Generic placeholder image

Current Pharmacogenomics and Personalized Medicine

Editor-in-Chief

ISSN (Print): 1875-6921
ISSN (Online): 1875-6913

Research Article

Prediction of Deleterious Non-Synonymous Single Nucleotide Polymorphism of Cathelicidin

Author(s): Usha Subbiah*, Athira Ajith and Harini Venkata Subbiah

Volume 20, Issue 2, 2023

Published on: 13 September, 2023

Page: [92 - 105] Pages: 14

DOI: 10.2174/1875692120666230823114511

Price: $65

Abstract

Background: Cathelicidin, a human host defense peptide, plays a salubrious role in innate host defense against human pathogens. Despite the extensive studies on the antimicrobial function of Cathelicidin, there is a lack of information on this peptide's deleterious single nucleotide polymorphisms (SNPs) that potentially alter the disease susceptibility and hence the current study.

Objective: To predict Cathelicidin's structural and functional deleterious non-synonymous single nucleotide polymorphisms.

Methods: The non-synonymous SNPs of Cathelicidin were investigated using computational prediction tools like SIFT, Polyphen, PROVEAN, MusiteDeep, I-Mutant, and STRING.

Results: The present study predicted 23 potentially harmful nsSNP of Cathelicidin. Among these, 14 were highly conserved, 8 were average conserved, and 1 alone was variable. Phosphorylation was observed in serine and threonine residues using post-translational modification. Further mutation 3D predicted 11 clustered and 13 covered mutations in cathelicidin variants. The structural distribution of high-risk nsSNPs predicted 80 alpha helixes, 0 random coils, 19 extended strands, and 4 beta turns. Among 23 predicted deleterious SNPs, 9 nsSNPs alone showed mutation effect based on the HOPE structural and functional analysis. The direct functional interaction pattern of Cathelicidin with other proteins, FPR2, PRTN3, TLR9, IGF1R, and JUN, was observed.

Conclusion: The identified deleterious nsSNPs could help understand the mutation effect of Cathelicidin in disease susceptibility and drug discovery.

Graphical Abstract

[1]
Koczulla R, von Degenfeld G, Kupatt C, et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 2003; 111(11): 1665-72.
[http://dx.doi.org/10.1172/JCI17545] [PMID: 12782669]
[2]
Dale BA, Krisanaprakornkit S. Defensin antimicrobial peptides in the oral cavity. J Oral Pathol Med 2001; 30(6): 321-7.
[http://dx.doi.org/10.1034/j.1600-0714.2001.300601.x] [PMID: 11459317]
[3]
Woo JS, Jeong JY, Hwang YJ, Chae SW, Hwang SJ, Lee HM. Expression of cathelicidin in human salivary glands. Arch Otolaryngol Head Neck Surg 2003; 129(2): 211-4.
[http://dx.doi.org/10.1001/archotol.129.2.211] [PMID: 12578451]
[4]
Chung W, Dommisch H, Yin L, Dale B. Expression of defensins in gingiva and their role in periodontal health and disease. Curr Pharm Des 2007; 13(30): 3073-83.
[http://dx.doi.org/10.2174/138161207782110435] [PMID: 17979750]
[5]
Alford MA, Baquir B, Santana FL, Haney EF, Hancock REW. Cathelicidin host defense peptides and inflammatory signaling: Striking a balance. Front Microbiol 2020; 1902.
[6]
Khurshid Z, Naseem M, Yahya I, Asiri F, et al. Significance and diagnostic role of antimicrobial cathelicidins (LL-37) peptides in oral health. Biomolecules 2017; 7(4): 80.
[http://dx.doi.org/10.3390/biom7040080] [PMID: 29206168]
[7]
Jain H. Cationic antimicrobial peptide: LL-37 and its role in periodontitis. Front Biol (Beijing) 2017; 12(2): 116-23.
[http://dx.doi.org/10.1007/s11515-017-1432-8]
[8]
Khurshid Z, Mali M, Naseem M, Najeeb S, Zafar M. Human gingival crevicular fluids (GCF) proteomics: An overview. Dent J 2017; 5(1): 12.
[http://dx.doi.org/10.3390/dj5010012] [PMID: 29563418]
[9]
Agier J, Efenberger M. Brzezińska-Błaszczyk E. Review paper Cathelicidin impact on inflammatory cells. Cent Eur J Immunol 2015; 2(2): 225-35.
[http://dx.doi.org/10.5114/ceji.2015.51359] [PMID: 26557038]
[10]
Porto WF, Alencar SA. In silico assessment of missense point mutations on human cathelicidin LL-37. Mol Graph Model 2023; 118: 108368.
[http://dx.doi.org/10.1016/j.jmgm.2022.108368] [PMID: 36335830]
[11]
Cerhan JR, Ansell SM, Fredericksen ZS, et al. Genetic variation in 1253 immune and inflammation genes and risk of non-Hodgkin lymphoma. Blood 2007; 110(13): 4455-63.
[http://dx.doi.org/10.1182/blood-2007-05-088682] [PMID: 17827388]
[12]
Castellanos-Rubio A, Ghosh S. Disease-associated SNPs in inflammation-related lncRNAs. Front Immunol 2019; 10: 420.
[http://dx.doi.org/10.3389/fimmu.2019.00420] [PMID: 30906297]
[13]
Güncü GN, Yilmaz D, Könönen E, Gürsoy UK. Salivary antimicrobial peptides in early detection of periodontitis. Front Cell Infect Microbiol 2015; 5: 99.
[http://dx.doi.org/10.3389/fcimb.2015.00099] [PMID: 26734583]
[14]
Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 2012; 40(W1): W452-7.
[http://dx.doi.org/10.1093/nar/gks539] [PMID: 22689647]
[15]
Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One 2012; 7(10): e46688.
[http://dx.doi.org/10.1371/journal.pone.0046688] [PMID: 23056405]
[16]
Bromberg Y, Yachdav G, Rost B. SNAP predicts effect of mutations on protein function. Bioinformatics 2008; 24(20): 2397-8.
[http://dx.doi.org/10.1093/bioinformatics/btn435] [PMID: 18757876]
[17]
Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 2006; 22(22): 2729-34.
[http://dx.doi.org/10.1093/bioinformatics/btl423] [PMID: 16895930]
[18]
Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 2005; 33 (Suppl. 2): W306-10.
[http://dx.doi.org/10.1093/nar/gki375] [PMID: 15980478]
[19]
Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. Con- Surf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 2010; 38(Web Server issue): W529-33.
[http://dx.doi.org/10.1093/nar/gkq399] [PMID: 20478830]
[20]
Mustafa MI, Murshed NS, Abdelmoneim AH, Makhawi AM. In silico analysis of the functional and structural consequences of SNPs in human ARX gene associated with EIEE1. Informatics in Medicine Unlocked 2020; 21: 100447.
[http://dx.doi.org/10.1016/j.imu.2020.100447]
[21]
Geourjon C, Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 1995; 11(6): 681-4.
[http://dx.doi.org/10.1093/bioinformatics/11.6.681] [PMID: 8808585]
[22]
Venselaar H, te Beek TAH, Kuipers RKP, Hekkelman ML, Vriend G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics 2010; 11(1): 548.
[http://dx.doi.org/10.1186/1471-2105-11-548] [PMID: 21059217]
[23]
Jensen LJ, Kuhn M, Stark M, et al. STRING 8--a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 2009; 37(Database issue) (Suppl. 1): D412-6.
[http://dx.doi.org/10.1093/nar/gkn760] [PMID: 18940858]
[24]
Sun B, Zhang M, Cui P, et al. Nonsynonymous single-nucleotide variations on some posttranslational modifications of human proteins and the association with diseases. Comput Math Methods Med 2015; 2015: 1-12.
[http://dx.doi.org/10.1155/2015/124630] [PMID: 26495027]
[25]
Gorr SU, Abdolhosseini M. Antimicrobial peptides and periodontal disease. J Clin Periodontol 2011; 38 (Suppl. 11): 126-41.
[http://dx.doi.org/10.1111/j.1600-051X.2010.01664.x] [PMID: 21323710]
[26]
Girnita A, Zheng H, Grönberg A, Girnita L, Ståhle M. RETRACTED ARTICLE:Identification of the cathelicidin peptide LL-37 as agonist for the type I insulin-like growth factor receptor. Oncogene 2012; 31(3): 352-65.
[http://dx.doi.org/10.1038/onc.2011.239] [PMID: 21685939]
[27]
Jourdain ML, Pierrard L, Kanagaratnam L, et al. Antimicrobial peptide gene expression in periodontitis patients: A pilot study. J Clin Periodontol 2018; 45(5): 524-37.
[http://dx.doi.org/10.1111/jcpe.12879] [PMID: 29446150]
[28]
Subanada IB, Bakta IM, Suryawan IWB, Astawa P, Satriyasa BK. Association between Vitamin D level, Vitamin D receptor gene polymorphisms, and cathelicidin level to acute lower respiratory infections, and the picture of exon 2-Vitamin D receptor gene polymorphisms in children under 5 years old. Open Access Maced J Med Sci 2020; 8(B): 536-41.
[29]
Atazadeh F, Fazeli Z, Vahidnezhad H, et al. Increased level of cathelicidin (LL-37) in vitiligo: Possible pathway independent from vitamin D receptor gene polymorphism. Exp Dermatol 2020; 29(12): 1176-85.
[http://dx.doi.org/10.1111/exd.14200] [PMID: 32997837]
[30]
de Haar SF, Hiemstra PS, van Steenbergen MTJM, Everts V, Beertsen W. Role of polymorphonuclear leukocyte-derived serine proteinases in defense against Actinobacillus actinomycetemcomitans. Infect Immun 2006; 74(9): 5284-91.
[http://dx.doi.org/10.1128/IAI.02016-05] [PMID: 16926422]
[31]
Bedran TBL, Mayer MPA, Spolidorio DP, Grenier D. Synergistic anti-inflammatory activity of the antimicrobial peptides human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. PLoS One 2014; 9(9): e106766.
[http://dx.doi.org/10.1371/journal.pone.0106766] [PMID: 25187958]
[32]
Türkoğlu O, Emingil G, Kütükçüler N, Atilla G. Gingival crevicular fluid levels of cathelicidin LL-37 and interleukin-18 in patients with chronic periodontitis. J Periodontol 2009; 80(6): 969-76.
[http://dx.doi.org/10.1902/jop.2009.080532] [PMID: 19485828]
[33]
Gorr SU. Antimicrobial peptides of the oral cavity. Periodontol 2000 2009; 51(1): 152-80.
[http://dx.doi.org/10.1111/j.1600-0757.2009.00310.x] [PMID: 19878474]
[34]
Shi Y, Li C, Wang M, et al. Cathelicidin-DM is an antimicrobial peptide from Duttaphrynus melanostictus and has wound-healing therapeutic potential. ACS Omega 2020; 5(16): 9301-10.
[http://dx.doi.org/10.1021/acsomega.0c00189] [PMID: 32363280]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy