Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Review Article

Inclusion Complex of Ionic Liquids with Cyclodextrins: A Review

Author(s): Vikas Waghulde, Chandrakant Sarode, Mangesh Potangale, Tejpal Girase, Kiran Patil and Gaurav Gupta*

Volume 1, 2023

Published on: 26 September, 2023

Article ID: e210823220106 Pages: 17

DOI: 10.2174/2210299X01666230821142719

Price: $

conference banner
Abstract

Ionic liquids (ILs) are presently one of the most interesting research fields gaining vast attention from researchers from multidisciplinary research areas worldwide. Without any ambiguity, ionic liquids or molten salts, neoteric materials have become a significant and crucial area under study for the exploration of the science of molecules. The data in the literature emphasises that a plethora of papers have been published on ionic liquids each year. These neoteric materials have been the subject of several major reviews and books, dealing with different explorations and aspects of their behaviours. The supramolecular material called cyclodextrin (CDs), and their ability to form inclusion complexes with ILs due to their hydrophobic and hydrophilic properties, is well known to date. This review offers a vision of the chemical behaviours of ionic liquids complexes using cyclodextrins. The review takes care of different sections related to i) introduction of cyclodextrin, ii) history of ionic liquids, iii) history of inclusion compounds, iv) general methods for the formation of inclusion complexes, and v) the inclusion complex formation of ionic liquids with cyclodextrins.

[1]
a) Sophie, F.; Gregorio, C.; Eric, L. Cyclodextrin Fundamentals, Reactivity and Analysis; Springer: Switzerland, 2018. ;
b) Teixeira-Dias; Fritz, E.K. Synthesis and characterization of the inclusion compound of a ethyltrioxorehinium (VII) adduct of 4-ferrocenylpyridine with β-cyclodextrin. J. Organomet. Chem., 2002, 656, 281-287.
[http://dx.doi.org/10.1016/S0022-328X(02)01635-2];
c) Gupta, G.R.; Shaikh, V.R.; Patil, K.J. Essential oil complexes studied by thermal gravimetry analysis - differential scanning calorimetry. Curr. Phys. Chem., 2023.
[2]
a) de Sousa, F.B.; Oliveira, M.F.; Lula, I.S.; Sansiviero, M.T.C.; Cortés, M.E.; Sinisterra, R.D. Study of inclusion compound in solution involving tetracycline and β-cyclodextrin by FTIR-ATR. Vib. Spectrosc., 2008, 46(1), 57-62.
[http://dx.doi.org/10.1016/j.vibspec.2007.10.002];
b) Gupta, G.R.; Patil, P.D.; Shaikh, V.R.; Kolhapurkar, R.R.; Dagade, D.H.; Patil, K.J. Analytical estimation of water, specific heat capacity and thermal profiles associated with enzymatic model compound β-cyclodextrin. Curr. Sci., 2018, 114(12), 2525-2529.
[http://dx.doi.org/10.18520/cs/v114/i12/2525-2529]
[3]
Gheorghe, B.; Irina, K.; Sorin, I.F.; Ioan, B. Inclusion compound of vitamin B6 in β-CD. Physicochemical and structural investigations. J. Phy. ConferenceSeries, 2009, 182, 012003.
[4]
Lahiani-Skiba, M.; Bounoure, F.; Shawky-Tous, S.; Arnaud, P.; Skiba, M. Optimization of entrapment of metronidazole in amphiphilic β-cyclodextrin nanospheres. J. Pharm. Biomed. Anal., 2006, 41(3), 1017-1021.
[http://dx.doi.org/10.1016/j.jpba.2006.01.021] [PMID: 16497467]
[5]
Susana, S.B.; Isabel, S.G.; Herdtweck, E.; Jose, J.C. Teixeira-Dias, Solid state inclusion compound of S-ibuprofen in β-cyclodextrin: Structure and characterization. New J. Chem., 2003, 27, 597-601.
[6]
Hui, B.Y.; Mohamad Zain, N.N.; Mohamad, S.; Osman, H.; Raoov, M. Magneticpoly(β-cyclodextrin-ionic liquid) nanocomposites for micro-solid phase extraction of selected polycyclic aromatic hydrocarbons in rice samples prior to GC-FID analysis. Food Chem., 2018, 25, 322-332.
[7]
Cao, S.; Chen, J.; Lai, G.; Xi, C.; Li, X.; Zhang, L.; Wang, G.; Chen, Z. A high efficient adsorbent for plant growth regulators based on ionic liquid and β-cyclodextrin functionalized magnetic graphene oxide. Talanta, 2019, 194, 14-25.
[http://dx.doi.org/10.1016/j.talanta.2018.10.013] [PMID: 30609513]
[8]
Greno, M.; Salgado, A.; Castro-Puyana, M.; Marina, M.L. Nuclear magnetic resonance to study the interactions acting in the enantiomeric separation of homocysteine by capillary electrophoresis with a dual system of γ- cyclodextrin and the chiral ionic liquid etcholntf2. Electrophoresis, 2018.
[9]
Sadjadi, S.; Koohestani, F. Functionalized chitosan polymerized with cyclodextrin decorated ionic liquid: Metal free and biocompatible catalyst for chemical transformations. Int. J. Biol. Macromol., 2020, 147, 399-407.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.089] [PMID: 31926926]
[10]
Zhu, X.; Chen, C.; Chen, J.; Xu, G.; Du, Y.; Ma, X.; Sun, X.; Feng, Z.; Huang, Z. Synthesis and application of tetramethylammonium-carboxymethyllated-β-cyclodextrin:A novel ionic liquid in capillary electrophoresis enantioseparation. J. Pharm. Biomed. Anal., 2019, 180, 113030.
[http://dx.doi.org/10.1016/j.jpba.2019.113030] [PMID: 31851909]
[11]
Rasdi, F.L.M.; Rahim, N.Y.; Hasim, F.W.; Prabu, S.; Jumbri, K.; Manan, N.S.A.; Mohamad, S. Influence of degree of substitution on the host-guest inclusion complex between ionic liquid substituted β-cyclodextrins with 2,4-dichlorophenol: An electrochemical, NMR and molecular docking studies. J. Mol. Liq., 2019, 292, 111334.
[http://dx.doi.org/10.1016/j.molliq.2019.111334]
[12]
Zhang, Y.; Li, Q.; Gao, Q.; Li, J.; Shen, Y.; Zhu, X. An aspirated in-syringe device fixed with ionic liquid and β-cyclodextrin-functionalized CNTs/TiO 2 for rapid adsorption and visible-light-induced photocatalytic activity. New J. Chem., 2019, 43(24), 9345-9353.
[http://dx.doi.org/10.1039/C9NJ01602C]
[13]
Silva, M.C.E.; Galhano, C.I.C.; Moreira Da Silva, A.M.G. A New sprout of potato tuber based on carvone/β-cyclodextrin inclusion compound. J. Incl. Phenom. Macrocycl. Chem., 2007, 57, 127-124.
[14]
Topala, C.; Ionita, G.; Meltzer, V.; Pincu, E.; Draghici, C. Inclusion complexes of steroidal heterocyclic compounds with cyclodextrins in aqueous solution and in the solid state. ARKIVOC, 2002, 2002(2), 87-96.
[http://dx.doi.org/10.3998/ark.5550190.0003.210]
[15]
Zhang, L. Response surface Optimization of the preparation of Baicalin-β-cyclodextrin Inclusion compound. Lat. Am. J. Pharm., 2013, 32(8), 1146-1151.
[16]
Davy, H. Chemical and philosophical, chiefly concerning nitrous oxide, or dephlogisticated nitrous air, and its respiration; Biggs and Cottle, 1800.
[17]
Reichardt, C. Solvents and solvent effect: An introduction. Org. Process Res. Dev., 2007, 11(1), 105-113.
[http://dx.doi.org/10.1021/op0680082]
[18]
a) Sundermeyer, W. Fused salts and their use as reaction media. Angew. Chem. Int. Ed. Engl., 1965, 4(3), 222-238.
[http://dx.doi.org/10.1002/anie.196502221];
b) Chandrakant, S.; Sachin, Y.; Ganesh, C.; Govinda, W.; Gaurav, G. Development of the Room Temperature Protocol based on Room Temperature Ionic Liquids and Surfactant Ionic Liquids for the Synthesis of Derivatives of 2-amino-thiazoles and Thermo-physical Analysis of the Synthesized Derivatives using TGA-DSC. Curr. Phys. Chem., 2021, 11(1), 27-34.;
c) Sarode, C.H.; Gupta, G.R.; Chaudhari, G.R.; Waghulde, G.P.; Waghulde, G.P. Investigations related to the suitability of imidazolium based room temperature ionic liquids and pyridinium based sponge ionic liquids towards the synthesis of 2-aminothiazole compounds as reaction medium and catalyst. Curr. Green Chem., 2018, 5(3), 191-197.
[http://dx.doi.org/10.2174/2213346105666181001111019]
[19]
Wang, Y.L.; Li, B.; Sarman, S.; Mocci, F.; Lu, Z.Y.; Yuan, J.; Laaksonen, A.; Fayer, M.D. Microstructural and dynamical heterogeneities in ionic liquids. Chem. Rev., 2020, 120(13), 5798-5877.
[http://dx.doi.org/10.1021/acs.chemrev.9b00693] [PMID: 32292036]
[20]
Torimoto, T.; Tsuda, T.; Okazaki, K.; Kuwabata, S. New frontiers in materials science opened by ionic liquids. Adv. Mater., 2010, 22(11), 1196-1221.
[http://dx.doi.org/10.1002/adma.200902184] [PMID: 20437507]
[21]
Armand, M.; Endres, F.; MacFarlane, D.R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater., 2009, 8(8), 621-629.
[http://dx.doi.org/10.1038/nmat2448] [PMID: 19629083]
[22]
a) Pedro, L. Sustainable Catalysis in Ionic Liquids; Taylor & Francis Group, LLC: Boca Raton, 2019. ;
b) Liang-Nian, H.; Pietro, T.; Conrad Zhang, Z. Commercial Applications of Ionic Liquids; Springer: Switzerland AG, 2020. ;
c) Martin, H.G.P. Nanocatalysis in Ionic Liquids; Wiley-VCH Verlag GmbH & Co.: Germany, 2017. ;
d) Rasmus, F.; Anders, R.; Marco, H. Supported Ionic Liquids, Fundamentals and Applications; Wiley-VCH Verlag GmbH & Co: Germany, 2014.
[23]
a) Werner, S.; Haumann, M.; Wasserscheid, P. Ionic liquids in chemical engineering. Annu. Rev. Chem. Biomol. Eng., 2010, 1(1), 203-230.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100915] [PMID: 22432579];
b) Shirsath, N.B.; Gupta, G.R.; Gite, V.V.; Meshram, J.S. Studies of thermally assisted interactions of polysulphide polymer with ionic liquids. Bull. Mater. Sci., 2018, 41(2), 63-69.
[http://dx.doi.org/10.1007/s12034-018-1562-x]
[24]
Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A Gen., 2010, 373(1-2), 1-56.
[http://dx.doi.org/10.1016/j.apcata.2009.10.008]
[25]
Welton, T. Room-Temperature ionic liquids. Solvent for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[26]
Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5), 3508-3576.
[http://dx.doi.org/10.1021/cr1003248] [PMID: 21469639]
[27]
Earle, M.J.; Seddon, K.R. Ionic liquids. Green solvents for the future. Pure Appl. Chem., 2000, 72(7), 1391-1398.
[http://dx.doi.org/10.1351/pac200072071391]
[28]
Welton, T.; Wasserscheid, P. Ionic Liquids in Synthesis; Wiley-VCH, 2007.
[29]
Buzzeo, M.C.; Evans, R.G.; Compton, R.G. Non-haloaluminate room-temperature ionic liquids in electrochemistry--a review. ChemPhysChem, 2004, 5(8), 1106-1120.
[http://dx.doi.org/10.1002/cphc.200301017] [PMID: 15446732]
[30]
Galiński, M.; Lewandowski, A.; Stępniak, I. Ionic liquids as electrolytes. Electrochim. Acta, 2006, 51(26), 5567-5580.
[http://dx.doi.org/10.1016/j.electacta.2006.03.016]
[31]
Smarsly, B.; Kaper, H. Liquid inorganic-organic nanocomposites: Novel electrolytes and ferrofluids. Angew. Chem. Int. Ed., 2005, 44(25), 3809-3811.
[http://dx.doi.org/10.1002/anie.200500690] [PMID: 15887210]
[32]
Bhatt, A.I.; Bond, A.M.; MacFarlane, D.R.; Zhang, J.; Scott, J.L.; Strauss, C.R.; Iotov, P.I.; Kalcheva, S.V. A critical assessment of electrochemistry in a distillable room temperature ionic liquid, DIMCARB. Green Chem., 2006, 8(2), 161-171.
[http://dx.doi.org/10.1039/B512263E]
[33]
Dupont, J.; de Souza, R.F.; Suarez, P.A.Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev., 2002, 102(10), 3667-3692.
[http://dx.doi.org/10.1021/cr010338r] [PMID: 12371898]
[34]
Pârvulescu, V.I.; Hardacre, C. Catalysis in ionic liquids. Chem. Rev., 2007, 107(6), 2615-2665.
[http://dx.doi.org/10.1021/cr050948h] [PMID: 17518502]
[35]
Welton, T. Ionic liquids in catalysis. Coord. Chem. Rev., 2004, 248(21-24), 2459-2477.
[http://dx.doi.org/10.1016/j.ccr.2004.04.015]
[36]
Wasserscheid, P.; Keim, W. Ionic Liquids-New “Solutions” for Transition Metal Catalysis. Angew. Chem. Int. Ed., 2000, 39(21), 3772-3789.
[http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5] [PMID: 11091453]
[37]
Pandey, S. Analytical applications of room-temperature ionic liquids: A review of recent efforts. Anal. Chim. Acta, 2006, 556(1), 38-45.
[http://dx.doi.org/10.1016/j.aca.2005.06.038] [PMID: 17723329]
[38]
Wei, D.; Ivaska, A. Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta, 2008, 607(2), 126-135.
[http://dx.doi.org/10.1016/j.aca.2007.12.011] [PMID: 18190800]
[39]
Buzzeo, M.C.; Hardacre, C.; Compton, R.G. Use of room temperature ionic liquids in gas sensor design. Anal. Chem., 2004, 76(15), 4583-4588.
[http://dx.doi.org/10.1021/ac040042w] [PMID: 15283606]
[40]
Ohno, H. Electrochemical aspects of ionic liquids; Wiley-Interscience: Hoboken, 2005.
[http://dx.doi.org/10.1002/0471762512]
[41]
Endres, F.; Abbott, A.P.; MacFarlane, D.R. Electrodeposition from ionic liquids; Wiley-VCH Verlag GmbH & Co.: Weinheim, 2008.
[42]
Torriero, A.A.J. Electrochemistry in ionic liquids; Springer International Publishing: Switzerland, 2015.
[43]
Hapiot, P.; Lagrost, C. Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev., 2008, 108(7), 2238-2264.
[http://dx.doi.org/10.1021/cr0680686] [PMID: 18564878]
[44]
Freudenmann, D.; Wolf, S.; Wolff, M.; Feldmann, C. Ionic liquids: New perspectives for inorganic synthesis? Angew. Chem. Int. Ed., 2011, 50(47), 11050-11060.
[http://dx.doi.org/10.1002/anie.201100904] [PMID: 21990270]
[45]
Zhen, W.; Li, D.; Guo, W. Applications of Ionic Liquids (ILs) in synthesis of inorganic Nanomaterials. In: Materials science fluids “Ionic Liquidscurrent state of-the-art; INTECH, 2015.
[46]
Antonietti, M.; Kuang, D.; Smarsly, B.; Zhou, Y. Ionische flüssigkeiten für die synthese funktioneller nanopartikel und anderer anorganischer nanostrukturen. Angew. Chem., 2004, 116(38), 5096-5100.
[http://dx.doi.org/10.1002/ange.200460091]
[47]
Zhou, Y.; Antonietti, M. Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. J. Am. Chem. Soc., 2003, 125(49), 14960-14961.
[http://dx.doi.org/10.1021/ja0380998] [PMID: 14653710]
[48]
Wasserscheid, P.; Welton, T. Ionic liquids for the synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem., 2003, 116(38), 5096-5100.
[49]
Dupont, J.; Itoh, T.; Lozano, P.; Malhotra, S.V. Environmentally friendly syntheses using ionic liquids. In: Cann MC (series ed) Sustainability: Contributions through science and technology; CRC Press, Taylor & Francis Group: Boca Raton, London, 2015.
[50]
Muthyala, M.; Velisetti, K.; Parang, K.; Kumar, A. Advances in functionalized ionic liquids as reagents and scavengers in organic synthesis. Curr. Org. Chem., 2014, 18(19), 2530-2554.
[http://dx.doi.org/10.2174/138527281819141028114639]
[51]
Kuchenbuch, A.; Giernoth, R. Ionic liquids beyond simple solvents: Glimpses at the state of the art in organic chemistry. ChemistryOpen, 2015, 4(6), 677-681.
[http://dx.doi.org/10.1002/open.201500113] [PMID: 27308192]
[52]
a) Tomar, P.A.; Yadav, S.M.; Gupta, G.R. The thermal gravimetric studies for polymer samples of polyvinyl chloride (PVC) and polyvinyl alcohol (PVA) obtained by treatment with ionic liquid [bmim]Br. Polym. Bull., 2014, 71(6), 1349-1358.
[http://dx.doi.org/10.1007/s00289-014-1126-1];
b) Kubisa, P. Application of ionic liquids as solvents for polymerization processes. Prog. Polym. Sci., 2004, 29(1), 3-12.
[http://dx.doi.org/10.1016/j.progpolymsci.2003.10.002];
c) Unprecedented exploration of ionic liquids as an additive which astonishes thermal stability of the PVC formulations. Bull. Mater. Sci., 2019, 42(5), 203-214.
[http://dx.doi.org/10.1007/s12034-019-1866-5]
[53]
Brazel, C.S.; Rogers, R.D. Ionic liquids in polymer systems: Solvents, additives, and novel applications. ACS Symp. Ser., 2005, 913, 913.
[http://dx.doi.org/10.1021/bk-2005-0913]
[54]
Kubisa, P. Ionic liquids as solvents for polymerization processes—Progress and challenges. Prog. Polym. Sci., 2009, 34(12), 1333-1347.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.09.001]
[55]
Strehmel, V. IonischeFlussigkeiten in der Polymersynthese. Chemieingenieurtechnik, 2011, 83(9), 1443-1453.
[http://dx.doi.org/10.1002/cite.201100058]
[56]
Duchet-Rumeau, M.; Gerard, J.F.; Galli, G. Macromol Symp Spec Issue Polym Ionic Liquids. 2014, 342.
[57]
Lozano, P.; De Diego, T.; Iborra, J.L. Biocatalytic processes using ionic liquids and supercritical carbon dioxide. In: Biocatalysis; Wiley VCH, 2010.
[58]
Habulin, M.; Primozic, M.; Knez, Z. Application of ionic liquids in biocatalysis. In: Ionic liquids: Applications and perspectives; Kokorin, A., Ed.; InTech, 2011.
[http://dx.doi.org/10.5772/15354]
[59]
Tavares, A.P.M.; Rodriguez, O.; Macedo, E.A. New generations of ionic liquids applied to enzymatic biocatalysis. In: Ionic liquids-new aspects for the future; Kadowaka, J., Ed.; InTech, 2013.
[60]
Stepinski, D.C.; Jensen, M.P.; Dzielawa, J.A.; Dietz, M.L. Synergistic effects in the facilitated transfer of metal ions into room-temperature ionic liquids. Green Chem., 2005, 7(3), 151-158.
[http://dx.doi.org/10.1039/b414756a]
[61]
Berthod, A.; Ruiz-Angel, M.J.; Huguet, S. Nonmolecular solvents in separation methods: Dual nature of room temperature ionic liquids. Anal. Chem., 2005, 77(13), 4071-4080.
[http://dx.doi.org/10.1021/ac050304+] [PMID: 15987112]
[62]
Anastas, P.T.; Wasserscheid, P.; Stark, A. Handbook of green chemistry. In: Ionic Liquids; Wiley-VCH Verlag GmbH & Co, 2010.
[http://dx.doi.org/10.1002/9783527628698]
[63]
Rodríguez, H. Green chemistry and sustainable technology, ionic liquids for better separation processes; Springer: Berlin, 2016.
[http://dx.doi.org/10.1007/978-3-662-48520-0]
[64]
Sun, X.; Luo, H.; Dai, S. Ionic liquids-based extraction: A promising strategy for the advanced nuclear fuel cycle. Chem. Rev., 2012, 112(4), 2100-2128.
[http://dx.doi.org/10.1021/cr200193x] [PMID: 22136437]
[65]
Rogers, R.D.; Seddon, K.R. Ionic liquids as green solvents, progress and prospects. In: ACS Symposium Series 856; Washington, DC, 2003.
[66]
Rogers, R.D.; Seddon, K.R. Ionic liquids as green solvents, progress and prospects. In: ACS Symposium Series 818; Washington, DC, 2002.
[67]
Seddon, K. Definition of ionic liquids given at the Bunsen Discussion meeting in Clausthal-Zellerfeld, 2008.
[68]
Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37(1), 123-150.
[http://dx.doi.org/10.1039/B006677J] [PMID: 18197338]
[69]
Bonhôte, P.; Dias, A.P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem., 1996, 35(5), 1168-1178.
[http://dx.doi.org/10.1021/ic951325x] [PMID: 11666305]
[70]
Koch, V.R.; Nanjundiah, C.; Appetecchi, G.B.; Scrosati, B. The interfacial stability of Li with two new solvent-free ionic liquids: 1, 2-dimethyl-3-propylimidazolium imide and methide. J. Electrochem. Soc., 1995, 142(7), L116-L118.
[http://dx.doi.org/10.1149/1.2044332]
[71]
Mandai, T.; Yoshida, K.; Ueno, K.; Dokko, K.; Watanabe, M. Criteria for solvate ionic liquids. Phys. Chem. Chem. Phys., 2014, 16(19), 8761-8772.
[http://dx.doi.org/10.1039/c4cp00461b] [PMID: 24676567]
[72]
Tsuzuki, S.; Watanabe, M. Chemistry and application of glymetype lithium solvate ionic liquids. Electrochemistry, 2014, 82(12), 1079-1084.
[73]
a) Davies, E. D. Cyclodextrins in Pharmacy; Springer Science and Business Media Dordrecht Originally published by Kluwer Academic Publishers, 1994. ;
b) Zheng-Yu, J. Cyclodextrin Chemistry, Preparation and Application; World Scientific Publishing Co. Pte. Ltd: USA, 2013.
[74]
Abderrazzak, D. Cyclodextrin Materials Photochemistry, Photophysics and Photobiology; Elsevier B.V.: U.K., 2006.
[75]
Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gándara, J. A review on the use of cyclodextrins in foods. Food Hydrocoll., 2009, 23(7), 1631-1640.
[http://dx.doi.org/10.1016/j.foodhyd.2009.01.001]
[76]
Sophie, F.; Grégorio, C.; Eric, L. Cyclodextrin Applications in Medicine, Food, Environment and Liquid Crystals; Springer: Switzerland, 2018.
[77]
Bernhard, V.K.J. Novel macromolecular architectures via a combination of cyclodextrin host/guest complexation and RAFT polymerization. Doctoral Thesis accepted by Karlsruhe Institute of Technology, Germany. Springer International Publishing Switzerland., 2014.
[78]
Hedges, A.R.; Shieh, W.J.; Sikorski, C.T. Use of cyclodextrins for encapsulation in the use and treatment of food products. In: Encapsulation and controlled release of food ingredients; Risch, S.J.; Reineccius, G.A., Eds.; Washington., 1995; pp. 60-73.
[http://dx.doi.org/10.1021/bk-1995-0590.ch006]
[79]
Marques, H.M.C. Structure and properties of cyclodextrins. Inclusion complex formation. Rev. Port. Farm., 1994, 44, 77-84.
[80]
Daletos, G.; Papaioannou, G.; Miguel, G.; Marques, H.C. Proceedings of the 14th International Cyclodextrin Symposium; Ueda, H., Ed.; The Society of Cyclodextrins: Japan, 2008, pp. 291-295.
[81]
Pereva, S.; Sarafska, T.; Bogdanova, S.; Spassov, Т. Efficiency of “cyclodextrin-ibuprofen” inclusion complex formation. J. Drug Deliv. Sci. Technol., 2016, 35, 34-39.
[http://dx.doi.org/10.1016/j.jddst.2016.04.006]
[82]
Tao, F.; Hill, L.E.; Peng, Y.; Gomes, C.L. Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. Lebensm. Wiss. Technol., 2014, 59(1), 247-255.
[http://dx.doi.org/10.1016/j.lwt.2014.05.037]
[83]
Ünlüsayin, M.; Hădărugă, N.G.; Rusu, G.; Gruia, A.T.; Păunescu, V.; Hădărugă, D.I. Nano-encapsulation competitiveness of omega-3 fatty acids and correlations of thermal analysis and Karl Fischer water titration for European anchovy (Engraulis encrasicolus L.) oil/β-cyclodextrin complexes. Lebensm. Wiss. Technol., 2016, 68, 135-144.
[http://dx.doi.org/10.1016/j.lwt.2015.12.017]
[84]
Saenger, W. Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. Engl., 1980, 19(5), 344-362.
[http://dx.doi.org/10.1002/anie.198003441]
[85]
Hirayama, F.; Uekama, K. Methods of investigating and preparing inclusion compounds. In: Cyclodextrins and their Industrial Uses. Les editions de Sante; Duchene, D., Ed.; Paris, 1987; pp. 131-172.
[86]
Duchěne, D.; Wouessidjewe, D. Pharmaceutical uses of cyclodextrins and derivatives. Drug Dev. Ind. Pharm., 1990, 16(17), 2487-2499.
[http://dx.doi.org/10.3109/03639049009058543]
[87]
Mennini, N.; Maestrelli, F.; Cirri, M.; Mura, P. Analysis of physicochemical properties of ternary systems of oxaprozin with randomly methylated-ß-cyclodextrin and l -arginine aimed to improve the drug solubility. J. Pharm. Biomed. Anal., 2016, 129, 350-358.
[http://dx.doi.org/10.1016/j.jpba.2016.07.024] [PMID: 27454086]
[88]
Cao, H.; Jiang, Y.; Zhang, H.; Nie, K.; Lei, M.; Deng, L.; Wang, F.; Tan, T. Enhancement of methanol resistance of Yarrowia lipolytica lipase 2 using β-cyclodextrin as an additive: Insights from experiments and molecular dynamics simulation. Enzyme Microb. Technol., 2017, 96, 157-162.
[http://dx.doi.org/10.1016/j.enzmictec.2016.10.007] [PMID: 27871377]
[89]
Nakai, Y.; Yamamoto, K.; Terada, K.; Watanabe, D. New methods for preparing cyclodextrin inclusion compounds. I. Heating in a sealed container. Chem. Pharm. Bull., 1987, 35(11), 4609-4615.
[http://dx.doi.org/10.1248/cpb.35.4609]
[90]
Junco, S.; Casimiro, T.; Ribeiro, N.; Cabral Marques, H.; Marques, H.M.C. A comparative study of naproxen–beta cyclodextrin complexes prepared by conventional methods and using supercritical carbon dioxide. J. Incl. Phenom. Macrocycl. Chem., 2002, 44(1/4), 117-121.
[http://dx.doi.org/10.1023/A:1023022008337]
[91]
Jones, S.P.; Grant, D.J.W.; Hadgraft, J.; Parr, G.D. Cyclodextrins in the pharmaceutical sciences. Part I: Preparation, structure and properties of cyclodextrins and cyclodextrin inclusion compounds. Acta Pharm. Tech, 1984, 30, 213-223.
[92]
Hill, L.E.; Gomes, C.; Taylor, T.M. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. Lebensm. Wiss. Technol., 2013, 51(1), 86-93.
[http://dx.doi.org/10.1016/j.lwt.2012.11.011]
[93]
Kfoury, M.; Auezova, L.; Ruellan, S.; Greige-Gerges, H.; Fourmentin, S. Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohydr. Polym., 2015, 118, 156-164.
[http://dx.doi.org/10.1016/j.carbpol.2014.10.073] [PMID: 25542121]
[94]
Rakmai, J.; Cheirsilp, B.; Mejuto, J.C.; Torrado-Agrasar, A.; Simal-Gandara, J. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-betacyclodextrin. Food Hydrocoll., 2017, 65, 157-164.
[95]
Raza, A.; Sun, H.; Bano, S.; Zhao, Y.; Xu, X.; Tang, J. Preparation, characterization, and in vitro anti-inflammatory evaluation of novel water soluble kamebakaurin/hydroxypropyl-β-cyclodextrin inclusion complex. J. Mol. Struct., 2017, 1130, 319-326.
[http://dx.doi.org/10.1016/j.molstruc.2016.10.059]
[96]
Michalska, P.; Wojnicz, A.; Ruiz-Nuño, A.; Abril, S.; Buendia, I.; León, R. Inclusion complex of ITH12674 with 2-hydroxypropyl-β-cyclodextrin: Preparation, physical characterization and pharmacological effect. Carbohydr. Polym., 2017, 157, 94-104.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.072] [PMID: 27988012]
[97]
Aiassa, V.; Zoppi, A.; Becerra, M.C.; Albesa, I.; Longhi, M.R. Enhanced inhibition of bacterial biofilm formation and reduced leukocyte toxicity by chloramphenicol:β-cyclodextrin:N-acetylcysteine complex. Carbohydr. Polym., 2016, 152, 672-678.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.013] [PMID: 27516318]
[98]
Almeida, R.; Marques, H.C. Pulmonary administration of beclomethasone: A-cyclodextrin complex. In: Proceedings of the 12th International Cyclodextrin Symposium; Duchene, D., Ed.; APGI Publishing: Paris, 2004; pp. 889-892.
[99]
Marreto, R.N.; Almeida, E.E.C.V.; Alves, P.B.; Niculau, E.S.; Nunes, R.S.; Matos, C.R.S.; Araújo, A.A.S. Thermal analysis and gas chromatography coupled mass spectrometry analyses of hydroxypropyl-β-cyclodextrin inclusion complex containing Lippia gracilis essential oil. Thermochim. Acta, 2008, 475(1-2), 53-58.
[http://dx.doi.org/10.1016/j.tca.2008.06.015]
[100]
Ahmad, M.; Qureshi, S.; Maqsood, S.; Gani, A.; Masoodi, F.A. Micro-encapsulation of folic acid using horse chestnut starch and ß-cyclodextrin: Microcapsule characterization, release behavior & antioxidant potential during GI tract conditions. Food Hydrocoll., 66, 154-160.
[101]
Datta, B.; Barman, S.; Roy, M.N. Self assembly inclusion of ionic liquid into hollow cylinder oligosaccharides. J. Mol. Liq., 2016, 214, 264-269.
[http://dx.doi.org/10.1016/j.molliq.2015.12.072]
[102]
Roy, A.; Saha, S.; Datta, B.; Roy, M.N. Insertion behavior of imidazolium and pyrrolidinium based ionic liquids into α and β-cyclodextrins: Mechanism and factors leading to host–guest inclusion complexes. RSC Advances, 2016, 6(102), 100016-100027.
[http://dx.doi.org/10.1039/C6RA19684E]
[103]
Roy, M.N.; Roy, M.C.; Roy, K. Investigation of an inclusion complex formed by ionic liquid and β-cyclodextrin through hydrophilic and hydrophobic interactions. RSC Advances, 2015, 5(70), 56717-56723.
[http://dx.doi.org/10.1039/C5RA09823H]
[104]
Roy, A.; Roy, M.N. Cage to cage study of ionic liquid and cyclic oligosaccharides to form inclusion complexes. RSC Advances, 2017, 7(65), 40803-40812.
[http://dx.doi.org/10.1039/C7RA08397A]
[105]
Sarkar, K.; Barman, B.K.; Nath Roy, M. Study to explore inclusion complexes of α- and β-cyclodextrin molecules with 3-octyl-1-methylimidazolium bromide with the manifestation of hydrophobic and hydrophilic interactions. Chem. Phys. Lett., 2018, 707, 13-21.
[http://dx.doi.org/10.1016/j.cplett.2018.07.019]
[106]
Barman, B.K.; Barman, S.; Roy, M.N. Inclusion complexation between tetrabutylphosphonium methanesulfonate as guest and α- and β-cyclodextrin as hosts investigated by physicochemical methodology. J. Mol. Liq., 2018, 264, 80-87.
[http://dx.doi.org/10.1016/j.molliq.2018.04.148]
[107]
Gao, Y-A.; Li, Z-H.; Du, J-M.; Han, B-X.; Li, G-Z.; Hou, W-G.; Shen, D. Preparation and cauterization of inclusion complexes of β-cyclodextrin with ionic liquid. Chemistry, 2005, 11, 5875-5880.
[http://dx.doi.org/10.1002/chem.200500120] [PMID: 16038004]
[108]
Gao, Y.; Zhao, X.; Dong, B.; Zheng, L.; Li, N.; Zhang, S. Inclusion complexes of β-cyclodextrin with ionic liquid surfactants. J. Phys. Chem. B, 2006, 110(17), 8576-8581.
[http://dx.doi.org/10.1021/jp057478f] [PMID: 16640409]
[109]
Li, Na.; Liu, J.; Zhao, X.; Gao, Y.; Zheng, L.; Zhang, J.; Yu, Li. Complex formation of ionic liquid surfactant and β-cyclodextrin. Colloids Surf. Physicochem. Eng. Aspects., 2007, 292((2-3)), 196-201.
[110]
Amajjahe, S.; Ritter, H. Anion complexations of Vinylimidazolium salt and its influence on polymerization. Macromolecules, 2008, 41(3), 716-718.
[http://dx.doi.org/10.1021/ma702271p]
[111]
Zheng, Y.; Xuan, X.; Wang, J.; Fan, M. The enhanced dissolution of β-cyclodextrin in some hydrophilic ionic liquids. J. Phys. Chem. A, 2010, 114(11), 3926-3931.
[http://dx.doi.org/10.1021/jp907333v] [PMID: 20235607]
[112]
Shen, J.; Song, L.; Xin, X.; Wu, D.; Wang, S.; Chen, R.; Xu, G. Self-assembled supramolecular hydrogel induced by β-cyclodextrin and ionic liquid-type imidazolium gemini surfactant. Colloids Surf. A Physicochem. Eng. Asp., 2016, 509, 512-520.
[http://dx.doi.org/10.1016/j.colsurfa.2016.09.064]
[113]
Banjare, M.K.; Behera, K.; Satnami, M.L.; Pandey, S.; Ghosh, K.K. Supra-molecular inclusion complexation of ionic liquid 1-butyl-3-methylimidazolium octylsulphate with α- and β-cyclodextrins. Chem. Phys. Lett., 2017, 689, 30-40.
[http://dx.doi.org/10.1016/j.cplett.2017.09.033]
[114]
Atahar, A.; Mollah, M.Y.A.; Rahman, M.M.; Susan, M.A.B.H. Inclusion complexes of cyclodextrins with hydrophobic ionic liquids. J. Incl. Phenom. Macrocycl. Chem., 2018, 92(3-4), 301-309.
[http://dx.doi.org/10.1007/s10847-018-0848-3]
[115]
He, Y.; Chen, Q.; Xu, C.; Zhang, J.; Shen, X. Interaction between ionic liquids and β-cyclodextrin: A discussion of association pattern. J. Phys. Chem. B, 2009, 113(1), 231-238.
[http://dx.doi.org/10.1021/jp808540m] [PMID: 19072707]
[116]
He, Y.; Shen, X. Interaction between β-cyclodextrin and ionic liquids in aqueous solutions investigated by a competitive method using a substituted 3H-indole probe. J. Photo. Chem. And Photo. Bio. Chem, 2008, 197, 2-3, 253-259.
[117]
Zhang, J.; Shen, X. Multiple equilibria interaction pattern between the ionic liquids C(n)mimPF6 and β-cyclodextrin in aqueous solutions. J. Phys. Chem. B, 2011, 115(41), 11852-11861.
[http://dx.doi.org/10.1021/jp206418m] [PMID: 21899312]
[118]
Banjare, M.K.; Banjare, R.K.; Behera, K.; Pandey, S.; Mundeja, P.; Ghosh, K.K. Inclusion complexation of novel synthesis amino acid based ionic liquids with β-Cyclodextrin. J. Mol. Liq., 2018, 299, 112204.
[http://dx.doi.org/10.1016/j.molliq.2019.112204]
[119]
Banjare, M.K.; Behera, K.; Banjare, R.K.; Pandey, S.; Ghosh, K.K. Multi-spectroscopic investigation on the inclusion complexation of α- cyclodextrin with long chain ionic liquid. Carbohydr Res., 2020, 491, 107982.
[120]
Suzuki, M.; Kurahashi, N.; Takeoka, Y.; Rikukawa, M.; Yoshizawa-Fujita, M. Effect of β-cyclodextrin on physicochemical properties of an ionic liquid electrolyte composed of N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)amide. Front Chem., 2019, 7, 90.
[http://dx.doi.org/10.3389/fchem.2019.00090] [PMID: 30842943]
[121]
Agudelo, Á.J.P.; Coelho, Y.L.; Ferreira, G.M.D.; Ferreira, G.M.D.; Hudson, E.A.; dos Santos Pires, A.C.; da Silva, L.H.M. Solvophobic effect of 1-alkyl-3-methylimidazolium chloride on the thermodynamic of complexation between β-cyclodextrin and dodecylpyridinium cation. Colloids Surf. A Physicochem. Eng. Asp., 2019, 582, 123850.
[http://dx.doi.org/10.1016/j.colsurfa.2019.123850]
[122]
Zeweldi, H.G.; Bendoy, A.P.; Park, M.J.; Shon, H.K.; Kim, H.S.; Johnson, E.M.; Kim, H.; Chung, W.J.; Nisola, G.M. Supramolecular host-guest complex of methylated β-cyclodextrin with polymerized ionic liquid ([vbim]TFSI) as highly effective and energy-efficient thermo-regenerable draw solutes in forward osmosis. Chem. Eng. J., 2021, 411, 128520.
[http://dx.doi.org/10.1016/j.cej.2021.128520]
[123]
Mohamad, S.; Surikumaran, H.; Raoov, M.; Marimuthu, T.; Chandrasekaram, K.; Subramaniam, P. Conventional study on novel dicationic ionic liquid inclusion with β-cyclodextrin. Int. J. Mol. Sci., 2011, 12(9), 6329-6345.
[http://dx.doi.org/10.3390/ijms12096329] [PMID: 22016662]
[124]
Hu, M.; Yang, Y.; Gu, X.; Hu, Y.; Huang, J.; Wang, C. One-pot synthesis of photoluminescent carbon nanodots by carbonization of cyclodextrin and their application in Ag + detection. RSC Advances, 2014, 4(107), 62446-62452.
[http://dx.doi.org/10.1039/C4RA11491D]
[125]
Huang, Y.; Gao, A.; Song, X.; Shu, D.; Yi, F.; Zhong, J.; Zeng, R.; Zhao, S.; Meng, T. Supramolecule-inspired fabrication of carbon nanoparticles in situ anchored graphene nanosheets material for high-performance supercapacitors. ACS Appl. Mater. Interfaces, 2016, 8(40), 26775-26782.
[http://dx.doi.org/10.1021/acsami.6b08511] [PMID: 27654113]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy