Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Multidrug-resistant Tuberculosis and its Implication with COVID-19

Author(s): Jasmine Arya, Sweety Dahiya and Anil Kumar Chhillar*

Volume 4, Issue 3, 2023

Published on: 22 August, 2023

Article ID: e220823220174 Pages: 11

DOI: 10.2174/2666796704666230822113632

Price: $65

Abstract

Mycobacterium tuberculosis is the leading cause of death due to pulmonary diseases and has developed resistance to various antibiotics over time making it extremely difficult to treat and eradicate. For an effective treatment regime, it becomes necessary to understand the factors and mechanisms of resistance to predict the possibility of associated resistance. In the present-day scenario, conditions of Tuberculosis patients have worsened due to COVID-19 with escalated mortality rates. Additionally, COVID-19 has also affected the regime and regular monitoring of patients which is mainly because of the shift in the focus and toxicity of various COVID-19 and Tuberculosis drug combinations.

Graphical Abstract

[1]
WHO. Global TB report. Geneva: World Health Organisation 2020.
[2]
WHO. TB factsheet. Geneva: World Health Organisation 2020.
[3]
Al-Saeedi M, Al-Hajoj S. Diversity and evolution of drug resistance mechanisms in Mycobacterium tuberculosis. Infect Drug Resist 2017; 10: 333-42.
[http://dx.doi.org/10.2147/IDR.S144446] [PMID: 29075131]
[4]
Nguyen QH, Contamin L, Nguyen TVA, Bañuls AL. Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis. Evol Appl 2018; 11(9): 1498-511.
[http://dx.doi.org/10.1111/eva.12654] [PMID: 30344622]
[5]
Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K. Evolution of drug resistance in Mycobacterium tuberculosis: A review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother 2018; 73(5): 1138-51.
[http://dx.doi.org/10.1093/jac/dkx506] [PMID: 29360989]
[6]
Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives. FEMS Microbiol Rev 2017; 41(3): 354-73.
[http://dx.doi.org/10.1093/femsre/fux011] [PMID: 28369307]
[7]
Lange C, Chesov D, Heyckendorf J, Leung CC, Udwadia Z, Dheda K. Drug-resistant tuberculosis: An update on disease burden, diagnosis and treatment. Respirology 2018; 23(7): 656-73.
[http://dx.doi.org/10.1111/resp.13304] [PMID: 29641838]
[8]
Sharma S, Barman P, Joshi S, Preet S, Saini A. Multidrug resistance crisis during COVID-19 pandemic: Role of anti-microbial peptides as next-generation therapeutics. Colloids Surf B Biointerfaces 2022; 211: 112303.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112303] [PMID: 34952285]
[9]
Arshad AR, Ijaz F, Siddiqui MS, Khalid S, Fatima A, Aftab RK. COVID-19 pandemic and antimicrobial resistance in developing countries. Discoveries 2021; 9(2): e127.
[http://dx.doi.org/10.15190/d.2021.6] [PMID: 34754900]
[10]
Lai CC, Chen SY, Ko WC, Hsueh PR. Increased antimicrobial resistance during the COVID-19 pandemic. Int J Antimicrob Agents 2021; 57(4): 106324.
[http://dx.doi.org/10.1016/j.ijantimicag.2021.106324] [PMID: 33746045]
[11]
Wang H, Paulson KR, Pease SA, et al. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–21. Lancet 2022; 399(10334): 1513-36.
[http://dx.doi.org/10.1016/S0140-6736(21)02796-3] [PMID: 35279232]
[12]
Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and immunopathology of COVID-19. Science 2022; 375(6585): 1122-7.
[http://dx.doi.org/10.1126/science.abm8108] [PMID: 35271343]
[13]
Robinson PC, Liew DFL, Tanner HL, et al. COVID-19 therapeutics: Challenges and directions for the future. Proc Natl Acad Sci 2022; 119(15): e2119893119.
[http://dx.doi.org/10.1073/pnas.2119893119] [PMID: 35385354]
[14]
Motta I, Centis R, D’Ambrosio L, et al. Tuberculosis, COVID-19 and migrants: Preliminary analysis of deaths occurring in 69 patients from two cohorts. Pulmonology 2020; 26(4): 233-40.
[http://dx.doi.org/10.1016/j.pulmoe.2020.05.002] [PMID: 32411943]
[15]
Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T. Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol 2020; 128(6): 1547-67.
[http://dx.doi.org/10.1111/jam.14478] [PMID: 31595643]
[16]
Nasiruddin M, Neyaz MK, Das S. Nanotechnology-based approach in tuberculosis treatment. Tuberc Res Treat 2017; 2017: 1-12.
[http://dx.doi.org/10.1155/2017/4920209] [PMID: 28210505]
[17]
Rodriguez-Rivera FP, Zhou X, Theriot JA, Bertozzi CR. Visualization of mycobacterial membrane dynamics in live cells. J Am Chem Soc 2017; 139(9): 3488-95.
[http://dx.doi.org/10.1021/jacs.6b12541] [PMID: 28075574]
[18]
Nasiri MJ, Haeili M, Ghazi M, et al. New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front Microbiol 2017; 8: 681.
[http://dx.doi.org/10.3389/fmicb.2017.00681] [PMID: 28487675]
[19]
Varma-Basil M, Narang A, Giri A, Gupta S, Garima K, Bose M. Contribution of putative efflux pump genes to isoniazid resistance in clinical isolates of Mycobacterium tuberculosis. Int J Mycobacteriol 2017; 6(2): 177-83.
[http://dx.doi.org/10.4103/ijmy.ijmy_26_17] [PMID: 28559521]
[20]
Hameed HMA, Islam MM, Chhotaray C, et al. Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis Strains. Front Cell Infect Microbiol 2018; 8: 114.
[http://dx.doi.org/10.3389/fcimb.2018.00114] [PMID: 29755957]
[21]
Liu J, Shi W, Zhang S, et al. Mutations in efflux pump Rv1258c (Tap) cause resistance to pyrazinamide, isoniazid, and streptomycin in M. tuberculosis. Front Microbiol 2019; 10: 216.
[http://dx.doi.org/10.3389/fmicb.2019.00216] [PMID: 30837962]
[22]
Modlin SJ, Conkle-Gutierrez D, Kim C, et al. Drivers and sites of diversity in the DNA adenine methylomes of 93 Mycobacterium tuberculosis complex clinical isolates. eLife 2020; 9: e58542.
[http://dx.doi.org/10.7554/eLife.58542] [PMID: 33107429]
[23]
Swain SS, Sharma D, Hussain T, Pati S. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerg Microbes Infect 2020; 9(1): 1651-63.
[http://dx.doi.org/10.1080/22221751.2020.1785334] [PMID: 32573374]
[24]
Rojas Echenique JI, Kryazhimskiy S, Nguyen Ba AN, Desai MM. Modular epistasis and the compensatory evolution of gene deletion mutants. PLoS Genet 2019; 15(2): e1007958.
[http://dx.doi.org/10.1371/journal.pgen.1007958] [PMID: 30768593]
[25]
Mabhula A, Singh V. Drug-resistance in Mycobacterium tuberculosis: Where we stand. MedChemComm 2019; 10(8): 1342-60.
[http://dx.doi.org/10.1039/C9MD00057G] [PMID: 31534654]
[26]
Zalona Fernandes HM, Mastrobuono G, Conceição EC, da Silva Dias RC, Alviano DS, Duarte RS. Coronavirus disease 2019 (COVID-19) treatment versus mycobacterial infections: Better safe than sorry? Infect Control Hosp Epidemiol 2022; 43(7): 952-3.
[http://dx.doi.org/10.1017/ice.2021.124] [PMID: 33736718]
[27]
Gandhi Z, Mansuri Z, Bansod S. Potential interactions of remdesivir with pulmonary drugs: A Covid-19 Perspective. SN Compr Clin Med 2020; 2(10): 1707-8.
[http://dx.doi.org/10.1007/s42399-020-00462-2] [PMID: 32864571]
[28]
Rezaee H, Pourkarim F, Pourtaghi-Anvarian S, Entezari-Maleki T, Asvadi-Kermani T, Nouri-Vaskeh M. Drug‐drug interactions with candidate medications used for COVID‐19 treatment: An overview. Pharmacol Res Perspect 2021; 9(1): e00705.
[http://dx.doi.org/10.1002/prp2.705] [PMID: 33421347]
[29]
Panayiotakopoulos GD, Papadimitriou DT. Rifampicin for COVID-19. World J Virol 2022; 11(2): 90-7.
[http://dx.doi.org/10.5501/wjv.v11.i2.90] [PMID: 35433334]
[30]
Pathak Y, Mishra A, Tripathi V. Rifampicin and Letermovir as potential repurposed drug candidate for COVID-19 treatment: Insights from an in-silico study. Pharmacol Rep 2020; 73(3): 926-38.
[http://dx.doi.org/10.21203/rs.3.rs-22546/v1]
[31]
Karampela I, Dalamaga M. Could respiratory fluoroquinolones, levofloxacin and moxifloxacin, prove to be beneficial as an adjunct treatment in COVID-19? Arch Med Res 2020; 51(7): 741-2.
[http://dx.doi.org/10.1016/j.arcmed.2020.06.004] [PMID: 32546446]
[32]
Lemaitre F, Grégoire M, Monchaud C, et al. Management of drug-drug interactions with nirmatrelvir/ritonavir in patients treated for Covid-19: Guidelines from the french society of pharmacology and therapeutics (SFPT). Therapie 2022; 77(5): 509-21.
[http://dx.doi.org/10.1016/j.therap.2022.03.005] [PMID: 35618549]
[33]
Quah KSE, Huang X, Renia L, Oon HH. Drug interactions between common dermatological medications and the oral anti-COVID-19 agents nirmatrelvir-ritonavir and molnupiravir. Ann Acad Med Singap 2022; 51(12): 774-86.
[http://dx.doi.org/10.47102/annals-acadmedsg.2022289] [PMID: 36592146]
[34]
Udwadia ZF, Vora A, Tripathi AR, Malu KN, Lange C, Sara Raju R. COVID-19 -Tuberculosis interactions: When dark forces collide. Indian J Tuberc 2020; 67(4): S155-62.
[http://dx.doi.org/10.1016/j.ijtb.2020.07.003] [PMID: 33308662]
[35]
Ghahremanpour MM, Tirado-Rives J, Deshmukh M, et al. Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2. ACS Med Chem Lett 2020; 11(12): 2526-33.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00521] [PMID: 33324471]
[36]
Kalscheuer R, Palacios A, Anso I, et al. The Mycobacterium tuberculosis capsule: A cell structure with key implications in pathogenesis. Biochem J 2019; 476(14): 1995-2016.
[http://dx.doi.org/10.1042/BCJ20190324] [PMID: 31320388]
[37]
Arun KB, Madhavan A, Abraham B, et al. Acetylation of isoniazid Is a novel mechanism of isoniazid resistance in mycobacterium tuberculosis. Antimicrob Agents Chemother 2020; 65(1): e00456-20.
[http://dx.doi.org/10.1128/AAC.00456-20] [PMID: 33106268]
[38]
Allué-Guardia A, García JI, Torrelles JB. Evolution of drug-resistant mycobacterium tuberculosis strains and their adaptation to the human lung environment. Front Microbiol 2021; 12: 612675.
[http://dx.doi.org/10.3389/fmicb.2021.612675] [PMID: 33613483]
[39]
Jankute M, Nataraj V, Lee OYC, et al. The role of hydrophobicity in tuberculosis evolution and pathogenicity. Sci Rep 2017; 7(1): 1315.
[http://dx.doi.org/10.1038/s41598-017-01501-0] [PMID: 28465507]
[40]
Scordo JM, Arcos J, Kelley HV, et al. Mycobacterium tuberculosis cell wall fragments released upon bacterial contact with the human lung mucosa alter the neutrophil response to infection. Front Immunol 2017; 8: 307.
[http://dx.doi.org/10.3389/fimmu.2017.00307] [PMID: 28373877]
[41]
Segura-Cerda CA, López-Romero W, Flores-Valdez MA. Changes in host response to mycobacterium tuberculosis infection associated with type 2 diabetes: Beyond hyperglycemia. Front Cell Infect Microbiol 2019; 9: 342.
[http://dx.doi.org/10.3389/fcimb.2019.00342] [PMID: 31637222]
[42]
Wong K, Nguyen J, Blair L, et al. Pathogenesis of human immunodeficiency virus-mycobacterium tuberculosis co-infection. J Clin Med 2020; 9(11): 3575.
[http://dx.doi.org/10.3390/jcm9113575] [PMID: 33172001]
[43]
Birhanu AG, Yimer SA, Kalayou S, et al. Ample glycosylation in membrane and cell envelope proteins may explain the phenotypic diversity and virulence in the Mycobacterium tuberculosis complex. Sci Rep 2019; 9(1): 2927.
[http://dx.doi.org/10.1038/s41598-019-39654-9] [PMID: 30814666]
[44]
Pal R, Hameed S, Kumar P, Singh S, Fatima Z. Comparative lipidomics of drug sensitive and resistant Mycobacterium tuberculosis reveals altered lipid imprints. 3 Biotech 2017; 7(5): 325.
[http://dx.doi.org/10.1007/s13205-017-0972-6]
[45]
Evren E, Ringqvist E, Willinger T. Origin and ontogeny of lung macrophages: From mice to humans. Immunology 2020; 160(2): 126-38.
[http://dx.doi.org/10.1111/imm.13154] [PMID: 31715003]
[46]
Barczak AK, Avraham R, Singh S, et al. Systematic, multiparametric analysis of Mycobacterium tuberculosis intracellular infection offers insight into coordinated virulence. PLoS Pathog 2017; 13(5): e1006363.
[http://dx.doi.org/10.1371/journal.ppat.1006363] [PMID: 28505176]
[47]
Cambier CJ, O’Leary SM, O’Sullivan MP, Keane J, Ramakrishnan L. Phenolic glycolipid facilitates mycobacterial escape from microbicidal tissue-resident macrophages. Immunity 2017; 47(3): 552-565.e4.
[http://dx.doi.org/10.1016/j.immuni.2017.08.003] [PMID: 28844797]
[48]
Peterson EJR, Bailo R, Rothchild AC, et al. Path‐seq identifies an essential mycolate remodeling program for mycobacterial host adaptation. Mol Syst Biol 2019; 15(3): e8584.
[http://dx.doi.org/10.15252/msb.20188584] [PMID: 30833303]
[49]
Liu F, Chen J, Wang P, et al. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat Commun 2018; 9(1): 4295.
[http://dx.doi.org/10.1038/s41467-018-06836-4] [PMID: 30327467]
[50]
Wu Q, Hossfeld A, Gerberick A, et al. Effect of mycobacterium tuberculosis enhancement of macrophage p-glycoprotein expression and activity on intracellular survival during antituberculosis drug treatment. J Infect Dis 2019; 220(12): 1989-98.
[http://dx.doi.org/10.1093/infdis/jiz405] [PMID: 31412123]
[51]
Campodónico VL, Rifat D, Chuang YM, Ioerger TR, Karakousis PC. Altered mycobacterium tuberculosis cell wall metabolism and physiology associated with RpoB mutation H526D. Front Microbiol 2018; 9: 494.
[http://dx.doi.org/10.3389/fmicb.2018.00494] [PMID: 29616007]
[52]
Crimi E, Benincasa G, Cirri S, Mutesi R, Faenza M, Napoli C. Clinical epigenetics and multidrug-resistant bacterial infections: Host remodelling in critical illness. Epigenetics 2020; 15(10): 1021-34.
[http://dx.doi.org/10.1080/15592294.2020.1748918] [PMID: 32290755]
[53]
Marimani M, Ahmad A, Duse A. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection. Tuberculosis 2018; 113: 200-14.
[http://dx.doi.org/10.1016/j.tube.2018.10.009] [PMID: 30514504]
[54]
Behrouzi A, Hadifar S, Amanzadeh A, Riazi Rad F, Vaziri F, Siadat SD. Aberrant methylation of host macrophages induced by tuberculosis infection. World J Microbiol Biotechnol 2019; 35(11): 168.
[http://dx.doi.org/10.1007/s11274-019-2733-7] [PMID: 31654206]
[55]
Sun ET, Xia D, Li BH, et al. Association of immune factors with drug-resistant tuberculosis: A case-control study. Med Sci Monit 2017; 23: 5330-6.
[http://dx.doi.org/10.12659/MSM.904309] [PMID: 29118314]
[56]
Hadizadeh Tasbiti A, Yari S, Siadat SD, Tabarsi P, Saeedfar K, Yari F. Cellular immune response in MDR-TB patients to different protein expression of MDR and susceptible mycobacterium tuberculosis: Rv0147, a novel MDR-TB biomarker. Immunol Res 2018; 66(1): 59-66.
[http://dx.doi.org/10.1007/s12026-017-8971-6] [PMID: 29178041]
[57]
Bucsan AN, Mehra S, Khader SA, Kaushal D. The current state of animal models and genomic approaches towards identifying and validating molecular determinants of Mycobacterium tuberculosis infection and tuberculosis disease. Pathog Dis 2019; 77(4): ftz037.
[http://dx.doi.org/10.1093/femspd/ftz037] [PMID: 31381766]
[58]
Torrelles JB, Schlesinger LS. Integrating lung physiology, immunology, and tuberculosis. Trends Microbiol 2017; 25(8): 688-97.
[http://dx.doi.org/10.1016/j.tim.2017.03.007] [PMID: 28366292]
[59]
Muefong CN, Sutherland JS. Neutrophils in tuberculosis-associated inflammation and lung pathology. Front Immunol 2020; 11: 962.
[http://dx.doi.org/10.3389/fimmu.2020.00962] [PMID: 32536917]
[60]
Eoh H, Wang Z, Layre E, et al. Metabolic anticipation in mycobacterium tuberculosis. Nat Microbiol 2017; 2(8): 17084.
[http://dx.doi.org/10.1038/nmicrobiol.2017.84] [PMID: 28530656]
[61]
Peterson EJR, Abidi AA, Arrieta-Ortiz ML, et al. Intricate genetic programs controlling dormancy in mycobacterium tuberculosis. Cell Rep 2020; 31(4): 107577.
[http://dx.doi.org/10.1016/j.celrep.2020.107577] [PMID: 32348771]
[62]
Jain N, Kalam H, Singh L, et al. Mesenchymal stem cells offer a drug-tolerant and immune-privileged niche to mycobacterium tuberculosis. Nat Commun 2020; 11(1): 3062.
[http://dx.doi.org/10.1038/s41467-020-16877-3] [PMID: 32546788]
[63]
Mirzayev F, Viney K, Linh NN, et al. World health organization recommendations on the treatment of drug-resistant tuberculosis, 2020 update. Eur Respir J 2021; 57(6): 2003300.
[http://dx.doi.org/10.1183/13993003.03300-2020] [PMID: 33243847]
[64]
Raftery A, Tudor C, True L, Navarro C. Nursing guide for managing side effects to drug-resistant TB treatment. International Council of Nurses and Curry International Tuberculosis Center 2018.
[65]
World Health Organization (WHO). WHO Consolidated Guidelines on Tuberculosis Module 4: Treatment Drug-resistant Tuberculosis Treatment. Geneva: WHO 2020.
[66]
Ahmad N, Ahuja SD, Akkerman OW, et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: An individual patient data meta-analysis. Lancet 2018; 392(10150): 821-34.
[http://dx.doi.org/10.1016/S0140-6736(18)31644-1] [PMID: 30215381]
[67]
Jang JG, Chung JH. Diagnosis and treatment of multidrug-resistant tuberculosis. Yeungnam Univ J Med 2020; 37(4): 277-85.
[http://dx.doi.org/10.12701/yujm.2020.00626] [PMID: 32883054]
[68]
Chen MY, Lo YC, Chen WC, Wang KF, Chan PC. Recurrence after successful treatment of multidrug-resistant tuberculosis in taiwan. PLoS One 2017; 12(1): e0170980.
[http://dx.doi.org/10.1371/journal.pone.0170980] [PMID: 28125692]
[69]
Tiberi S, Vjecha MJ, Zumla A, Galvin J, Migliori GB, Zumla A. Accelerating development of new shorter TB treatment regimens in anticipation of a resurgence of multi-drug resistant TB due to the COVID-19 pandemic. Int J Infect Dis 2021; 113(S1): S96-9.
[http://dx.doi.org/10.1016/j.ijid.2021.02.067] [PMID: 33713815]
[70]
Vilbrun SC, Mathurin L, Pape JW, Fitzgerald D, Walsh KF. Case report: Multidrug-resistant tuberculosis and COVID-19 coinfection in port-au-prince, haiti. Am J Trop Med Hyg 2020; 103(5): 1986-8.
[http://dx.doi.org/10.4269/ajtmh.20-0851] [PMID: 32978934]
[71]
Gómez-Moreno G. Remdesivir-COVID-19: Drug interactions in dentistry. Eur Rev Med Pharmacol Sci 2020; 24(18): 9739-43.
[http://dx.doi.org/10.26355/eurrev_202009_23065] [PMID: 33015819]
[72]
Yadav S. Primary isoniazid mono-resistant pulmonary tuberculosis in a COVID-19-Positive Male: World’s first case of its kind in the present pandemic. Cureus 2022; 14(7): e27163.
[http://dx.doi.org/10.7759/cureus.27163] [PMID: 36017273]
[73]
Gopalaswamy R, Subbian S. Corticosteroids for COVID-19 therapy: Potential implications on tuberculosis. Int J Mol Sci 2021; 22(7): 3773.
[http://dx.doi.org/10.3390/ijms22073773] [PMID: 33917321]
[74]
McQuaid CF, Vassall A, Cohen T, Fiekert K, White RG. The impact of COVID-19 on TB: A review of the data. Int J Tuberc Lung Dis 2021; 25(6): 436-46.
[http://dx.doi.org/10.5588/ijtld.21.0148] [PMID: 34049605]
[75]
Meneguim AC, Rebello L, Das M, et al. Adapting TB services during the COVID-19 pandemic in Mumbai, India. Int J Tuberc Lung Dis 2020; 24(10): 1119-21.
[http://dx.doi.org/10.5588/ijtld.20.0537] [PMID: 33126951]
[76]
Martins-Filho PR, Tavares CSS, Santos VS. Factors associated with mortality in patients with COVID-19. A quantitative evidence synthesis of clinical and laboratory data. Eur J Intern Med 2020; 76: 97-9.
[http://dx.doi.org/10.1016/j.ejim.2020.04.043] [PMID: 32345526]
[77]
Gao Y, Liu M, Chen Y, Shi S, Geng J, Tian J. Association between tuberculosis and COVID‐19 severity and mortality: A rapid systematic review and meta‐analysis. J Med Virol 2021; 93(1): 194-6.
[http://dx.doi.org/10.1002/jmv.26311] [PMID: 32687228]
[78]
Boulle A, Davies M-A, Hussey H, et al. Risk factors for coronavirus disease 2019 (COVID-19) death in a population cohort study from the western cape province, south africa. Clin Infect Dis 2021; 73(7): e2005-15.
[http://dx.doi.org/10.1093/cid/ciaa1198] [PMID: 32860699]
[79]
Sy KTL, Haw NJL, Uy J. Previous and active tuberculosis increases risk of death and prolongs recovery in patients with COVID-19. Infect Dis 2020; 52(12): 902-7.
[http://dx.doi.org/10.1080/23744235.2020.1806353] [PMID: 32808838]
[80]
Ben Fredj S, Ghammem R, Zammit N, et al. Risk factors for severe Covid-19 breakthrough infections: An observational longitudinal study. BMC Infect Dis 2022; 22(1): 894.
[http://dx.doi.org/10.1186/s12879-022-07859-5] [PMID: 36443699]
[81]
Chen Y. “Active or latent tuberculosis increases susceptibility to COVID-19 and disease severity,” Infectious Diseases (exceptHIV/AIDS). 2020.
[http://dx.doi.org/10.1101/2020.03.10.20033795]
[82]
Alagna R, Besozzi G, Codecasa LR, et al. Celebrating world tuberculosis day at the time of COVID-19. Eur Respir J 2020; 55(4): 2000650.
[http://dx.doi.org/10.1183/13993003.00650-2020] [PMID: 32241828]
[83]
Amimo F, Lambert B, Magit A. What does the COVID-19 pandemic mean for HIV, tuberculosis, and malaria control? Trop Med Health 2020; 48(1): 32.
[http://dx.doi.org/10.1186/s41182-020-00219-6] [PMID: 32425653]
[84]
Togun T, Kampmann B, Stoker NG, Lipman M. Anticipating the impact of the COVID-19 pandemic on TB patients and TB control programmes. Ann Clin Microbiol Antimicrob 2020; 19(1): 21.
[http://dx.doi.org/10.1186/s12941-020-00363-1] [PMID: 32446305]
[85]
Getnet F, Demissie M, Worku A, et al. Delay in diagnosis of pulmonary tuberculosis increases the risk of pulmonary cavitation in pastoralist setting of Ethiopia. BMC Pulm Med 2019; 19(1): 201.
[http://dx.doi.org/10.1186/s12890-019-0971-y] [PMID: 31694601]
[86]
Eastin C, Eastin T. Clinical characteristics of coronavirus disease 2019 in China. J Emerg Med 2020; 58(4): 711-2.
[http://dx.doi.org/10.1016/j.jemermed.2020.04.004]
[87]
Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection–a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect 2020; 9(1): 727-32.
[http://dx.doi.org/10.1080/22221751.2020.1746199] [PMID: 32196410]
[88]
Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in wuhan, China. Clin Infect Dis 2020; 71(15): 762-8.
[http://dx.doi.org/10.1093/cid/ciaa248] [PMID: 32161940]
[89]
Liao M, Liu Y, Yuan J, et al. “The landscape of lung bronchoalveolar immune cells in COVID-19 revealed by single-cell RNA sequencing,” Allergy and Immunology Nat Med 2020; 26(6): 842-4.
[http://dx.doi.org/10.1101/2020.02.23.20026690]
[90]
Mousquer GT, Peres A, Fiegenbaum M. Pathology of TB/COVID-19 Co-infection: The phantom menace. Tuberculosis 2021; 126: 102020.
[http://dx.doi.org/10.1016/j.tube.2020.102020] [PMID: 33246269]
[91]
Petrone L, Petruccioli E, Vanini V, et al. Coinfection of tuberculosis and COVID-19 limits the ability to in vitro respond to SARS-CoV-2. Int J Infect Dis 2021; 113(1): S82-7.
[http://dx.doi.org/10.1016/j.ijid.2021.02.090] [PMID: 33713816]
[92]
Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol 2020; 17(5): 533-5.
[http://dx.doi.org/10.1038/s41423-020-0402-2] [PMID: 32203188]
[93]
Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 2020; 11: 827.
[http://dx.doi.org/10.3389/fimmu.2020.00827] [PMID: 32425950]
[94]
Torre A, Aliberti S, Castellotti PF, et al. Preliminary observations on IGRA testing for TB infection in patients with severe COVID-19 eligible for immunosuppressive therapy. Respir Med 2020; 175: 106204.
[http://dx.doi.org/10.1016/j.rmed.2020.106204] [PMID: 33186846]
[95]
Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteristics of Covid-19 in new york city. N Engl J Med 2020; 382(24): 2372-4.
[http://dx.doi.org/10.1056/NEJMc2010419] [PMID: 32302078]
[96]
Dheda K, Gumbo T, Maartens G, et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med 2017; 5(4): 291-360.
[http://dx.doi.org/10.1016/S2213-2600(17)30079-6]
[97]
Pandie M, Wiesner L, McIlleron H, et al. Drug–drug interactions between bedaquiline and the antiretrovirals lopinavir/ritonavir and nevirapine in HIV-infected patients with drug-resistant TB. J Antimicrob Chemother 2016; 71(4): 1037-40.
[http://dx.doi.org/10.1093/jac/dkv447] [PMID: 26747099]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy