Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Anticancer Effect of Dihydroartemisinin via Dual Control of ROS-induced Apoptosis and Protective Autophagy in Prostate Cancer 22Rv1 Cells

Author(s): Jiaxin Yang, Tong Xia, Sijie Zhou, Sihao Liu, Tingyu Pan, Ying Li and Ziguo Luo*

Volume 25, Issue 10, 2024

Published on: 06 September, 2023

Page: [1321 - 1332] Pages: 12

DOI: 10.2174/1389201024666230821155243

Price: $65

Abstract

Background: Dihydroartemisinin (DHA), a natural agent, exhibits potent anticancer activity. However, its biological activity on prostate cancer (PCa) 22Rv1 cells has not been previously investigated.

Objectives: In this study, we demonstrate that DHA induces anticancer effects through the induction of apoptosis and autophagy.

Methods: Cell viability and proliferation rate were assessed using the CCK-8 assay and cell clone formation assay. The generation of reactive oxygen species (ROS) was detected by flow cytometry. The molecular mechanism of DHA-induced apoptosis and autophagy was examined using Western blot and RT-qPCR. The formation of autophagosomes and the changes in autophagy flux were observed using transmission electron microscopy (TEM) and confocal microscopy. The effect of DHA combined with Chloroquine (CQ) was assessed using the EdU assay and flow cytometry. The expressions of ROS/AMPK/mTOR-related proteins were detected using Western blot. The interaction between Beclin-1 and Bcl-2 was examined using Co-IP.

Results: DHA inhibited 22Rv1 cell proliferation and induced apoptosis. DHA exerted its antiprostate cancer effects by increasing ROS levels. DHA promoted autophagy progression in 22Rv1 cells. Inhibition of autophagy enhanced the pro-apoptotic effect of DHA. DHA-induced autophagy initiation depended on the ROS/AMPK/mTOR pathway. After DHA treatment, the impact of Beclin- 1 on Bcl-2 was weakened, and its binding with Vps34 was enhanced.

Conclusion: DHA induces apoptosis and autophagy in 22Rv1 cells. The underlying mechanism may involve the regulation of ROS/AMPK/mTOR signaling pathways and the interaction between Beclin-1 and Bcl-2 proteins. Additionally, the combination of DHA and CQ may enhance the efficacy of DHA in inhibiting tumor cell activity.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A.; Bray, F.; Jemal, A. Recent global patterns in prostate cancer incidence and mortality rates. Eur. Urol., 2020, 77(1), 38-52.
[http://dx.doi.org/10.1016/j.eururo.2019.08.005] [PMID: 31493960]
[3]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[4]
Wang, L.; Lu, B.; He, M.; Wang, Y.; Wang, Z.; Du, L. Prostate cancer incidence and mortality: Global status and temporal trends in 89 Countries From 2000 to 2019. Front. Public Health, 2022, 10, 811044.
[http://dx.doi.org/10.3389/fpubh.2022.811044] [PMID: 35252092]
[5]
Zhu, Y.; Mo, M.; Wei, Y.; Wu, J.; Pan, J.; Freedland, S.J.; Zheng, Y.; Ye, D. Epidemiology and genomics of prostate cancer in Asian men. Nat. Rev. Urol., 2021, 18(5), 282-301.
[http://dx.doi.org/10.1038/s41585-021-00442-8] [PMID: 33692499]
[6]
Qiu, Y.; Xu, J. Current opinion and mechanistic interpretation of combination therapy for castration-resistant prostate cancer. Asian J. Androl., 2019, 21(3), 270-278.
[http://dx.doi.org/10.4103/aja.aja_10_19] [PMID: 30924449]
[7]
Ma, Q.; Liao, H.; Xu, L.; Li, Q.; Zou, J.; Sun, R.; Xiao, D.; Liu, C.; Pu, W.; Cheng, J.; Zhou, X.; Huang, G.; Yao, L.; Zhong, X.; Guo, X. Autophagy-dependent cell cycle arrest in esophageal cancer cells exposed to dihydroartemisinin. Chin. Med., 2020, 15(1), 37.
[http://dx.doi.org/10.1186/s13020-020-00318-w] [PMID: 32351616]
[8]
Qu, C.; Ma, J.; Liu, X.; Xue, Y.; Zheng, J.; Liu, L.; Liu, J.; Li, Z.; Zhang, L.; Liu, Y. Dihydroartemisinin exerts anti-tumor activity by inducing mitochondrion and endoplasmic reticulum apoptosis and autophagic cell death in human glioblastoma cells. Front. Cell. Neurosci., 2017, 11, 310.
[http://dx.doi.org/10.3389/fncel.2017.00310] [PMID: 29033794]
[9]
Paccez, J.D.; Duncan, K.; Sekar, D.; Correa, R.G.; Wang, Y.; Gu, X.; Bashin, M.; Chibale, K.; Libermann, T.A.; Zerbini, L.F. Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl. Oncogenesis, 2019, 8(3), 14.
[http://dx.doi.org/10.1038/s41389-019-0122-6] [PMID: 30783079]
[10]
Wong, K.H.; Yang, D.; Chen, S.; He, C.; Chen, M. Development of nanoscale drug delivery systems of dihydroartemisinin for cancer therapy: A review. Asian J. Pharmaceut. Sci., 2022, 17(4), 475-490.
[http://dx.doi.org/10.1016/j.ajps.2022.04.005] [PMID: 36105316]
[11]
Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer, 2020, 19(1), 12.
[http://dx.doi.org/10.1186/s12943-020-1138-4] [PMID: 31969156]
[12]
Wang, L.; Li, J.; Shi, X.; Li, S.; Tang, P.M.K.; Li, Z.; Li, H.; Wei, C. Antimalarial dihydroartemisinin triggers autophagy within HeLa cells of human cervical cancer through Bcl-2 phosphorylation at Ser70. Phytomedicine, 2019, 52, 147-156.
[http://dx.doi.org/10.1016/j.phymed.2018.09.221] [PMID: 30599894]
[13]
Liu, X.; Wu, J.; Fan, M.; Shen, C.; Dai, W.; Bao, Y.; Liu, J.H.; Yu, B.Y. Novel dihydroartemisinin derivative DHA-37 induces autophagic cell death through upregulation of HMGB1 in A549 cells. Cell Death Dis., 2018, 9(11), 1048.
[http://dx.doi.org/10.1038/s41419-018-1006-y] [PMID: 30323180]
[14]
Shi, X.; Li, S.; Wang, L.; Li, H.; Li, Z.; Wang, W.; Bai, J.; Sun, Y.; Li, J.; Li, X. RalB degradation by dihydroartemisinin induces autophagy and IFI16/caspase-1 inflammasome depression in the human laryngeal squamous cell carcinoma. Chin. Med., 2020, 15(1), 64.
[http://dx.doi.org/10.1186/s13020-020-00340-y] [PMID: 32577124]
[15]
Li, M.; Zhu, X.; Zhao, B.; Shi, L.; Wang, W.; Hu, W.; Qin, S.; Chen, B.; Zhou, P.; Qiu, B.; Gao, Y.; Liu, B. Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS–AMPK–mTOR axis. Cell Death Dis., 2019, 10(7), 489.
[http://dx.doi.org/10.1038/s41419-019-1728-5] [PMID: 31222000]
[16]
Mei, Y.; Glover, K.; Su, M.; Sinha, S.C. Conformational flexibility of BECN1: Essential to its key role in autophagy and beyond. Protein Sci., 2016, 25(10), 1767-1785.
[http://dx.doi.org/10.1002/pro.2984] [PMID: 27414988]
[17]
Dai, X.; Zhang, X.; Chen, W.; Chen, Y.; Zhang, Q.; Mo, S.; Lu, J. Dihydroartemisinin: A potential natural anticancer drug. Int. J. Biol. Sci., 2021, 17(2), 603-622.
[http://dx.doi.org/10.7150/ijbs.50364] [PMID: 33613116]
[18]
Du, S.; Xu, G.; Zou, W.; Xiang, T.; Luo, Z. Effect of dihydroartemisinin on UHRF1 gene expression in human prostate cancer PC-3 cells. Anticancer Drugs, 2017, 28(4), 384-391.
[http://dx.doi.org/10.1097/CAD.0000000000000469] [PMID: 28059831]
[19]
Xia, T.; Liu, S.; Xu, G.; Zhou, S.; Luo, Z. Dihydroartemisinin induces cell apoptosis through repression of UHRF1 in prostate cancer cells. Anticancer Drugs, 2022, 33(1), e113-e124.
[http://dx.doi.org/10.1097/CAD.0000000000001156] [PMID: 34387595]
[20]
Du, X.X.; Li, Y.J.; Wu, C.L.; Zhou, J.H.; Han, Y.; Sui, H.; Wei, X.L.; Liu, L.; Huang, P.; Yuan, H.H.; Zhang, T.T.; Zhang, W.J.; Xie, R.; Lang, X.H.; Jia, D.X.; Bai, Y.X. Initiation of apoptosis, cell cycle arrest and autophagy of esophageal cancer cells by dihydroartemisinin. Biomed. Pharmacother., 2013, 67(5), 417-424.
[http://dx.doi.org/10.1016/j.biopha.2013.01.013] [PMID: 23582790]
[21]
Jia, G.; Kong, R.; Ma, Z.B.; Han, B.; Wang, Y.W.; Pan, S.H.; Li, Y.H.; Sun, B. The activation of c-Jun NH2-terminal kinase is required for dihydroartemisinin-induced autophagy in pancreatic cancer cells. J. Exp. Clin. Cancer Res., 2014, 33(1), 8.
[http://dx.doi.org/10.1186/1756-9966-33-8] [PMID: 24438216]
[22]
Fu, X.Y.; Yang, B.Y.; Yin, F.L. The role and molecular mechanism of autophagy in the development of prostate cancer. Zhonghua Yi Xue Za Zhi, 2018, 98(32), 2537-2540.
[http://dx.doi.org/10.3760/cma.j.issn.0376-2491.2018.32.001] [PMID: 30220136]
[23]
Zhang, J.; Wang, G.; Zhou, Y.; Chen, Y.; Ouyang, L.; Liu, B. Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy. Cell. Mol. Life Sci., 2018, 75(10), 1803-1826.
[http://dx.doi.org/10.1007/s00018-018-2759-2] [PMID: 29417176]
[24]
Kimmelman, A.C.; White, E. Autophagy and tumor metabolism. Cell Metab., 2017, 25(5), 1037-1043.
[http://dx.doi.org/10.1016/j.cmet.2017.04.004] [PMID: 28467923]
[25]
Amaravadi, R.K.; Kimmelman, A.C.; Debnath, J. Targeting autophagy in cancer: Recent advances and future directions. Cancer Discov., 2019, 9(9), 1167-1181.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0292] [PMID: 31434711]
[26]
Tang, T.; Xia, Q.J.; Xi, M.R. Dihydroartemisinin and its anticancer activity against endometrial carcinoma and cervical cancer: Involvement of apoptosis, autophagy and transferrin receptor. Singapore Med. J., 2021, 62(2), 96-103.
[http://dx.doi.org/10.11622/smedj.2019138] [PMID: 31680182]
[27]
Bhaw-Luximon, A.; Jhurry, D. Artemisinin and its derivatives in cancer therapy: Status of progress, mechanism of action, and future perspectives. Cancer Chemother. Pharmacol., 2017, 79(3), 451-466.
[http://dx.doi.org/10.1007/s00280-017-3251-7] [PMID: 28210763]
[28]
Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett., 2017, 387, 95-105.
[http://dx.doi.org/10.1016/j.canlet.2016.03.042] [PMID: 27037062]
[29]
Kocak, M.; Ezazi Erdi, S.; Jorba, G.; Maestro, I.; Farrés, J.; Kirkin, V.; Martinez, A.; Pless, O. Targeting autophagy in disease: Established and new strategies. Autophagy, 2022, 18(3), 473-495.
[http://dx.doi.org/10.1080/15548627.2021.1936359] [PMID: 34241570]
[30]
Du, W.; Pang, C.; Xue, Y.; Zhang, Q.; Wei, X. Dihydroartemisinin inhibits the Raf/ERK/MEK and PI3K/AKT pathways in glioma cells. Oncol. Lett., 2015, 10(5), 3266-3270.
[http://dx.doi.org/10.3892/ol.2015.3699] [PMID: 26722323]
[31]
Handrick, R.; Ontikatze, T.; Bauer, K.D.; Freier, F.; Rübel, A.; Dürig, J.; Belka, C.; Jendrossek, V. Dihydroartemisinin induces apoptosis by a Bak-dependent intrinsic pathway. Mol. Cancer Ther., 2010, 9(9), 2497-2510.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0051] [PMID: 20663933]
[32]
Liu, Q.; Zhou, X.; Li, C.; Zhang, X.; Li, C. Rapamycin promotes the anticancer action of dihydroartemisinin in breast cancer MDA-MB-231 cells by regulating expression of Atg7 and DAPK. Oncol. Lett., 2018, 15(4), 5781-5786.
[http://dx.doi.org/10.3892/ol.2018.8013] [PMID: 29545903]
[33]
Shi, X.; Wang, L.; Ren, L.; Li, J.; Li, S.; Cui, Q.; Li, S. Dihydroartemisinin, an antimalarial drug, induces absent in melanoma 2 inflammasome activation and autophagy in human hepatocellular carcinoma HepG2215 cells. Phytother. Res., 2019, 33(5), 1413-1425.
[http://dx.doi.org/10.1002/ptr.6332] [PMID: 30873702]
[34]
Chen, S.S.; Hu, W.; Wang, Z.; Lou, X.E.; Zhou, H.J. p8 attenuates the apoptosis induced by dihydroartemisinin in cancer cells through promoting autophagy. Cancer Biol. Ther., 2015, 16(5), 770-779.
[http://dx.doi.org/10.1080/15384047.2015.1026477] [PMID: 25891535]
[35]
El-Baba, C.; Baassiri, A.; Kiriako, G.; Dia, B.; Fadlallah, S.; Moodad, S.; Darwiche, N. Terpenoids’ anti-cancer effects: Focus on autophagy. Apoptosis, 2021, 26(9-10), 491-511.
[http://dx.doi.org/10.1007/s10495-021-01684-y] [PMID: 34269920]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy