[39]
Luvira, V.; Leaungwutiwong, P.; Thippornchai, N.; Thawornkuno, C.; Chatchen, S.; Chancharoenthana, W.; Tandhavanant, S.; Muangnoicharoen, S.; Piyaphanee, W.; Chantratita, N. False positivity of Anti-SARS-CoV-2 antibodies in patients with acute tropical diseases in Thailand. Trop. Med. Infect. Dis., 2022, 7(7), 132.
[http://dx.doi.org/10.3390/tropicalmed7070132] [PMID: 35878144]
[40]
Bai, Z.; Li, Q.; Chen, Q.; Niu, C.; Wei, Y.; Huang, H.; Zhao, W.; Chen, N.; Yao, X.; Zhang, Q.; Mu, C.; Feng, J.; Zhu, C.; Li, Z.; Ding, M.; Feng, B.; Jin, C.; Lu, X.; Yang, Y.; Wu, S.; Shu, X.; Hu, L.; Qiu, H.; Huang, Y. Clinical significance of serum IgM and IgG levels in COVID-19 patients in Hubei Province, China. J. Intensive Care Med., 2022, 2(1), 32-38.
[http://dx.doi.org/10.1016/j.jointm.2021.09.001] [PMID: 36785701]
[41]
Long, Q.X.; Liu, B.Z.; Deng, H.J.; Wu, G.C.; Deng, K.; Chen, Y.K.; Liao, P.; Qiu, J.F.; Lin, Y.; Cai, X.F.; Wang, D.Q.; Hu, Y.; Ren, J.H.; Tang, N.; Xu, Y.Y.; Yu, L.H.; Mo, Z.; Gong, F.; Zhang, X.L.; Tian, W.G.; Hu, L.; Zhang, X.X.; Xiang, J.L.; Du, H.X.; Liu, H.W.; Lang, C.H.; Luo, X.H.; Wu, S.B.; Cui, X.P.; Zhou, Z.; Zhu, M.M.; Wang, J.; Xue, C.J.; Li, X.F.; Wang, L.; Li, Z.J.; Wang, K.; Niu, C.C.; Yang, Q.J.; Tang, X.J.; Zhang, Y.; Liu, X.M.; Li, J.J.; Zhang, D.C.; Zhang, F.; Liu, P.; Yuan, J.; Li, Q.; Hu, J.L.; Chen, J.; Huang, A.L. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med., 2020, 26(6), 845-848.
[http://dx.doi.org/10.1038/s41591-020-0897-1] [PMID: 32350462]
[42]
Hu, Z.; Li, J.; Yang, C.; Chen, F.; Wang, Z.; Lei, P.; Shen, G. Elevated SARS-Cov-2-specific IgM levels indicate clinically unfavorable outcomes in patients with COVID-19: A retrospective cohort study. Int. J. Gen. Med., 2021, 14, 10429-10438.
[http://dx.doi.org/10.2147/IJGM.S322971] [PMID: 35002299]
[43]
Hou, H.; Wang, T.; Zhang, B.; Luo, Y.; Mao, L.; Wang, F.; Wu, S.; Sun, Z. Detection of IgM and IgG antibodies in patients with coronavirus disease 2019. Clin. Transl. Immunology, 2020, 9(5), e01136.
[http://dx.doi.org/10.1002/cti2.1136] [PMID: 32382418]
[44]
Li, P.; Shen, G.; Zhu, Z.; Shi, S.; Hu, Y.; Zeng, Z.; Zhou, H.; Li, Q.; Zhu, P.; Yang, G.; Liu, Z.; Fu, H.; Hu, J.; He, Y.; Yang, Q.; Dai, M.; Zhou, D.; Lu, Q.; Xie, X. Dynamic changes of IgM and IgG antibodies in asymptomatic patients as an effective way to detect SARS‐CoV‐2 infection. J. Clin. Lab. Anal., 2022, 36(1), e24080.
[http://dx.doi.org/10.1002/jcla.24080] [PMID: 34914135]
[45]
Fraussen, J. IgM responses following SARS-CoV-2 vaccination: Insights into protective and pre-existing immunity. EBioMedicine, 2022, 77, 103922.
[http://dx.doi.org/10.1016/j.ebiom.2022.103922] [PMID: 35259573]
[46]
Ruggiero, A.; Piubelli, C.; Calciano, L.; Accordini, S.; Valenti, M.T.; Carbonare, L.D.; Siracusano, G.; Temperton, N.; Tiberti, N.; Longoni, S.S.; Pizzato, M.; Accordini, S.; Fantoni, T.; Lopalco, L.; Beretta, A.; Bisoffi, Z.; Zipeto, D. SARS-CoV-2 vaccination elicits unconventional IgM specific responses in naïve and previously COVID-19-infected individuals. EBioMedicine, 2022, 77, 103888.
[http://dx.doi.org/10.1016/j.ebiom.2022.103888] [PMID: 35196644]
[47]
Claro, F.; Silva, D.; Pérez Bogado, J.A.; Rangel, H.R.; de Waard, J.H. Lasting SARS-CoV-2 specific IgG antibody response in health care workers from Venezuela, 6 months after vaccination with sputnik V. Int. J. Infect. Dis., 2022, 122, 850-854.
[http://dx.doi.org/10.1016/j.ijid.2022.06.008] [PMID: 35690364]
[48]
Đaković Rode, O.; Bodulić, K.; Zember, S.; Cetinić Balent, N.; Novokmet, A.; Čulo, M.; Rašić, Ž.; Mikulić, R.; Markotić, A. Decline of anti-SARS-CoV-2 IgG antibody levels 6 months after complete BNT162b2 vaccination in healthcare workers to levels observed following the first vaccine dose. Vaccines., 2022, 10(2), 153.
[http://dx.doi.org/10.3390/vaccines10020153] [PMID: 35214612]
[49]
Hassan, R.; Mohammed, S. Evaluation of immunoglobulin G level among subjects vaccinated with different types of COVID-19 vaccines in the karbala population, Iraq. Biomed. Biotechnol. Res. J., 2022, 6(3), 466-471.
[http://dx.doi.org/10.4103/bbrj.bbrj_213_22]
[50]
Rayyan, WA Seroprevalence of SARS-CoV-2 antibodies among Jordanian citizens: A cross-sectional study of the demographic and clinical factors that ameliorate serum IgG concentration. J. Appl. Pharm. Sci., 2022, 12(11), 151-156.
[51]
Saeed, A.Y.; Assafi, M.S.; Othman, H.E.; Shukri, H.M. Prevalence of SARS -CoV-2 IgG/IgM antibodies among patients in Zakho City, Kurdistan, Iraq. J. Infect. Dev. Ctries., 2022, 16(7), 1126-1130.
[http://dx.doi.org/10.3855/jidc.15825] [PMID: 35905016]
[52]
Hussein, N.R.; Balatay, A.; Mohammad, A.M.; Dhama, K.; Rasheed, N.A. Study of factors that impact the production of anti-SARS-CoV-2 antibodies in patients with COVID-19. J. Contemp. Med. Sci, 2022, 8(5), 323-326.
[http://dx.doi.org/10.22317/jcms.v8i5.1242]
[53]
Kahya, H.F.H.; Mahmood, M.T. Detection of IgG and IgM levels in patients with COVID-19 in Mosul Province, Iraq. J. Pure Appl. Microbiol., 2022, 16(1), 167-173.
[http://dx.doi.org/10.22207/JPAM.16.1.05]
[54]
Abdalruda, K.; Nasser, F.A.; Younis, L.A.; Alyasiri, I.K. The association of IgM and IgG with severity of coronavirus disease in Iraqi population. HIV Nursing, 2022, 22(2), 3462-3466.
[55]
Ghasemi, D.; Araeynejad, F.; Maghsoud, O.; Gerami, N.; Keihan, A.H.; Rezaie, E.; Mehdizadeh, S.; Hosseinzadeh, R.; Mohammadi, R.; Bahardoust, M.; Heiat, M. The trend of IgG and IgM antibodies during 6-month period after the disease episode in COVID-19 patients. Iran. J. Sci. Technol. Trans. A Sci., 2022, 46(6), 1555-1562.
[http://dx.doi.org/10.1007/s40995-022-01382-7] [PMID: 36466050]
[56]
Dobaño, C.; Ramírez-Morros, A.; Alonso, S.; Rubio, R.; Ruiz-Olalla, G.; Vidal-Alaball, J.; Macià, D.; Catalina, Q.M.; Vidal, M.; Casanovas, A.F.; Prados de la Torre, E.; Barrios, D.; Jiménez, A.; Zanoncello, J.; Melero, N.R.; Carolis, C.; Izquierdo, L.; Aguilar, R.; Moncunill, G.; Ruiz-Comellas, A. Sustained seropositivity up to 20.5 months after COVID-19. BMC Med., 2022, 20(1), 379.
[http://dx.doi.org/10.1186/s12916-022-02570-3] [PMID: 36224590]
[57]
Castanha, P.M.S.; Tuttle, D.J.; Kitsios, G.D.; Jacobs, J.L.; Braga-Neto, U.; Duespohl, M.; Rathod, S.; Marti, M.M.; Wheeler, S.; Naqvi, A.; Staines, B.; Mellors, J.; Morris, A.; McVerry, B.J.; Shah, F.; Schaefer, C.; Macatangay, B.J.C.; Methe, B.; Fernandez, C.A.; Barratt-Boyes, S.M.; Burke, D.; Marques, E.T.A. Contribution of coronavirus-specific immunoglobulin G responses to complement overactivation in patients with severe coronavirus disease 2019. J. Infect. Dis., 2022, 226(5), 766-777.
[http://dx.doi.org/10.1093/infdis/jiac091] [PMID: 35267024]
[58]
Wu, J.; Liang, B.; Chen, C.; Wang, H.; Fang, Y.; Shen, S.; Yang, X.; Wang, B.; Chen, L.; Chen, Q.; Wu, Y.; Liu, J.; Yang, X.; Li, W.; Zhu, B.; Zhou, W.; Wang, H.; Li, S.; Lu, S.; Liu, D.; Li, H.; Krawczyk, A.; Lu, M.; Yang, D.; Deng, F.; Dittmer, U.; Trilling, M.; Zheng, X. SARS-CoV-2 infection induces sustained humoral immune responses in convalescent patients following symptomatic COVID-19. Nat. Commun., 2021, 12(1), 1813.
[http://dx.doi.org/10.1038/s41467-021-22034-1] [PMID: 33753738]
[59]
Racine, R.; Winslow, G.M. IgM in microbial infections: Taken for granted? Immunol. Lett., 2009, 125(2), 79-85.
[http://dx.doi.org/10.1016/j.imlet.2009.06.003] [PMID: 19539648]
[60]
Muslim Dawood, S.; Khudhur Al Joofy, I. Evaluation of IgM and IgG in COVID-19 recovered patients in Iraq. Arch. Razi Inst., 2022, 77(3), 1191-1197.
[http://dx.doi.org/10.22092/ari.2022.357515.2054] [PMID: 36618307]
[61]
Ishaq, S.E.; Abdulqadir, S.Z. khudhur, Z.O.; Omar, S.A.; Qadir, M.K.; Awla, H.; Rasul, M.F.; Bapir, A.A.; Zanichelli, A.; Mansoor, M.K.; Kaleem, M.; Rizwan, M.A.; Smail, S.W.; Babaei, E. Comparative study of SARS-CoV-2 antibody titers between male and female COVID-19 patients living in Kurdistan region of Iraq. Gene Rep., 2021, 25, 101409.
[http://dx.doi.org/10.1016/j.genrep.2021.101409] [PMID: 34722951]
[62]
Luo, C.; Liu, M.; Li, Q.; Zheng, X.; Ai, W.; Gong, F.; Fan, J.; Liu, S.; Wang, X.; Luo, J. Dynamic changes and prevalence of SARS-CoV-2 IgG/IgM antibodies: Analysis of multiple factors. Int. J. Infect. Dis., 2021, 108, 57-62.
[http://dx.doi.org/10.1016/j.ijid.2021.04.078] [PMID: 33932603]
[63]
Marklund, E.; Leach, S.; Axelsson, H.; Nyström, K.; Norder, H.; Bemark, M.; Angeletti, D.; Lundgren, A.; Nilsson, S.; Andersson, L.M.; Yilmaz, A.; Lindh, M.; Liljeqvist, J.Å.; Gisslén, M. Serum-IgG responses to SARS-CoV-2 after mild and severe COVID-19 infection and analysis of IgG non-responders. PLoS One, 2020, 15(10), e0241104.
[http://dx.doi.org/10.1371/journal.pone.0241104] [PMID: 33085715]
[64]
Latifi-Pupovci, H.; Namani, S.; Pajaziti, A.; Ahmetaj-Shala, B.; Ajazaj, L.; Kotori, A.; Haxhibeqiri, V.; Gegaj, V.; Bunjaku, G. Relationship of anti-SARS-CoV-2 IgG antibodies with Vitamin D and inflammatory markers in COVID-19 patients. Sci. Rep., 2022, 12(1), 5699.
[http://dx.doi.org/10.1038/s41598-022-09785-7] [PMID: 35383273]
[65]
CangemiR.Di FrancoM.AngeloniA.ZicariA.CardinaleV.VisentiniM.AntonelliG.NapoliA.AnastasiE.RomitiG.F.d’AlbaF.AlvaroD.PolimeniA.BasiliS.Sapienzavax Collaborators, Serological response and relationship with gender-sensitive variables among healthcare workers after SARS-CoV-2 vaccination. J. Pers. Med., 2022, 12(6), 994.
[http://dx.doi.org/10.3390/jpm12060994] [PMID: 35743778]
[66]
LoSasso, A.T.; Freund, D.A. A longitudinal evaluation of the effect of Medi-Cal managed care on supplemental security income and aid to families with dependent children enrollees in two California counties. Med. Care, 2000, 38(9), 937-947.
[http://dx.doi.org/10.1097/00005650-200009000-00007] [PMID: 10982115]
[67]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[68]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[69]
Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; Wang, Y.; Pan, S.; Zou, X.; Yuan, S.; Shang, Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med., 2020, 8(5), 475-481.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[70]
Meng, Y.; Wu, P.; Lu, W.; Liu, K.; Ma, K.; Huang, L.; Cai, J.; Zhang, H.; Qin, Y.; Sun, H.; Ding, W.; Gui, L.; Wu, P. Sex-specific clinical characteristics and prognosis of coronavirus disease-19 infection in Wuhan, China: A retrospective study of 168 severe patients. PLoS Pathog., 2020, 16(4), e1008520.
[http://dx.doi.org/10.1371/journal.ppat.1008520] [PMID: 32343745]
[71]
Gebhard, C.; Regitz-Zagrosek, V.; Neuhauser, H.K.; Morgan, R.; Klein, S.L. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ., 2020, 11(1), 29.
[http://dx.doi.org/10.1186/s13293-020-00304-9] [PMID: 32450906]
[72]
Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; Lu, P.; Venkataraman, A.; Park, A.; Liu, F.; Meir, A.; Sun, J.; Wang, E.Y.; Casanovas-Massana, A.; Wyllie, A.L.; Vogels, C.B.F.; Earnest, R.; Lapidus, S.; Ott, I.M.; Moore, A.J.; Anastasio, K.; Askenase, M.H.; Batsu, M.; Beatty, H.; Bermejo, S.; Bickerton, S.; Brower, K.; Bucklin, M.L.; Cahill, S.; Campbell, M.; Cao, Y.; Courchaine, E.; Datta, R.; DeIuliis, G.; Geng, B.; Glick, L.; Handoko, R.; Kalinich, C.; Khoury-Hanold, W.; Kim, D.; Knaggs, L.; Kuang, M.; Kudo, E.; Lim, J.; Linehan, M.; Lu-Culligan, A.; Malik, A.A.; Martin, A.; Matos, I.; McDonald, D.; Minasyan, M.; Mohanty, S.; Muenker, M.C.; Naushad, N.; Nelson, A.; Nouws, J.; Nunez-Smith, M.; Obaid, A.; Ott, I.; Park, H-J.; Peng, X.; Petrone, M.; Prophet, S.; Rahming, H.; Rice, T.; Rose, K-A.; Sewanan, L.; Sharma, L.; Shepard, D.; Silva, E.; Simonov, M.; Smolgovsky, M.; Song, E.; Sonnert, N.; Strong, Y.; Todeasa, C.; Valdez, J.; Velazquez, S.; Vijayakumar, P.; Wang, H.; Watkins, A.; White, E.B.; Yang, Y.; Shaw, A.; Fournier, J.B.; Odio, C.D.; Farhadian, S.; Dela Cruz, C.; Grubaugh, N.D.; Schulz, W.L.; Ring, A.M.; Ko, A.I.; Omer, S.B.; Iwasaki, A. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature, 2020, 588(7837), 315-320.
[http://dx.doi.org/10.1038/s41586-020-2700-3] [PMID: 32846427]
[73]
Shattuck-Heidorn, H.; Danielsen, A.C.; Gompers, A.; Bruch, J.D.; Zhao, H.; Boulicault, M.; Marsella, J.; Richardson, S.S. A finding of sex similarities rather than differences in COVID-19 outcomes. Nature, 2021, 597(7877), E7-E9.
[http://dx.doi.org/10.1038/s41586-021-03644-7] [PMID: 34552251]
[74]
Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; Lu, P.; Venkataraman, A.; Park, A.; Liu, F.; Meir, A.; Sun, J.; Wang, E.Y.; Casanovas-Massana, A.; Wyllie, A.L.; Vogels, C.B.F.; Earnest, R.; Lapidus, S.; Ott, I.M.; Moore, A.J.; Shaw, A.; Fournier, J.B.; Odio, C.D.; Farhadian, S.; Dela Cruz, C.; Grubaugh, N.D.; Schulz, W.L.; Ring, A.M.; Ko, A.I.; Omer, S.B.; Iwasaki, A. Reply to: A finding of sex similarities rather than differences in COVID-19 outcomes. Nature, 2021, 597(7877), E10-E11.
[http://dx.doi.org/10.1038/s41586-021-03645-6] [PMID: 34552250]
[75]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[76]
Kopel, J.; Perisetti, A.; Roghani, A.; Aziz, M.; Gajendran, M.; Goyal, H. Racial and gender-based differences in COVID-19. Front. Public Health, 2020, 8, 418.
[http://dx.doi.org/10.3389/fpubh.2020.00418] [PMID: 32850607]
[77]
Liu, J.; Ji, H.; Zheng, W.; Wu, X.; Zhu, J.J.; Arnold, A.P.; Sandberg, K. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biol. Sex Differ., 2010, 1(1), 6.
[http://dx.doi.org/10.1186/2042-6410-1-6] [PMID: 21208466]
[78]
Sampson, A.K.; Moritz, K.M.; Denton, K.M. Postnatal ontogeny of angiotensin receptors and ACE2 in male and female rats. Gend. Med., 2012, 9(1), 21-32.
[http://dx.doi.org/10.1016/j.genm.2011.12.003] [PMID: 22266307]
[79]
Xu, K.; Chen, Y.; Yuan, J.; Yi, P.; Ding, C.; Wu, W.; Li, Y.; Ni, Q.; Zou, R.; Li, X.; Xu, M.; Zhang, Y.; Zhao, H.; Zhang, X.; Yu, L.; Su, J.; Lang, G.; Liu, J.; Wu, X.; Guo, Y.; Tao, J.; Shi, D.; Yu, L.; Cao, Q.; Ruan, B.; Liu, L.; Wang, Z.; Xu, Y.; Liu, Y.; Sheng, J.; Li, L. Factors associated with prolonged viral RNA shedding in patients with coronavirus disease 2019 (COVID-19). Clin. Infect. Dis., 2020, 71(15), 799-806.
[http://dx.doi.org/10.1093/cid/ciaa351] [PMID: 32271376]
[80]
Ciarambino, T.; Para, O.; Giordano, M. Immune system and COVID-19 by sex differences and age. Womens Health., 2021, 17.
[http://dx.doi.org/10.1177/17455065211022262] [PMID: 34096383]
[81]
Giefing-Kröll, C.; Berger, P.; Lepperdinger, G.; Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell, 2015, 14(3), 309-321.
[http://dx.doi.org/10.1111/acel.12326] [PMID: 25720438]
[82]
Bartz, D.; Chitnis, T.; Kaiser, U.B.; Rich-Edwards, J.W.; Rexrode, K.M.; Pennell, P.B.; Goldstein, J.M.; O’Neal, M.A.; LeBoff, M.; Behn, M.; Seely, E.W.; Joffe, H.; Manson, J.E. Clinical advances in Sex- and gender-informed medicine to improve the health of all. JAMA Intern. Med., 2020, 180(4), 574-583.
[http://dx.doi.org/10.1001/jamainternmed.2019.7194] [PMID: 32040165]
[83]
Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol., 2016, 16(10), 626-638.
[http://dx.doi.org/10.1038/nri.2016.90] [PMID: 27546235]
[84]
Klein, S.L.; Marriott, I.; Fish, E.N. Sex-based differences in immune function and responses to vaccination. Trans. R. Soc. Trop. Med. Hyg., 2015, 109(1), 9-15.
[http://dx.doi.org/10.1093/trstmh/tru167] [PMID: 25573105]
[85]
Scully, E.P.; Haverfield, J.; Ursin, R.L.; Tannenbaum, C.; Klein, S.L. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol., 2020, 20(7), 442-447.
[http://dx.doi.org/10.1038/s41577-020-0348-8] [PMID: 32528136]
[86]
Chen, Y.; Wei, J.; Qin, R.; Hou, J.; Zang, G.; Zhang, G.; Chen, T. Folic acid: A potential inhibitor against SARS-CoV-2 nucleocapsid protein. Pharm. Biol., 2022, 60(1), 862-878.
[http://dx.doi.org/10.1080/13880209.2022.2063341] [PMID: 35594385]
[87]
Sheybani, Z.; Dokoohaki, M.H.; Negahdaripour, M.; Dehdashti, M.; Zolghadr, H.; Moghadami, M. The role of folic acid in the management of respiratory disease caused by COVID-19. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12034980.v1]
[88]
Serseg, T.; Benarous, K.; Yousfi, M. Hispidin and lepidine E: Two natural compounds and folic acid as potential inhibitors of 2019-novel coronavirus main protease (2019- nCoVM pro), molecular docking and SAR study. Curr. Computeraided Drug Des., 2021, 17(3), 469-479.
[http://dx.doi.org/10.2174/15734099MTA1lOTgfz] [PMID: 32321407]
[89]
Couture, F.; Kwiatkowska, A.; Dory, Y.L.; Day, R. Therapeutic uses of furin and its inhibitors: A patent review. Expert Opin. Ther. Pat., 2015, 25(4), 379-396.
[http://dx.doi.org/10.1517/13543776.2014.1000303] [PMID: 25563687]
[90]
Hsu, M.F.; Kuo, C.J.; Chang, K.T.; Chang, H.C.; Chou, C.C.; Ko, T.P.; Shr, H.L.; Chang, G.G.; Wang, A.H.J.; Liang, P.H. Mechanism of the maturation process of SARS-CoV 3CL protease. J. Biol. Chem., 2005, 280(35), 31257-31266.
[http://dx.doi.org/10.1074/jbc.M502577200] [PMID: 15788388]
[91]
Mikkelsen, K.; Apostolopoulos, V. Vitamin B1, B2, B3, B5, and B6 and the immune system. In: Nutrition and immunity; Springer, 2019, pp. 115-125.
[92]
Shakoor, H.; Feehan, J.; Mikkelsen, K.; Al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Stojanovska, L.; Apostolopoulos, V. Be well: A potential role for vitamin B in COVID-19. Maturitas, 2021, 144, 108-111.
[http://dx.doi.org/10.1016/j.maturitas.2020.08.007] [PMID: 32829981]
[93]
Michele, C.A.; Angel, B.; Valeria, L.; Teresa, M.; Giuseppe, C.; Giovanni, M. Vitamin supplements in the era of SARS-Cov2 pandemic. GSC Biol. Pharm. Sci, 2020, 11(2), 7-19.
[94]
Mahmoudi, M.; Rezaei, N. Nutrition and immunity; Springer, 2019.
[http://dx.doi.org/10.1007/978-3-030-16073-9]
[95]
Remacha, A.F.; Montagud, M.; Cadafalch, J.; Riera, A.; Martino, R.; Gimferrer, E. Vitamin B12 transport proteins in patients with HIV-1 infection and AIDS. Haematologica, 1993, 78(2), 84-88.
[PMID: 8349197]
[96]
Wolffenbuttel, B.H.R.; Wouters, H.J.C.M.; Heiner-Fokkema, M.R.; van der Klauw, M.M. The many faces of cobalamin (Vitamin B12) deficiency. Mayo Clin. Proc. Innov. Qual. Outcomes, 2019, 3(2), 200-214.
[http://dx.doi.org/10.1016/j.mayocpiqo.2019.03.002] [PMID: 31193945]
[97]
Wang, H.; Li, L.; Qin, L.L.; Song, Y.; Vidal-Alaball, J.; Liu, T.H. Oral vitamin B 12 versus intramuscular vitamin B 12 for vitamin B 12 deficiency. Cochrane Libr., 2018, 2018(3), CD004655.
[http://dx.doi.org/10.1002/14651858.CD004655.pub3] [PMID: 29543316]
[98]
Tee, L.Y.; Alhamid, S.M.; Tan, J.L.; Oo, T.D.; Chien, J.; Galinato, P.; Tan, S.Y.; Humaira, S.; Fong, R.K.C.; Puar, T.H.; Loh, W.J.; Santosa, A.; Khoo, J.; Rosario, B.H. COVID-19 and undiagnosed pre-diabetes or diabetes mellitus among international migrant workers in Singapore. Front. Public Health, 2020, 8, 584249.
[http://dx.doi.org/10.3389/fpubh.2020.584249] [PMID: 33262970]
[99]
Kulkarni, R.; Rajput, U.; Dawre, R.; Sonkawade, N.; Pawar, S.; Sonteke, S.; Varvatte, B.; Aathira, K.C.; Gadekar, K.; Varma, S.; Nakate, L.; Kagal, A.; Kinikar, A. Severe malnutrition and anemia are associated with severe COVID in infants. J. Trop. Pediatr., 2021, 67(1), fmaa084.
[http://dx.doi.org/10.1093/tropej/fmaa084] [PMID: 33313926]
[100]
Tan, C.W.; Ho, L.P.; Kalimuddin, S.; Cherng, B.P.Z.; Teh, Y.E.; Thien, S.Y.; Wong, H.M.; Tern, P.J.W.; Chandran, M.; Chay, J.W.M.; Nagarajan, C.; Sultana, R.; Low, J.G.H.; Ng, H.J. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition, 2020, 79-80, 111017.
[http://dx.doi.org/10.1016/j.nut.2020.111017] [PMID: 33039952]
[101]
Wee, A.K.H. COVID-19’s toll on the elderly and those with diabetes mellitus - Is vitamin B12 deficiency an accomplice? Med. Hypotheses, 2021, 146, 110374.
[http://dx.doi.org/10.1016/j.mehy.2020.110374] [PMID: 33257090]
[102]
Romain, M.; Sviri, S.; Linton, D.M.; Stav, I.; van Heerden, P.V. The role of vitamin B12 in the critically ill: A review. Anaesth. Intensive Care, 2016, 44(4), 447-452.
[http://dx.doi.org/10.1177/0310057X1604400410] [PMID: 27456173]
[103]
Ponti, G.; Maccaferri, M.; Ruini, C.; Tomasi, A.; Ozben, T. Biomarkers associated with COVID-19 disease progression. Crit. Rev. Clin. Lab. Sci., 2020, 57(6), 389-399.
[http://dx.doi.org/10.1080/10408363.2020.1770685] [PMID: 32503382]
[104]
Naseri, M.; Sarvari, G.R.; Esmaeeli, M.; Azarfar, A.; Rasouli, Z.; Moeenolroayaa, G.; Jahanshahi, S.; Farhadi, S.; Heydari, Z.; Sagheb-Taghipoor, N. High doses of oral folate and sublingual vitamin B12 in dialysis patients with hyperhomocysteinemia. J. Renal Inj. Prev., 2016, 5(3), 134-139.
[http://dx.doi.org/10.15171/jrip.2016.28] [PMID: 27689109]
[105]
Jang, W.S.; Kim, J.; Baek, J.; Jung, H.; Jang, J.S.; Park, J.S.; Oh, T.H.; Jang, S.Y.; Kim, Y.S.; Kwon, Y.S. Clinical course of COVID-19 patients treated with ECMO: A multicenter study in Daegu, South Korea. Heart Lung, 2021, 50(1), 21-27.
[http://dx.doi.org/10.1016/j.hrtlng.2020.10.010] [PMID: 34698019]
[106]
Povoroznyuk, V.; Balatska, N.; Muts, V.; Klymovytsky, F.; Synenky, O. Vitamin D deficiency in Ukraine: A demographic and seasonal analysis. Gerontol., 2012, 13(4), 191-198.
[107]
Almesri, N.; Das, N.S.; Ali, M.E.; Gumaa, K.; Giha, H.A. Gender-dependent association of vitamin D deficiency with obesity and hypercholesterolemia (LDLC) in adults. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(3), 425-436.
[http://dx.doi.org/10.2174/1871530319666191009154528] [PMID: 31595858]
[108]
Borissova, A.M.; Shinkov, A.; Vlahov, J.; Dakovska, L.; Todorov, T.; Svinarov, D.; Kassabova, L. Vitamin D status in Bulgaria—winter data. Arch. Osteoporos., 2013, 8(1-2), 133.
[http://dx.doi.org/10.1007/s11657-013-0133-4] [PMID: 23526032]
[109]
Al-Hilali, K.A. Prevalence of hypovitaminosis D in adult Iraqi people including postmenopausal women. Sci Res J., 2016, 4, 53-62.
[110]
Deplanque, X.; Wullens, A.; Norberciak, L. Prevalence and risk factors of vitamin D deficiency in healthy adults aged 18-65 years in northern France. Rev. Med. Interne, 2017, 38(6), 368-373.
[http://dx.doi.org/10.1016/j.revmed.2016.12.013]
[111]
Altowijri, A.; Alloubani, A.; Abdulhafiz, I.; Saleh, A. Impact of nutritional and environmental factors on vitamin D deficiency. Asian Pac. J. Cancer Prev., 2018, 19(9), 2569-2574.
[http://dx.doi.org/10.22034/APJCP.2018.19.9.2569] [PMID: 30256062]
[112]
Zainel, A.J.A.L.; Qotba, H.; Al Nuaimi, A.; Syed, M. Vitamin D status among adults (18-65 years old) attending primary healthcare centres in Qatar: a cross-sectional analysis of the Electronic Medical Records for the year 2017. BMJ Open, 2019, 9(8), e029334.
[http://dx.doi.org/10.1136/bmjopen-2019-029334] [PMID: 31427331]
[113]
Al Zarooni, A.A.R.; Al Marzouqi, F.I.; Al Darmaki, S.H.; Prinsloo, E.A.M.; Nagelkerke, N. Prevalence of vitamin D deficiency and associated comorbidities among Abu Dhabi Emirates population. BMC Res. Notes, 2019, 12(1), 503.
[http://dx.doi.org/10.1186/s13104-019-4536-1] [PMID: 31412921]
[114]
Göktaş, O.; Ersoy, C.; Ercan, I.; Can, F.E. Vitamin D status in the adult population of Bursa-Turkey. Eur. J. Gen. Pract., 2020, 26(1), 156-162.
[http://dx.doi.org/10.1080/13814788.2020.1846712] [PMID: 33292015]
[115]
Gromova, O.; Doschanova, A.; Lokshin, V.; Tuletova, A.; Grebennikova, G.; Daniyarova, L.; Kaishibayeva, G.; Nurpeissov, T.; Khan, V.; Semenova, Y.; Chibisova, A.; Suzdalskaya, N.; Aitaly, Z.; Glushkova, N. Vitamin D deficiency in Kazakhstan: Cross-Sectional study. J. Steroid Biochem. Mol. Biol., 2020, 199, 105565.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105565] [PMID: 31812522]
[116]
Khasawneh, R.; Hiari, M.; Khalaileh, M.; Khasawneh, H.; Alzghoul, B.; Almomani, A. Frequency of vitamin D deficiency and insufficiency in a Jordanian cohort-a hospital based study. J. R. Med. Serv., 2018, 25(1), 23-26.
[http://dx.doi.org/10.12816/0046990]
[117]
Shafinaz, I.S.; Moy, F.M. Vitamin D level and its association with adiposity among multi-ethnic adults in Kuala Lumpur, Malaysia: a cross sectional study. BMC Public Health, 2016, 16(1), 232.
[http://dx.doi.org/10.1186/s12889-016-2924-1] [PMID: 26951992]
[118]
Duarte, C.; Carvalheiro, H.; Rodrigues, A.M.; Dias, S.S.; Marques, A.; Santiago, T.; Canhão, H.; Branco, J.C.; da Silva, J.A.P. Prevalence of vitamin D deficiency and its predictors in the Portuguese population: A nationwide population-based study. Arch. Osteoporos., 2020, 15(1), 36.
[http://dx.doi.org/10.1007/s11657-020-0695-x] [PMID: 32124071]
[119]
Płudowski, P.; Ducki, C.; Konstantynowicz, J.; Jaworski, M. Vitamin D status in Poland. Pol. Arch. Med. Wewn., 2016, 126(7-8), 530-539.
[PMID: 27509842]
[120]
Esmaeili, S.A.; Mohammadian, S.; Radbakhsh, S.; Momtazi-Borojeni, A.A.; Kheirmand Parizi, P.; Atabati, H.; Mardani, F.; Saburi, E.; Moghaddam, A.S. Evaluation of vitamin D 3 deficiency: A population‐based study in northeastern Iran. J. Cell. Biochem., 2019, 120(6), 10337-10341.
[http://dx.doi.org/10.1002/jcb.28317] [PMID: 30556194]
[121]
Jolliffe, D.A.; Hanifa, Y.; Witt, K.D.; Venton, T.R.; Rowe, M.; Timms, P.M.; Hyppönen, E.; Walton, R.T.; Griffiths, C.J.; Martineau, A.R. Environmental and genetic determinants of vitamin D status among older adults in London, UK. J. Steroid Biochem. Mol. Biol., 2016, 164, 30-35.
[http://dx.doi.org/10.1016/j.jsbmb.2016.01.005] [PMID: 26776442]
[122]
Acherjya, G.K.; Ali, M.; Tarafder, K.; Akhter, N.; Chowdhury, M.K.; Islam, D.U.; Rahman, M.H.; Miah, M.T. Study of vitamin D deficiency among the apparently healthy population in Jashore, Bangladesh. Mymensingh Med. J., 2019, 28(1), 214-221.
[PMID: 30755572]
[123]
Rabenberg, M.; Scheidt-Nave, C.; Busch, M.A.; Thamm, M.; Rieckmann, N.; Durazo-Arvizu, R.A.; Dowling, K.G.; Škrabáková, Z.; Cashman, K.D.; Sempos, C.T.; Mensink, G.B.M. Implications of standardization of serum 25-hydroxyvitamin D data for the evaluation of vitamin D status in Germany, including a temporal analysis. BMC Public Health, 2018, 18(1), 845.
[http://dx.doi.org/10.1186/s12889-018-5769-y] [PMID: 29980236]
[124]
Sokolovic, S.; Alimanovic-Alagic, R.; Dzananovic, L.; Cavaljuga, S.; Beslic, N.; Ferhatbegovic-Opankovic, E. Vitamin D status in Bosnia and Herzegovina: the cross-sectional epidemiological analysis. Osteoporos. Int., 2017, 28(3), 1021-1025.
[http://dx.doi.org/10.1007/s00198-016-3831-0] [PMID: 27889807]
[125]
Hribar, M.; Hristov, H.; Gregorič, M.; Blaznik, U.; Zaletel, K.; Oblak, A.; Osredkar, J.; Kušar, A.; Žmitek, K.; Rogelj, I.; Pravst, I. Nutrihealth study: Seasonal variation in vitamin D status among the slovenian adult and elderly population. Nutrients, 2020, 12(6), 1838.
[http://dx.doi.org/10.3390/nu12061838] [PMID: 32575612]
[126]
Niculescu, D.A.; Capatina, C.A.M.; Dusceac, R.; Caragheorgheopol, A.; Ghemigian, A.; Poiana, C. Seasonal variation of serum vitamin D levels in Romania. Arch. Osteoporos., 2017, 12(1), 113.
[http://dx.doi.org/10.1007/s11657-017-0407-3] [PMID: 29230557]
[127]
Mechenro, J.; Venugopal, G.; Buvnesh Kumar, M.; Balakrishnan, D.; Ramakrishna, B.S. Vitamin D status in Kancheepuram District, Tamil Nadu, India. BMC Public Health, 2018, 18(1), 1345.
[http://dx.doi.org/10.1186/s12889-018-6244-5] [PMID: 30518358]
[128]
Leong, J.F.; Yakob, M.; Fung, E.C.; Pande, K.C. High prevalence of vitamin D insufficiency and deficiency in a mixed sample of patients in Brunei Darussalam. Brunei Int Med J., 2016, 12(4), 134-139.
[129]
Hansen, L.; Tjønneland, A.; Køster, B.; Brot, C.; Andersen, R.; Cohen, A.; Frederiksen, K.; Olsen, A.; Vitamin, D. Vitamin D status and seasonal variation among danish children and adults: A descriptive study. Nutrients, 2018, 10(11), 1801.
[http://dx.doi.org/10.3390/nu10111801] [PMID: 30463277]
[130]
Griffin, T.P.; Wall, D.; Blake, L.; G Griffin, D.; Robinson, S.; Bell, M.; Mulkerrin, E.C.; O’Shea, P.M. Higher risk of vitamin D insufficiency/deficiency for rural than urban dwellers. J. Steroid Biochem. Mol. Biol., 2020, 197, 105547.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105547] [PMID: 31756419]
[131]
Sherchand, O.; Sapkota, N.; Chaudhari, R.K.; Khan, S.A.; Baranwal, J.K.; Pokhrel, T.; Das, B.K.L.; Lamsal, M. Association between vitamin D deficiency and depression in Nepalese population. Psychiatry Res., 2018, 267, 266-271.
[http://dx.doi.org/10.1016/j.psychres.2018.06.018] [PMID: 29940458]
[132]
Hoge, A.; Donneau, A.F.; Streel, S.; Kolh, P.; Chapelle, J.P.; Albert, A.; Cavalier, E.; Guillaume, M. Vitamin D deficiency is common among adults in Wallonia (Belgium, 51°30′ North): Findings from the nutrition, environment and cardio-vascular health study. Nutr. Res., 2015, 35(8), 716-725.
[http://dx.doi.org/10.1016/j.nutres.2015.06.005] [PMID: 26149190]
[133]
Jiang, W.; Wu, D.B.; Xiao, G.B.; Ding, B.; Chen, E.Q. An epidemiology survey of vitamin D deficiency and its influencing factors. Med. Clin., 2020, 154(1), 7-12.
[http://dx.doi.org/10.1016/j.medcli.2019.03.019]
[134]
ColićBarić, i.; Keser, I; Bituh, M; Rumbak, I Vitamin D status and prevalence of inadequacy in Croatian population. In: Book of Abstracts of 4th International congress of nutritionists; 2016, 2016, 97.
[135]
Karonova, T.; Andreeva, A.; Nikitina, I.; Belyaeva, O.; Mokhova, E.; Galkina, O.; Vasilyeva, E.; Grineva, E. Prevalence of Vitamin D deficiency in the North-West region of Russia: A cross-sectional study. J. Steroid Biochem. Mol. Biol., 2016, 164, 230-234.
[http://dx.doi.org/10.1016/j.jsbmb.2016.03.026] [PMID: 27013017]
[136]
Bi, X.; Tey, S.L.; Leong, C.; Quek, R.; Henry, C.J. Prevalence of vitamin D deficiency in Singapore: Its implications to cardiovascular risk factors. PLoS One, 2016, 11(1), e0147616.
[http://dx.doi.org/10.1371/journal.pone.0147616] [PMID: 26799569]
[137]
Guessous, I.; Dudler, V.; Glatz, N.; Theler, J.M.; Zoller, O.; Paccaud, F. Vitamin D levels and associated factors: A population-based study in Switzerland. Swiss Med. Wkly., 2012, 142(4748)
[http://dx.doi.org/10.4414/smw.2012.13719]
[138]
Kandhro, F.; Dahot, U.; Naqvi, S.H.A.; Ujjan, I.U. Study of vitamin D deficiency and contributing factors in the population of Hyderabad, Pakistan. Pak. J. Pharm. Sci., 2019, 32(3), 1063-1068.
[PMID: 31278721]
[139]
Saad, R.K.; Akiki, V.C.; Rahme, M.; Ajjour, S.; Assaad, M.; El-Hajj Fuleihan, G.A. Time trends and predictors of hypovitaminosis D across the life course: 2009-2016. Metabolism, 2020, 105, 154138.
[http://dx.doi.org/10.1016/j.metabol.2020.154138] [PMID: 31923385]
[140]
Bromage, S.; Rich-Edwards, J.; Tselmen, D.; Baylin, A.; Houghton, L.; Baasanjav, N.; Ganmaa, D. Seasonal epidemiology of serum 25-hydroxyvitamin D concentrations among healthy adults living in rural and urban areas in Mongolia. Nutrients, 2016, 8(10), 592.
[http://dx.doi.org/10.3390/nu8100592] [PMID: 27669291]
[141]
González-Molero, I.; Morcillo, S.; Valdés, S.; Pérez-Valero, V.; Botas, P.; Delgado, E.; Hernández, D.; Olveira, G.; Rojo, G.; Gutierrez-Repiso, C.; Rubio-Martín, E.; Menéndez, E.; Soriguer, F. Vitamin D deficiency in Spain: A population-based cohort study. Eur. J. Clin. Nutr., 2011, 65(3), 321-328.
[http://dx.doi.org/10.1038/ejcn.2010.265] [PMID: 21179052]
[142]
Giuliani, S.; Barbieri, V.; Di Pierro, A.M.; Rossi, F.; Widmann, T.; Lucchiari, M.; Pusceddu, I.; Pilz, S.; Obermayer-Pietsch, B.; Herrmann, M. LC-MS/MS based 25(OH)D status in a large Southern European outpatient cohort: Gender- and age-specific differences. Eur. J. Nutr., 2019, 58(6), 2511-2520.
[http://dx.doi.org/10.1007/s00394-018-1803-1] [PMID: 30088075]
[143]
Dimakopoulos, I.; Magriplis, E.; Mitsopoulou, A.V.; Karageorgou, D.; Bakogianni, I.; Micha, R.; Michas, G.; Chourdakis, M.; Ntouroupi, T.; Tsaniklidou, S.M.; Argyri, K.; Panagiotakos, D.B.; Zampelas, A.; Fappa, E.; Theodoraki, E-M.; Trichia, E.; Sialvera, T-E.; Varytimiadi, A.; Spyreli, E.; Koutelidakis, A.; Karlis, G.; Zacharia, S.; Papageorgiou, A.; Chrousos, G.P.; Dedoussis, G.; Dimitriadis, G.; Manios, Y.; Roma, E. Association of serum vitamin D status with dietary intake and sun exposure in adults. Clin. Nutr. ESPEN, 2019, 34, 23-31.
[http://dx.doi.org/10.1016/j.clnesp.2019.09.008] [PMID: 31677707]
[144]
Asakura, K.; Etoh, N.; Imamura, H.; Michikawa, T.; Nakamura, T.; Takeda, Y.; Mori, S.; Nishiwaki, Y. Vitamin D status in Japanese adults: Relationship of serum 25-hydroxyvitamin D with simultaneously measured dietary vitamin D intake and ultraviolet ray exposure. Nutrients, 2020, 12(3), 743.
[http://dx.doi.org/10.3390/nu12030743] [PMID: 32168939]
[145]
Petrenya, N.; Lamberg-Allardt, C.; Melhus, M.; Broderstad, A.R.; Brustad, M. Vitamin D status in a multi-ethnic population of northern Norway: the SAMINOR 2 Clinical Survey. Public Health Nutr., 2020, 23(7), 1186-1200.
[http://dx.doi.org/10.1017/S1368980018003816] [PMID: 30767841]
[146]
Nälsén, C.; Becker, W.; Pearson, M.; Ridefelt, P.; Lindroos, A.K.; Kotova, N.; Mattisson, I. Vitamin D status in children and adults in Sweden: dietary intake and 25-hydroxyvitamin D concentrations in children aged 10-12 years and adults aged 18-80 years. J. Nutr. Sci., 2020, 9, e47.
[http://dx.doi.org/10.1017/jns.2020.40] [PMID: 33101664]
[147]
Rajatanavin, N.; Kanokrungsee, S.; Aekplakorn, W. Vitamin D status in Thai dermatologists and working-age Thai population. J. Dermatol., 2019, 46(3), 206-212.
[http://dx.doi.org/10.1111/1346-8138.14742] [PMID: 30592077]
[148]
Sebekova, K.; Krivosikova, Z.; Gajdos, M.; Podracka, L. Vitamin D status in apparently healthy medication-free Slovaks: Association to blood pressure, body mass index, self-reported smoking status and physical activity. Bratisl. Lek Listy, 2016, 117(12), 702-709.
[PMID: 28127966]
[149]
Adebayo, F.A.; Itkonen, S.T.; Lilja, E.; Jääskeläinen, T.; Lundqvist, A.; Laatikainen, T.; Koponen, P.; Cashman, K.D.; Erkkola, M.; Lamberg-Allardt, C. Prevalence and determinants of vitamin D deficiency and insufficiency among three immigrant groups in Finland: evidence from a population-based study using standardised 25-hydroxyvitamin D data. Public Health Nutr., 2020, 23(7), 1254-1265.
[http://dx.doi.org/10.1017/S1368980019004312] [PMID: 32188532]
[150]
Zhang, F.F.; Al Hooti, S.; Al Zenki, S.; Alomirah, H.; Jamil, K.M.; Rao, A.; Al Jahmah, N.; Saltzman, E.; Ausman, L.M. Vitamin D deficiency is associated with high prevalence of diabetes in Kuwaiti adults: results from a national survey. BMC Public Health, 2016, 16(1), 100.
[http://dx.doi.org/10.1186/s12889-016-2758-x] [PMID: 26833056]
[151]
Abiaka, C.; Delghandi, M.; Kaur, M.; Al-Saleh, M. Vitamin D status and anthropometric indices of an omani study population. Sultan Qaboos Univ. Med. J., 2013, 13(2), 224-231.
[http://dx.doi.org/10.12816/0003227] [PMID: 23862027]
[152]
Al-Azzawy, M.A.; Qader, S.M.; Mirdan, A.A. Study of the relationship between vitamin D level and the increase in the severity of COVID-19 infection in Kirkuk City. Med.-Leg. Update, 2021, 21(2), 1383-1387.
[http://dx.doi.org/10.37506/mlu.v21i2.2884]
[153]
Hussein, D.A.; Ahmed, G.S.; Ahmed, S.F.; Salih, R.Q.; Kakamad, F.H.; Salih, A.M. Pattern of vitamin D deficiency in a Middle Eastern population: A cross-sectional study. Int. J. Funct. Nut., 2012, 3, 7.
[http://dx.doi.org/10.3892/ijfn.2022.30]
[154]
COVID-19 rapid guideline: Vitamin D; National Institute for Health and Care Excellence (NICE): London, 2020.
[PMID: 33378143]
[155]
Martineau, A.R.; Jolliffe, D.A.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; Goodall, E.C.; Grant, C.C.; Janssens, W.; Jensen, M.E.; Kerley, C.P.; Laaksi, I.; Manaseki-Holland, S.; Mauger, D.; Murdoch, D.R.; Neale, R.; Rees, J.R.; Simpson, S., Jr; Stelmach, I.; Trilok Kumar, G.; Urashima, M.; Camargo, C.A., Jr; Griffiths, C.J.; Hooper, R.L. Vitamin D supplementation to prevent acute respiratory infections: Individual participant data meta-analysis. Health Technol. Assess., 2019, 23(2), 1-44.
[http://dx.doi.org/10.3310/hta23020] [PMID: 30675873]
[156]
Aygun, H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(7), 1157-1160.
[http://dx.doi.org/10.1007/s00210-020-01911-4] [PMID: 32451597]
[157]
Ali, N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. J. Infect. Public Health, 2020, 13(10), 1373-1380.
[http://dx.doi.org/10.1016/j.jiph.2020.06.021] [PMID: 32605780]
[158]
Dickie, L.J.; Church, L.D.; Coulthard, L.R.; Mathews, R.J.; Emery, P.; McDermott, M.F. Vitamin D3 down-regulates intracellular Toll-like receptor 9 expression and Toll-like receptor 9-induced IL-6 production in human monocytes. Rheumatology, 2010, 49(8), 1466-1471.
[http://dx.doi.org/10.1093/rheumatology/keq124] [PMID: 20435648]
[159]
Chen, Y.; Zhang, J.; Ge, X.; Du, J.; Deb, D.K.; Li, Y.C. Vitamin D receptor inhibits nuclear factor κB activation by interacting with IκB kinase β protein. J. Biol. Chem., 2013, 288(27), 19450-19458.
[http://dx.doi.org/10.1074/jbc.M113.467670] [PMID: 23671281]
[160]
Allen, A.C.; Kelly, S.; Basdeo, S.A.; Kinsella, K.; Mulready, K.J.; Mills, K.H.G.; Tubridy, N.; Walsh, C.; Brady, J.J.; Hutchinson, M.; Fletcher, J.M. A pilot study of the immunological effects of high-dose vitamin D in healthy volunteers. Mult. Scler., 2012, 18(12), 1797-1800.
[http://dx.doi.org/10.1177/1352458512442992] [PMID: 22457344]
[161]
Kong, J.; Zhu, X.; Shi, Y.; Liu, T.; Chen, Y.; Bhan, I.; Zhao, Q.; Thadhani, R.; Li, Y.C. VDR attenuates acute lung injury by blocking Ang-2-Tie-2 pathway and renin-angiotensin system. Mol. Endocrinol., 2013, 27(12), 2116-2125.
[http://dx.doi.org/10.1210/me.2013-1146] [PMID: 24196349]
[162]
Dancer, R.C.A.; Parekh, D.; Lax, S.; D’Souza, V.; Zheng, S.; Bassford, C.R.; Park, D.; Bartis, D.G.; Mahida, R.; Turner, A.M.; Sapey, E.; Wei, W.; Naidu, B.; Stewart, P.M.; Fraser, W.D.; Christopher, K.B.; Cooper, M.S.; Gao, F.; Sansom, D.M.; Martineau, A.R.; Perkins, G.D.; Thickett, D.R. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax, 2015, 70(7), 617-624.
[http://dx.doi.org/10.1136/thoraxjnl-2014-206680] [PMID: 25903964]
[163]
Charoenngam, N.; Shirvani, A.; Reddy, N.; Vodopivec, D.M.; Apovian, C.M.; Holick, M.F. Association of vitamin D status with hospital morbidity and mortality in adult hospitalized patients with COVID-19. Endocr. Pract., 2021, 27(4), 271-278.
[http://dx.doi.org/10.1016/j.eprac.2021.02.013] [PMID: 33705975]
[164]
Grant, W.; Lahore, H.; McDonnell, S.; Baggerly, C.; French, C.; Aliano, J.; Bhattoa, H. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 2020, 12(4), 988.
[http://dx.doi.org/10.3390/nu12040988] [PMID: 32252338]
[165]
Ling, S.F.; Broad, E.; Murphy, R.; Pappachan, J.M.; Pardesi-Newton, S.; Kong, M.F.; Jude, E.B. High-dose cholecalciferol booster therapy is associated with a reduced risk of mortality in patients with COVID-19: A cross-sectional multi-centre observational study. Nutrients, 2020, 12(12), 3799.
[http://dx.doi.org/10.3390/nu12123799] [PMID: 33322317]
[166]
Martineau, A.R.; Forouhi, N.G. Vitamin D for COVID-19: A case to answer? Lancet Diabetes Endocrinol., 2020, 8(9), 735-736.
[http://dx.doi.org/10.1016/S2213-8587(20)30268-0] [PMID: 32758429]
[167]
De Smet, D.; De Smet, K.; Herroelen, P.; Gryspeerdt, S.; Martens, G.A. Serum 25(OH)D level on hospital admission associated with COVID-19 stage and mortality. Am. J. Clin. Pathol., 2021, 155(3), 381-388.
[http://dx.doi.org/10.1093/ajcp/aqaa252] [PMID: 33236114]
[168]
Vassiliou, A.G.; Jahaj, E.; Pratikaki, M.; Orfanos, S.E.; Dimopoulou, I.; Kotanidou, A. Low 25-hydroxyvitamin D levels on admission to the intensive care unit may predispose COVID-19 pneumonia patients to a higher 28-day mortality risk: A pilot study on a greek ICU cohort. Nutrients, 2020, 12(12), 3773.
[http://dx.doi.org/10.3390/nu12123773] [PMID: 33316914]
[169]
Carpagnano, G.E.; Di Lecce, V.; Quaranta, V.N.; Zito, A.; Buonamico, E.; Capozza, E.; Palumbo, A.; Di Gioia, G.; Valerio, V.N.; Resta, O. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J. Endocrinol. Invest., 2021, 44(4), 765-771.
[http://dx.doi.org/10.1007/s40618-020-01370-x] [PMID: 32772324]
[170]
Jolliffe, D.A.; Camargo, C.A., Jr; Sluyter, J.D.; Aglipay, M.; Aloia, J.F.; Ganmaa, D.; Bergman, P.; Bischoff-Ferrari, H.A.; Borzutzky, A.; Damsgaard, C.T.; Dubnov-Raz, G.; Esposito, S.; Gilham, C.; Ginde, A.A.; Golan-Tripto, I.; Goodall, E.C.; Grant, C.C.; Griffiths, C.J.; Hibbs, A.M.; Janssens, W.; Khadilkar, A.V.; Laaksi, I.; Lee, M.T.; Loeb, M.; Maguire, J.L.; Majak, P.; Mauger, D.T.; Manaseki-Holland, S.; Murdoch, D.R.; Nakashima, A.; Neale, R.E.; Pham, H.; Rake, C.; Rees, J.R.; Rosendahl, J.; Scragg, R.; Shah, D.; Shimizu, Y.; Simpson-Yap, S.; Trilok-Kumar, G.; Urashima, M.; Martineau, A.R. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol., 2021, 9(5), 276-292.
[http://dx.doi.org/10.1016/S2213-8587(21)00051-6] [PMID: 33798465]
[171]
Mao, X.; Xing, X.; Xu, R.; Gong, Q.; He, Y.; Li, S.; Wang, H.; Liu, C.; Ding, X.; Na, R.; Liu, Z.; Qu, Y. Folic acid and vitamins D and B12 correlate with homocysteine in chinese patients with type-2 diabetes mellitus, hypertension, or cardiovascular disease. Medicine., 2016, 95(6), e2652.
[http://dx.doi.org/10.1097/MD.0000000000002652] [PMID: 26871790]
[172]
Rahman, A.; Al-Taiar, A.; Shaban, L.; Al-Sabah, R.; Mojiminiyi, O. Plasma 25-hydroxyvitamin D is positively associated with folate and vitamin B12 levels in adolescents. Nutr. Res., 2020, 79, 87-99.
[http://dx.doi.org/10.1016/j.nutres.2020.06.003] [PMID: 32653772]
[173]
Eloranta, J.J.; Zaïr, Z.M.; Hiller, C.; Häusler, S.; Stieger, B.; Kullak-Ublick, G.A. Vitamin D3 and its nuclear receptor increase the expression and activity of the human proton-coupled folate transporter. Mol. Pharmacol., 2009, 76(5), 1062-1071.
[http://dx.doi.org/10.1124/mol.109.055392] [PMID: 19666701]
[174]
Gropper, S.S.; Smith, J.L. Advanced Nutrition and Human Metabolism, 7th ed; Cengage Learning: Belmont, CA, USA, 2017.
[175]
Barassi, A.; Pezzilli, R.; Mondoni, M.; Rinaldo, R.F.; Davì, M.; Cozzolino, M. Vitamin D in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients with non-invasive ventilation support. Panminerva Med., 2023, 65(1), 23-29.
[http://dx.doi.org/10.23736/S0031-0808.21.04277-4] [PMID: 33494567]
[176]
Kaufman, H.W.; Niles, J.K.; Kroll, M.H.; Bi, C.; Holick, M.F. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS One, 2020, 15(9), e0239252.
[http://dx.doi.org/10.1371/journal.pone.0239252] [PMID: 32941512]
[177]
Ma, H.; Zhao, D.; Zeng, W.; Yang, Y.; Hu, X.; Zhou, P.; Weng, J.; Cheng, L.; Zheng, X.; Jin, T. Decline of SARS-CoV-2-specific IgG, IgM and IgA in convalescent COVID-19 patients within 100 days after hospital discharge. Sci. China Life Sci., 2021, 64(3), 482-485.
[http://dx.doi.org/10.1007/s11427-020-1805-0] [PMID: 32876887]
[178]
Figueiredo-Campos, P.; Blankenhaus, B.; Mota, C.; Gomes, A.; Serrano, M.; Ariotti, S.; Costa, C.; Nunes-Cabaço, H.; Mendes, A.M.; Gaspar, P.; Pereira-Santos, M.C.; Rodrigues, F.; Condeço, J.; Escoval, M.A.; Santos, M.; Ramirez, M.; Melo-Cristino, J.; Simas, J.P.; Vasconcelos, E.; Afonso, Â.; Veldhoen, M. Seroprevalence of anti‐SARS‐CoV‐2 antibodies in COVID‐19 patients and healthy volunteers up to 6 months post disease onset. Eur. J. Immunol., 2020, 50(12), 2025-2040.
[http://dx.doi.org/10.1002/eji.202048970] [PMID: 33084029]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy