Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Acute Toxicity, Anti-diabetic, and Anti-cancerous Potential of Trillium Govanianum-conjugated Silver Nanoparticles in Balb/c Mice

Author(s): Nazia Gulzar, Saiqa Andleeb*, Abida Raza, Shaukat Ali, Iram Liaqat, Sadaf Azad Raja, Nazish Mazhar Ali, Rida Khan and Uzma Azeem Awan

Volume 25, Issue 10, 2024

Published on: 04 September, 2023

Page: [1304 - 1320] Pages: 17

DOI: 10.2174/1389201024666230818124025

Price: $65

conference banner
Abstract

Background: The current study aimed to develop an economic plant-based therapeutic agent to improve the treatment strategies for diseases at the nano-scale because Cancer and Diabetes mellitus are major concerns in developing countries. Therefore, in vitro and in vivo antidiabetic and anti-cancerous activities of Trillium govanianum conjugated silver nanoparticles were assessed.

Methods: In the current study synthesis of silver nanoparticles using Trillium govanianum and characterization were done using a scanning electron microscope, UV-visible spectrophotometer, and FTIR analysis. The in vitro and in vivo anti-diabetic and anti-cancerous potential (200 mg/kg and 400 mg/kg) were carried out.

Results: It was discovered that Balb/c mice did not show any major alterations during observation of acute oral toxicity when administered orally both TGaqu (1000 mg/kg) and TGAgNPs (1000 mg/kg), and results revealed that 1000 mg/kg is not lethal dose as did not find any abnormalities in epidermal and dermal layers when exposed to TGAgNPs. In vitro studies showed that TGAgNPs could not only inhibit alpha-glucosidase and protein kinases but were also potent against the brine shrimp. Though, a significant reduction in blood glucose levels and significant anti-cancerous effects was recorded when alloxan-treated and CCl4-induced mice were treated with TGAgNPs and TGaqu.

Conclusion: Both in vivo and in vitro studies revealed that TGaqu and TGAgNPs are not toxic at 200 mg/kg, 400 mg/kg, and 1000 mg/kg doses and possess strong anti-diabetic and anti-cancerous effects due to the presence of phyto-constituents. Further, suggesting that green synthesized silver nanoparticles could be used in pharmaceutical industries to develop potent therapeutic agents.

Graphical Abstract

[1]
Gao, M.; Sun, L.; Wang, Z.; Zhao, Y. Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Mater. Sci. Eng. C, 2013, 33(1), 397-404.
[http://dx.doi.org/10.1016/j.msec.2012.09.005]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332]
[3]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262]
[4]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210]
[5]
Raghunandan, D.; Ravishankar, B.; Sharanbasava, G.; Mahesh, D.B.; Harsoor, V.; Yalagatti, M.S.; Bhagawanraju, M.; Venkataraman, A. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol., 2011, 2(1-6), 57-65.
[http://dx.doi.org/10.1007/s12645-011-0014-8]
[6]
Abdel-Fattah, W.I.; Eid, M.M.; Abd El-Moez, S.I.; Mohamed, E.; Ali, G.W. Synthesis of biogenic Ag@Pd Core-shell nanoparticles having anti-cancer/anti-microbial functions. Life Sci., 2017, 183, 28-36.
[http://dx.doi.org/10.1016/j.lfs.2017.06.017]
[7]
Abdel-Fattah, W.I.; Sattar, M.; Sallam, A.; Atwa, N.A.; Salama, E.; Maghraby, A.M.; Ali, G.W. Functionality, antibacterial efficiency and biocompatibility of nanosilver/chitosan/silk/phosphate scaffolds 1. Synthesis and optimization of nanosilver/chitosan matrices through gamma rays irradiation and their antibacterial activity. Mater. Res. Express, 2014, 1(3), 035024.
[http://dx.doi.org/10.1088/2053-1591/1/3/035024]
[8]
Igaz, N.; Kovács, D.; Rázga, Z.; Kónya, Z.; Boros, I.M.; Kiricsi, M. Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles. Colloids Surf. B Biointerfaces, 2016, 146, 670-677.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.004]
[9]
Jiang, X.; Foldbjerg, R.; Miclaus, T.; Wang, L.; Singh, R.; Hayashi, Y.; Sutherland, D.; Chen, C.; Autrup, H.; Beer, C. Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol. Lett., 2013, 222(1), 55-63.
[http://dx.doi.org/10.1016/j.toxlet.2013.07.011]
[10]
Souza, T.A.J.; Franchi, L.P.; Rosa, L.R.; da Veiga, M.A.M.S.; Takahashi, C.S. Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2016, 795, 70-83.
[http://dx.doi.org/10.1016/j.mrgentox.2015.11.002]
[11]
Imam, K. Clinical features, diagnostic criteria and pathogenesis of diabetes mellitus. Adv. Exp. Med. Biol., 2013, 771, 340-355.
[http://dx.doi.org/10.1007/978-1-4614-5441-0_25]
[12]
Elosta, A.; Ghous, T.; Ahmed, N. Natural products as Anti-glycation agents, possible therapeutic potential for diabetic complications. Curr. Diabetes Rev., 2012, 8(2), 92-108.
[http://dx.doi.org/10.2174/157339912799424528]
[13]
Mo, R.; Jiang, T.; Di, J.; Tai, W.; Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev., 2014, 43(10), 3595-3629.
[http://dx.doi.org/10.1039/c3cs60436e]
[14]
Yajing, X.; Qi, X.; Cai, E.; Zhang, C.; Wang, J.; Lan, Y.; Deng, H.; Shen, J.; Hu, R. Highly efficient bacteria-infected diabetic wound healing employing a melanin-reinforced biopolymer hydrogel. Chem. Eng. J., 2023, 2023(460), 141852.
[15]
You, S.; Huang, Y.; Mao, R.; Xiang, Y.; Cai, E.; Chen, Y.; Shen, J.; Dong, W.; Qi, X. Together is better: Poly(tannic acid) nanorods functionalized polysaccharide hydrogels for diabetic wound healing. Ind. Crops Prod., 2022, 186(186), 115273.
[http://dx.doi.org/10.1016/j.indcrop.2022.115273]
[16]
Shahcheraghi, N.; Golchin, H.; Sadri, Z. Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech, 2022, 12(3), 65.
[http://dx.doi.org/10.1007/s13205-021-03108-9]
[17]
Kumar Dash, D.; Kant Panik, R.; Kumar Sahu, A.; Tripathi, V. Role of nanobiotechnology in drug discovery, development and molecular diagnostic. In: Applications of Nanobiotechnology; Intechopen, 2020.
[http://dx.doi.org/10.5772/intechopen.92796]
[18]
Nwizege, K.S.; Philip-Kpae, F.O.; Ikhazuangbe, G.I.; Petaba, L.D.; Zukbee, N.A.; Danamina, J. A systematic scrutiny of electronic products from DNA electronics, an application to nanotechnology. Int. J. Eng. Res. & Rev., 2017, 5(3), 6-13.
[19]
Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomedicine, 2020, 15(15), 2555-2562.
[http://dx.doi.org/10.2147/IJN.S246764]
[20]
Afreen, A.; Ahmed, R.; Mehboob, S.; Tariq, M.; Alghamdi, H.A.; Zahid, A.A.; Ali, I.; Malik, K.; Hasan, A. Phytochemical-assisted biosynthesis of silver nanoparticles from ajuga bracteosa for biomedical applications. Mater. Res. Express, 2020, 7(7), 075404.
[http://dx.doi.org/10.1088/2053-1591/aba5d0]
[21]
Martínez-Gutierrez, F.; Thi, E.P.; Silverman, J.M.; de Oliveira, C.C.; Svensson, S.L.; Hoek, A.V.; Sánchez, E.M.; Reiner, N.E.; Gaynor, E.C.; Pryzdial, E.L.G.; Conway, E.M.; Orrantia, E.; Ruiz, F.; Av-Gay, Y.; Bach, H. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine, 2012, 8(3), 328-336.
[http://dx.doi.org/10.1016/j.nano.2011.06.014]
[22]
Vidyarthi, S.; Samant, S. SDwindling status of Trillium govanianum Wall. ex D. Don- A case study from Kullu district of Himachal Pradesh. Indian J. Med. Plants Res., 2013, 7(8), 392-397.
[http://dx.doi.org/10.1016/j.nano.2011.06.014]
[23]
Uniyal, S. K.; Datta, A. Nagchhatri—a plant in peril. journal of biodiversity Management & Forestry, 2012, 01(01)
[http://dx.doi.org/10.4172/2327-4417.1000101]
[24]
Sharma, P.; Samant, S. Diversity, distribution and indigenous uses of medicinal plants in Parbati valley of Kullu district in himachal pradesh, northwestern himalaya. Asian j. adv. basic sci., 2014, 2(1), 77-98.
[25]
Sharma, S.; Malhotra, N.; Sood, H. Expression analysis of steroid pathway genes revealed positive correlation with diosgenin biosynthesis in Trillium govanianum. Acta Physiol. Plant., 2016, 38(11), 272.
[http://dx.doi.org/10.1007/s11738-016-2289-1]
[26]
Rani, S.; Rana, J.C.; Sharma, H. Ethnomedicinal plants of chamba district, himachal pradesh. Indian J. Med. Plants Res, 2013, 7(42), 3147-3157.
[http://dx.doi.org/10.5897/JMPR2013.5249]
[27]
Sagar, A.; Thakur, L.; Thakur, J. S. Studies on endophytes and antibacterial activity of trillium govanianum Wall. ex D. Don. Int. J. Bot. Stud., 2(1), 63-67.
[28]
Hafeez, K.; Andleeb, S.; Ghousa, T.; Mustafa, R.G.; Naseer, A.; Shafique, I.; Akhter, K. Phytochemical screening, alpha-glucosidase inhibition, antibacterial and antioxidant potential. Curr. Pharm. Biotechnol., 2017, 18(4), 336-342.
[http://dx.doi.org/10.2174/1389201018666170313095033]
[29]
Gulzar, N.; Saiqa, A.; Shaukat, A.; Sadia, N.; Tariq, I.; Muhammad, A.R.K.; Abida, R. Screening of antibacterial, anti-biofilm, cell proliferation inhibition, and synergistic effects of biogenic synthesized silver nanostructures using trillium govanianum with antibiotics. J. Chem. Soc. Pak., 2020, 42(1), 120-120.
[http://dx.doi.org/10.52568/000616/JCSP/42.01.2020]
[30]
Fatima, H.; Khan, K.; Zia, M.; Ur-Rehman, T.; Mirza, B.; Haq, I. Extraction optimization of medicinally important metabolites from Datura innoxia Mill.: an in vitro biological and phytochemical investigation. BMC Complement. Altern. Med., 2015, 15(1), 376.
[http://dx.doi.org/10.1186/s12906-015-0891-1]
[31]
Bibi, G.; Haq, U.I.; Ullah, N.; Mannan, A.; Mirza, B. Antitumor, cytotoxic and antioxidant potential of Aster thomsonii extracts. Afr. J. Pharm. Pharmacol., 2011, 5(2), 252-258.
[32]
Nazer, S.; Andleeb, S.; Ali, S.; Gulzar, N.; Raza, A.; Khan, H.; Akhtar, K.; Ahmed, N.M. Cytotoxicity, anti-diabetic, and hepato-protective potential of ajuga bracteosa-conjugated silver nanoparticles in balb/c mice. Curr. Pharm. Biotechnol., 2022, 23(3), 318-336.
[http://dx.doi.org/10.2174/1389201022666210421101837] [PMID: 33882804]
[33]
Beshir, K.; Shibeshi, W.; Ejigu, A.; Engidawork, E. In-vivo wound healing activity of 70% ethanol leaf extract of beciumgrandiflorum lam. (lamiaceae) in mice. Ethiopian Pharmaceutical Journal, 2017, 32(2), 117-130.
[http://dx.doi.org/10.4314/epj.v32i2.3]
[34]
Acute oral toxicity: OECD guideline for testing of chemicals 423 OECD.OECD, 2001.
[35]
OECD, Acute oral toxicity: Up and down procedure, Guideline for the Testing of Chemicals 425 OECD 2008, 1-2.
[36]
Sahadevan, R.; Sivakumar, P.; Karthika, P. Biosynthesis of silver nanoparticles from active compounds quacetin –3-O-B-D-galactopyranoside containing plant extract and its antifungal application. Asian J. Pharm. Clin. Res., 2013, 6, 76-79.
[37]
Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat., 2014, 6(1), 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44]
[38]
Iqbal, T.; Mukhtar, M.; Khan, M.A.; Khan, R.; Zaman, R.; Mahmood, H.; Zaka-ul-Islam, M. Atmospheric pressure microplasma assisted growth of silver nanosheets and their inhibitory action against bacteria of clinical interest. Mater. Res. Express, 2016, 3(12), 125019.
[http://dx.doi.org/10.1088/2053-1591/3/12/125019]
[39]
Kathiraven, T.; Sundaramanickam, A.; Shanmugam, N.; Balasubramanian, T. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl. Nanosci., 2015, 5(4), 499-504.
[http://dx.doi.org/10.1007/s13204-014-0341-2]
[40]
Ridtitid, W.; Sae-wong, C.; Reanmongkol, W.; Wongnawa, M. Antinociceptive activity of the methanolic extract of Kaempferia galanga Linn. in experimental animals. J. Ethnopharmacol., 2008, 118(2), 225-230.
[http://dx.doi.org/10.1016/j.jep.2008.04.002]
[41]
Vaghasiya, Y.K.; Shukla, V.J.; Chanda, S.V. Acute oral toxicity study of pluchea arguta boiss extract in mice. J. Pharmacol. Toxicol., 2011, 6(2), 113-123.
[http://dx.doi.org/10.3923/jpt.2011.113.123]
[42]
Saleem, U.; Ahmad, B.; Ahmad, M.; Erum, A.; Hussain, K.; Irfan Bukhari, N. Is folklore use of Euphorbia helioscopia devoid of toxic effects? Drug Chem. Toxicol., 2016, 39(2), 233-237.
[http://dx.doi.org/10.3109/01480545.2015.1092040]
[43]
Walum, E.; Nilsson, M.; Clemedson, C.; Ekwall, B. The meic program and its implications for the prediction of acute human systemic toxicity. Alternative methods in toxicol., 1995, 11, 275-282.
[44]
Sung, J.H.; Ji, J.H.; Park, J.D.; Yoon, J.U.; Kim, D.S.; Jeon, K.S.; Song, M.Y.; Jeong, J.; Han, B.S.; Han, J.H.; Chung, Y.H.; Chang, H.K.; Lee, J.H.; Cho, M.H.; Kelman, B.J.; Yu, I.J. Sub chronic inhalation toxicity of silver nanoparticles. Toxicol. Sci., 2009, 108(2), 452-461.
[http://dx.doi.org/10.1093/toxsci/kfn246]
[45]
Sung, J.H.; Ji, J.H.; Song, K.S.; Lee, J.H.; Choi, K.H.; Lee, S.H. Acute inhalation toxicity of silver nanoparticles. Toxicol. Ind. Health, 2011, 27(2), 149-154.
[http://dx.doi.org/10.1177/0748233710382540]
[46]
Witthawaskul, P.; Panthong, A.; Kanjanapothi, D.; Taesothikul, T.; Lertprasertsuke, N. Acute and subacute toxicities of the saponin mixture isolated from schefflera leucantha viguier. J. Ethnopharmacol., 2003, 89(1), 115-121.
[http://dx.doi.org/10.1016/S0378-8741(03)00273-3]
[47]
Kulthong, K.; Maniratanachote, R.; Kobayashi, Y.; Fukami, T.; Yokoi, T. Effects of silver nanoparticles on rat hepatic cytochrome P450 enzyme activity. Xenobiotica, 2012, 42(9), 854-862.
[http://dx.doi.org/10.3109/00498254.2012.670312]
[48]
Espinosa-Cristobal, L.F.; Martinez-Castañon, G.A.; Loyola-Rodriguez, J.P.; Patiño-Marin, N.; Reyes-Macías, J.F.; Vargas-Morales, J.M.; Ruiz, F. Toxicity, distribution, and accumulation of silver nanoparticles in wistar rats. J. Nanopart. Res., 2013, 15(6), 1702.
[http://dx.doi.org/10.1007/s11051-013-1702-6]
[49]
Iversen, P. O.; Nicolaysen, G. Water-for life. J. pract. med., 2003, 123(23), 3402-3405.
[PMID: 14713981]
[50]
Maneewattanapinyo, P.; Banlunara, W.; Thammacharoen, C.; Ekgasit, S.; Kaewamatawong, T. An evaluation of acute toxicity of colloidal silver nanoparticles. J. Vet. Med. Sci., 2011, 73(11), 1417-1423.
[http://dx.doi.org/10.1292/jvms.11-0038]
[51]
Ji, J.H.; Jung, J.H.; Kim, S.S.; Yoon, J.U.; Park, J.D.; Choi, B.S.; Chung, Y.H.; Kwon, I.H.; Jeong, J.; Han, B.S.; Shin, J.H.; Sung, J.H.; Song, K.S.; Yu, I.J. Twenty-eight-day inhalation toxicity study of silver nanoparticles in sprague-dawley-rats. Inhal. Toxicol., 2007, 19(10), 857-871.
[http://dx.doi.org/10.1080/08958370701432108]
[52]
Kim, Y.S.; Kim, J.S.; Cho, H.S.; Rha, D.S.; Kim, J.M.; Park, J.D.; Choi, B.S.; Lim, R.; Chang, H.K.; Chung, Y.H.; Kwon, I.H.; Jeong, J.; Han, B.S.; Yu, I.J. Twenty eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in sprague–dawley rats. Inhal. Toxicol., 2008, 20(6), 575-583.
[http://dx.doi.org/10.1080/08958370701874663]
[53]
Kim, Y.S.; Song, M.Y.; Park, J.D.; Song, K.S.; Ryu, H.R.; Chung, Y.H.; Chang, H.K.; Lee, J.H.; Oh, K.H.; Kelman, B.J.; Hwang, I.K.; Yu, I.J. Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol., 2010, 7(1), 20.
[http://dx.doi.org/10.1186/1743-8977-7-20]
[54]
Hadrup, N.; Loeschner, K.; Bergström, A.; Wilcks, A.; Gao, X.; Vogel, U.; Frandsen, H.L.; Larsen, E.H.; Lam, H.R.; Mortensen, A. Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Arch. Toxicol., 2012, 86(4), 543-551.
[http://dx.doi.org/10.1007/s00204-011-0759-1]
[55]
Yang, L.; Kuang, H.; Zhang, W.; Aguilar, Z.P.; Wei, H.; Xu, H. Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Sci. Rep., 2017, 7(1), 3303.
[http://dx.doi.org/10.1038/s41598-017-03015-1]
[56]
Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract., 2014, 103(2), 137-149.
[http://dx.doi.org/10.1016/j.diabres.2013.11.002]
[57]
Etxeberria, U.; de la Garza, A.L.; Campión, J.; Martínez, J.A.; Milagro, F.I. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin. Ther. Targets, 2012, 16(3), 269-297.
[http://dx.doi.org/10.1517/14728222.2012.664134]
[58]
Nickavar, B.; Abolhasani, L. Bioactivity-guided separation of an a-amylase inhibitor flavonoid from salvia virgata. Iran. J. Pharm. Res., 2013, 12, 57-61.
[PMID: 24250572]
[59]
Balan, K.; Qing, W.; Wang, Y.; Liu, X.; Palvannan, T.; Wang, Y.; Ma, F.; Zhang, Y. Antidiabetic activity of silver nanoparticles from green synthesis using lonicera japonica leaf extract. RSC Advances, 2016, 6(46), 40162-40168.
[http://dx.doi.org/10.1039/C5RA24391B]
[60]
Saratale, R.G.; Shin, H.S.; Kumar, G.; Benelli, G.; Kim, D.S.; Saratale, G.D. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 211-222.
[http://dx.doi.org/10.1080/21691401.2017.1337031]
[61]
Govindappa, M.; Hemashekhar, B.; Arthikala, M.K.; Ravishankar Rai, V.; Ramachandra, Y.L. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys., 2018, 9, 400-408.
[http://dx.doi.org/10.1016/j.rinp.2018.02.049]
[62]
Abideen, S.; Sankar, M.V. In-vitro screening of antidiabetic and antimicrobial activity against green synthesized AgNO3 using Seaweeds. J. Nanomed. Nanotechnol., 2015, 1(1), 2157-7439.
[http://dx.doi.org/10.4172/2157-7439.S6-001]
[63]
Rajaram, K.; Aiswarya, D.C.; Sureshkumar, P. Green synthesis of silver nanoparticle using Tephrosia tinctoria and its antidiabetic activity. Mater. Lett., 2015, 138, 251-254.
[http://dx.doi.org/10.1016/j.matlet.2014.10.017]
[64]
Senthilkumar, P.; Santhosh Kumar, D.S.R.; Sudhagar, B.; Vanthana, M.; Parveen, M.H.; Sarathkumar, S.; Thomas, J.C.; Mary, A.S.; Kannan, C. Seagrass-mediated silver nanoparticles synthesis by Enhalus acoroides and its α-glucosidase inhibitory activity from the Gulf of Mannar. J. Nanostructure Chem., 2016, 6(3), 275-280.
[http://dx.doi.org/10.1007/s40097-016-0200-7]
[65]
Ahmed, D.; Kumar, V.; Verma, A.; Gupta, P.S.; Kumar, H.; Dhingra, V.; Mishra, V.; Sharma, M. RETRACTED ARTICLE: Antidiabetic, renal/hepatic/pancreas/cardiac protective and antioxidant potential of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) on streptozotocin induced diabetic rats. BMC Complementary Medicine and Therapies, 2014, 14(1), 243-260.
[http://dx.doi.org/10.1186/1472-6882-14-243]
[66]
Negre-Salvayre, A.; Coatrieux, C.; Ingueneau, C.; Salvayre, R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br. J. Pharmacol., 2008, 153(1), 6-20.
[http://dx.doi.org/10.1038/sj.bjp.0707395]
[67]
Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem., 2019, 12(8), 3576-3600.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.002]
[68]
Nguyen, N.H.A.; Padil, V.V.T.; Slaveykova, V.I.; Černík, M.; Ševců, A. Green synthesis of metal and metal oxide nanoparticles and their effect on the unicellular alga chlamydomonas reinhardtii. Nanoscale Res. Lett., 2018, 13(1), 159.
[http://dx.doi.org/10.1186/s11671-018-2575-5]
[69]
Tashi, T.; Gupta, N.; Mbuya, V. Silver nanoparticles: Synthesis, mechanism of antimicrobial action, characterization, medical applications, and toxicity effects. J. Chem. Pharm. Res., 2016, 8(2), 526-537.
[70]
Omran, B.A.; Nassar, H.N.; Fatthallah, N.A.; Hamdy, A.; El-Shatoury, E.H.; El-Gendy, N.S. Waste upcycling of Citrus sinensis peels as a green route for the synthesis of silver nanoparticles. Energy Sources A Recovery Util. Environ. Effects, 2018, 40(2), 227-236.
[http://dx.doi.org/10.1080/15567036.2017.1410597]
[71]
Akindele, O.A.; Babatunde, A.; Chinedu, F.M.; Samuel, O.A.; Oluwasola, C.A.; Oluseyi, A.A. Rat model of food induced non-obese-type 2 diabetes mellitus: Comparative pathophysology and histopathology. Int. J. Physiol. Pathophysiol. Pharmacol., 2012, 4(1), 51-58.
[PMID: 22461957]
[72]
Jelodar, G.; Mohsen, M.; Shahram, S. Effect of walnut leaf, coriander and pomegranate on blood glucose and histopathology of pancreas of alloxan – induced diabetic rats. Afr. J. Tradit. Complement. Altern. Med., 2003, 3, 299-305.
[http://dx.doi.org/10.4314/ajtcam.v4i3.31223] [PMID: 20161893]
[73]
Grover, J.K.; Vats, V.; Rathi, S.S. Anti-hyperglycemic effect of Eugenia jambolana and Tinospora cordifolia in experimental diabetes and their effects on key metabolic enzymes involved in carbohydrate metabolism. J. Ethnopharmacol., 2000, 73(3), 461-470.
[http://dx.doi.org/10.1016/S0378-8741(00)00319-6]
[74]
So, O.; Ea, A.; Oa, A.; Da, A. Antidiabetic and haematological effect of aqueous extract of stem bark of Afzelia africana (Smith) on streptozotocin–induced diabetic Wistar rats. Asian Pac. J. Trop. Biomed., 2011, 1(5), 353-358.
[http://dx.doi.org/10.1016/S2221-1691(11)60079-8]
[75]
Sajeesh, T.; Arunachalam, K.; Parimelazhagan, T. Antioxidant and antipyretic studies on pothos scandens L. Asian Pac. J. Trop. Med., 2011, 4(11), 889-899.
[http://dx.doi.org/10.1016/S1995-7645(11)60214-9]
[76]
Salahuddin, M.; Jalalpure, S.S. Antidiabetic activity of aqueous fruit extract of cucumis trigonus roxb. In streptozotocin-induced-diabetic rats. J. Ethnopharmacol., 2010, 127(2), 565-567.
[http://dx.doi.org/10.1016/j.jep.2009.10.018]
[77]
Poongothai, K.; Ponmurugan, P.; Ahmed, K.S.Z.; Kumar, B.S.; Sheriff, S.A. Antihyperglycemic and antioxidant effects of Solanum xanthocarpum leaves (field grown & in vitro raised) extracts on alloxan induced diabetic rats. Asian Pac. J. Trop. Med., 2011, 4(10), 778-785.
[http://dx.doi.org/10.1016/S1995-7645(11)60193-4]
[78]
Aslam, H.; Khan, A.; Rehman, N.; Ali, F.; Nadeem, H.; Shah, S.M. Anti-hyperglycemic activity of Heliotropium strigosum (Boraginaecae) whole plant extract in alloxan-induced diabetic mice. Trop. J. Pharm. Res., 2017, 16(10), 2425-2430.
[http://dx.doi.org/10.4314/tjpr.v16i10.16]
[79]
Mohammed, A.; Adelaiye, A.B.; Bakari, A.G.; Mabrouk, M.A. Anti-diabetic and some haematological effects of ethylacetate and n-butanol fractions of ganoderma lucidum aqueous extract in alloxan - induced diabetic wistar rats. Int. J. Med. Sci., 2009, 1(12), 530-535.
[80]
Edet, E.E.; Akpanabiat, M.I.; Uboh, F.E.; Edet, T.E.; Eno, A.E.; Itam, E.H.; Umoh, I.B. Gongronema latifolium crude leaf extract reverses alterations in hematological indices and weight loss in diabetic rats. J. of Pharmacol. and Toxicol., 2011, 6(2), 174-181.
[http://dx.doi.org/10.3923/jpt.2011.174.181]
[81]
Adeneye, A.A.; Agbaje, E.O. Pharmacological evaluation of oral hypoglycemic and antidiabetic effects of fresh leaves ethanol extract of morinda lucida benth. in normal and alloxan-induced diabetic Rats. Afr. J. Biomed. Res., 2008, 11, 65-71.
[82]
Suchantabud, A.; Talubmook, C.; Chomko, S.; Narkkong, N. Some hematological values and ultrastructure of blood cells in Piper sarmentosum Roxb. and Tinospora crispa Miers ex Hook. F & Thoms treated diabetic rats. Microscopy Society of Thailand, 2008, 22, 65-70.
[83]
Kotharia, R.; Bokariya, P. A comparative study of hematological parameters in type 1 diabetes mellitus patients and healthy young adolescents. Int. J. Biol. Med. Res., 2012, 3(4), 2429-2432.
[84]
Mohammed, R.K.; Ibrahim, S.; Atawodi, S.E.; Eze, E.D.; Suleiman, J.B.; Malgwi, I.S. Anti-diabetic and haematological effects of n-butanol fraction of Alchornea cordifolia leaf extract in streptozotocininduced diabetic wistar rats. Pak. J. Biol. Sci., 2013, 2(3), 45-53.
[http://dx.doi.org/10.13140/RG.2.2.35936.17921]
[85]
Mahmoud, A.M.; Ahmed, O.M.; Ashour, M.B.; Abdel-Moneim, A. Upregulation of PPARγ mediates the antidiabetic effects of flavonoids in high fat diet fed-streptozocin induced type 2 diabetic rats. Int. J. Bioassays, 2013, 2(5), 756-761.
[86]
Taniguchi, A.; Fukushima, M.; Seino, Y.; Sakai, M.; Yoshii, S.; Nagasaka, S.; Yamauchi, I.; Okumura, T.; Nin, K.; Tokuyama, K.; Yamadori, N.; Ogura, M.; Kuroe, A.; Nakai, Y. Platelet count is independently associated with insulin resistance in non-obese Japanese type 2 diabetic patients. Metabolism, 2003, 52(10), 1246-1249.
[http://dx.doi.org/10.1016/S0026-0495(03)00099-4]
[87]
Shanmugasundaram, R.; Kalpana Devi, V.; Tresina Soris, P.; Maruthupandian, A.; Mohan, V.R. Antidiabetic, antihyperlipidaemic and antioxidant activity of Senna auriculata (L.) roxb. leaves in alloxan induced diabetic rats. Int. J. Pharm. Tech. Res., 2011, 3, 747-756.
[88]
Sellamuthu, P.S.; Muniappan, B.P.; Perumal, S.M.; Kandasamy, M. Antihyperglycemic effect of mangiferin in streptozotocin induced diabetic rats. J. Health Sci., 2009, 55(2), 206-214.
[http://dx.doi.org/10.1248/jhs.55.206]
[89]
Daisy, P.; Eliza, J.; Ignacimuthu, S. Influence of Costus speciosus (Koen.) sm. rhizome extracts on biochemical parameters in streptozotocin induced diabetic rats. J. Health Sci., 2008, 54(6), 675-681.
[http://dx.doi.org/10.1248/jhs.54.675]
[90]
Sangian, H.; Faramarzi, H.; Yazdinezhad, A.; Mousavi, S.J.; Zamani, Z.; Noubarani, M.; Ramazani, A. Antiplasmodial activity of ethanolic extracts of some selected medicinal plants from the northwest of Iran. Parasitol. Res., 2013, 112(11), 3697-3701.
[http://dx.doi.org/10.1007/s00436-013-3555-4]
[91]
Siddiqui, R.; Alam, M.M.; Amin, M.R.; Daula, A.F.M.S.U.; Hossain, M.M. Screening of antimicrobial potential and brine shrimp lethality bioassay of the whole plant extract of Spilanthes paniculata Wall. ex DC. Stamford j. microbiol., 2015, 3(1), 1-5.
[http://dx.doi.org/10.3329/sjm.v3i1.22743]
[92]
Fouche, G.; Cragg, G.M.; Pillay, P.; Kolesnikova, N.; Maharaj, V.J.; Senabe, J. In vitro anticancer screening of South African plants. J. Ethnopharmacol., 2008, 119(3), 455-461.
[http://dx.doi.org/10.1016/j.jep.2008.07.005]
[93]
Asharani, P.V.; Lian, Wu Y.; Gong, Z.; Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 2008, 19(25), 255102.
[http://dx.doi.org/10.1088/0957-4484/19/25/255102]
[94]
Schönichen, A.; Webb, B.A.; Jacobson, M.P.; Barber, D.L. Considering protonation as a posttranslational modification regulating protein structure and function. Annu. Rev. Biophys., 2013, 42(1), 289-314.
[http://dx.doi.org/10.1146/annurev-biophys-050511-102349]
[95]
Grahame Hardie, D. AMP-activated protein kinase: A key regulator of energy balance with many roles in human disease. J. Intern. Med., 2014, 276(6), 543-559.
[http://dx.doi.org/10.1111/joim.12268]
[96]
Zhang, J.; Salminen, A.; Yang, X.; Luo, Y.; Wu, Q.; White, M.; Greenhaw, J.; Ren, L.; Bryant, M.; Salminen, W.; Papoian, T.; Mattes, W.; Shi, Q. Effects of 31 FDA approved small-molecule kinase inhibitors on isolated rat liver mitochondria. Arch. Toxicol., 2017, 91(8), 2921-2938.
[http://dx.doi.org/10.1007/s00204-016-1918-1]
[97]
Maqbool, M.; Mobashir, M.; Hoda, N. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer’s disease. Eur. J. Med. Chem., 2016, 107, 63-81.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.018]
[98]
Li, R.; Hayward, S.D. Potential of protein kinase inhibitors for treating herpesvirus-associated disease. Trends Microbiol., 2013, 21(6), 286-295.
[http://dx.doi.org/10.1016/j.tim.2013.03.005]
[99]
Ernst, L.; Zieglowski, L.; Schulz, M.; Moss, M.; Meyer, M.; Weiskirchen, R.; Palme, R.; Hamann, M.; Talbot, S.R.; Tolba, R.H. Severity assessment in mice subjected to carbon tetrachloride. Sci. Rep., 2020, 10(1), 15790.
[http://dx.doi.org/10.1038/s41598-020-72801-1]
[100]
Ullah, H.; Khan, A.; Baig, M.W.; Ullah, N.; Ahmed, N.; Tipu, M.K.; Ali, H.; Khan, S. Poncirin attenuates CCL4-induced liver injury through inhibition of oxidative stress and inflammatory cytokines in mice. BMC Complementary Med. and Ther., 2020, 20(1), 115.
[http://dx.doi.org/10.1186/s12906-020-02906-7]
[101]
Sule, O.; Abdu, A.; Kiridi, K. Effect of carica papaya (L) leaves on haematological parameters in Ccl4-induced wistar albino rats. Br. J. Med. Med. Res., 2016, 16(3), 1-6.
[http://dx.doi.org/10.9734/BJMMR/2016/13686]
[102]
M.A., Salman M.; Randa; Rahman, A. Patho-physiological studies on the reverse effect of curcumin (curcuma longa, zingiberaceae) and ursofalk (ursodeoxycholic acid) against the toxicity of carbon tetrachloride on albino rats. J. Liver, 2016, 5(3), 3.
[http://dx.doi.org/10.4172/2167-0889.1000200]
[103]
Saba, A.B.; Oyagbemi, A.A.; Azeez, O.I. Amelioration of carbon tetrachloride-induced hepatotoxicity and haemotoxicity by aqueous leaf extract of Cnidoscolus aconitifolius in rats. Niger. J. Physiol. Sci., 2010, 25(2), 139-147.
[104]
Amer, M.A. missiry, EL; EL-nabi, A. A. R. The role of Ficus carica leaf extract in modulation of the experimentally induced hepatotoxic damage in male rats. Int. J. of Adv. Res., 2015, 3(12), 572-585.
[105]
Patrick-Iwuanyanwu, K.C.; Wegwu, M.O.; Ayalogu, E.O. Prevention of CCl4- induced liver damage by ginger, garlic and vitamin E. Pak. J. Biol. Sci., 2007, 10, 617-662.
[http://dx.doi.org/10.3923/pjbs.2007.617.621]
[106]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108]
[107]
Machado, R.; Pironi, A.; Alves, R.; Dragalzew, A.; Dalberto, I.; Chorilli, M. Recent advances in the use of metallic nanoparticles with antitumoral action-review. Curr. Med. Chem., 2019, 26(12), 2108-2146.
[108]
Antony, J.J.; Sithika, M.A.A.; Joseph, T.A.; Suriyakalaa, U.; Sankarganesh, A.; Siva, D.; Kalaiselvi, S.; Achiraman, S. In vivo antitumor activity of biosynthesized silver nanoparticles using Ficus religiosa as a nanofactory in DAL induced mice model. Colloids Surf. B Biointerfaces, 2013, 108(108), 185-190.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.041]
[109]
Arockia John Paul, J.; Karunai Selvi, B.; Karmegam, N. Biosynthesis of silver nanoparticles from Premna serratifolia L. leaf and its anticancer activity in CCl4-induced hepato-cancerous Swiss albino mice. Appl. Nanosci., 2015, 5(8), 937-944.
[http://dx.doi.org/10.1007/s13204-014-0397-z]
[110]
Bhuvaneswari, R.; Chidambaranathan, N.; Jegatheesan, K. Hepatoprotective effect of Embilica officinalis and its silver nanoparticles against CCl4 induced hepatotoxicity in wistar albino rats. Dig. J. Nanomater. Biostruct., 2014, 9(1), 223-235.
[111]
Hassen, M.T.; Ahmed, N.J. Therapeutic effect of silver nanoparticles against diethyl nitrosamin and carbon tettrachloride-induced hepatocellular carcinoma in rats. Int. J. Pharm. Pharm. Sci., 2020, 12(9)
[http://dx.doi.org/10.22159/ijpps.2020v12i9.38813]
[112]
Niraimathi, K.L.; Sudha, V.; Lavanya, R.; Brindha, P. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf. B Biointerfaces, 2013, 102, 288-291.
[http://dx.doi.org/10.1016/j.colsurfb.2012.08.041]
[113]
Udhayaraj, S.; Jacob, J.A.; Subramanian, S.; Durairaj, S.; Sukirtha, R.; Kamalakkannan, S.; Pichiah, P.B.T.; Achiraman, S. Hepatocurative activity of bio-synthesized silver nanoparticles fabricated using andrographis paniculata. Colloids Surf. B Biointerfaces, 2013, 2013(102), 189-194.
[http://dx.doi.org/10.1016/j.colsurfb.2012.06.039] [PMID: 23018020]
[114]
Gurunathan, S.; Raman, J.; Malek, S.N.A.; John, P.A.; Vikineswary, S. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: A potential cytotoxic. Int. J. Nanomedicine, 2013, 8, 4399-4413.
[http://dx.doi.org/10.2147/IJN.S51881] [PMID: 24265551]
[115]
Fawzia, Abdulaziz Alshu Studying the effect of silver nanoparticles synthesized by Ulva fasciata aqueous extract against liver toxicity induced by CCl4in rats. J. Nat. Sci. Med, 2020, 3(3), 182-188.
[http://dx.doi.org/10.4103/JNSM.JNSM_2_20]
[116]
Salim, A.A.; Bidin, N.; Ghoshal, S.K. Growth and characterization of spherical cinnamon nanoparticles: Evaluation of antibacterial efficacy. Lebensm. Wiss. Technol., 2018, 90, 346-353.
[http://dx.doi.org/10.1016/j.lwt.2017.12.047]
[117]
Tousson, E.; Alm-Eldeen, A.; El-Moghazy, M. p53 and Bcl-2expression in response to boldenone induced liver cells injury. Toxicol. Ind. Health, 2011, 27(8), 711-718.
[http://dx.doi.org/10.1177/0748233710395350]
[118]
Nadaroglu, H.; Gungor, A.A.; Ince, S.; Babagil, A. Green synthesis and characterisation of platinum nanoparticles using quail egg yolk. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 172, 43-47.
[http://dx.doi.org/10.1016/j.saa.2016.05.023]
[119]
Lee, J.H.; Jang, E.J.; Seo, H.L.; Ku, S.K.; Lee, J.R.; Shin, S.S.; Park, S-D.; Kim, S.C.; Kim, Y.W. Sauchinone attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway. Chem. Biol. Interact., 2014, 224, 58-67.
[http://dx.doi.org/10.1016/j.cbi.2014.10.005]
[120]
Eshaghi, M.; Zare, S.; Banihabib, N.; Nejati, V.; Farokhi, F.; Mikaili, P. Cardioprotective effect of Cornus mas fruit extract against carbon tetrachloride induced-cardiotoxicity in albino rats. JBASR, 2012, 2(11), 11106-11114.
[121]
Nagaich, U.; Gulati, N.; Chauhan, S. Antioxidant and antibacterial potential of silver nanoparticles: biogenic synthesis utilizing apple extract. J. Pharm., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/7141523]
[122]
Keshari, A.K.; Srivastava, R.; Singh, P.; Yadav, V.B.; Nath, G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. AIM, 2018, 11(1), 37-44.
[http://dx.doi.org/10.1016/j.jaim.2017.11.003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy