Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Co- and Triaxial Electrospinning for Stem Cell-based Bone Regeneration

Author(s): Özlem Altundag, Mustafa Özgür Öteyaka and Betül Çelebi-Saltik*

Volume 19, Issue 6, 2024

Published on: 20 September, 2023

Page: [865 - 878] Pages: 14

DOI: 10.2174/1574888X18666230818094216

Price: $65

conference banner
Abstract

Bone tissue is composed of organic minerals and cells. It has the capacity to heal for certain minor damages, but when the bone defects surpass the critical threshold, they need fixing. Bone regeneration through natural and synthetic biodegradable materials requires various steps, such as manufacturing methods and materials selection. A successful biodegradable bone graft should have a high surface area/ volume ratio, strength, and a biocompatible, porous structure capable of promoting cell adhesion, proliferation, and differentiation. Considering these requirements, the electrospinning technique is promising for creating functional nano-sized scaffolds. The multi-axial methods, such as coaxial and triaxial electrospinning, are the most popular techniques to produce double or tri-layered scaffolds, respectively. Recently, stem cell culture on scaffolds and the application of osteogenic differentiation protocols on these scaffolds have opened new possibilities in the field of biomaterials research. This review discusses an overview of the progress in coaxial and triaxial technology through biodegradable composite bone materials. The review also carefully elaborates the osteogenic differentiation using stem cells and their performance with nano-sized scaffolds.

Graphical Abstract

[1]
Ogueri KS, Laurencin CT. Nanofiber technology for regenerative engineering. ACS Nano 2020; 14(8): 9347-63.
[http://dx.doi.org/10.1021/acsnano.0c03981] [PMID: 32678581]
[2]
Berton F, Porrelli D, Di Lenarda R, Turco G. A critical review on the production of electrospun nanofibres for guided bone regeneration in oral surgery. Nanomaterials 2019; 10(1): 16.
[http://dx.doi.org/10.3390/nano10010016] [PMID: 31861582]
[3]
Ding H, Cheng Y, Niu X, Hu Y. Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering. J Biomater Sci Polym Ed 2021; 32(4): 536-61.
[http://dx.doi.org/10.1080/09205063.2020.1849922] [PMID: 33175667]
[4]
Ribeiro N, Sousa A, Cunha-Reis C, et al. New prospects in skin regeneration and repair using nanophased hydroxyapatite embedded in collagen nanofibers. Nanomedicine 2021; 33: 102353.
[http://dx.doi.org/10.1016/j.nano.2020.102353] [PMID: 33421622]
[5]
Phakatkar AH, Shirdar MR, Qi M, et al. Novel PMMA bone cement nanocomposites containing magnesium phosphate nanosheets and hydroxyapatite nanofibers. Mater Sci Eng C 2020; 109: 110497.
[http://dx.doi.org/10.1016/j.msec.2019.110497] [PMID: 32228962]
[6]
Tao F, Cheng Y, Shi X, et al. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr Polym 2020; 230: 115658.
[http://dx.doi.org/10.1016/j.carbpol.2019.115658] [PMID: 31887899]
[7]
Chen S, John JV, McCarthy A, Xie J. New forms of electrospun nanofiber materials for biomedical applications. J Mater Chem B Mater Biol Med 2020; 8(17): 3733-46.
[http://dx.doi.org/10.1039/D0TB00271B] [PMID: 32211735]
[8]
Hashemi J, Barati G, Enderami SE, Safdari M. Osteogenic differentiation of induced pluripotent stem cells on electrospun nanofibers: A review of literature. Mater Today Commun 2020; 25: 101561.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101561]
[9]
Stojanovska E, Canbay E, Pampal ES, et al. A review on non-electro nanofibre spinning techniques. RSC Advances 2016; 6(87): 83783-801.
[http://dx.doi.org/10.1039/C6RA16986D]
[10]
Mirjalili M, Zohoori S. Review for application of electrospinning and electrospun nanofibers technology in textile industry. J Nanostructure Chem 2016; 6(3): 207-13.
[http://dx.doi.org/10.1007/s40097-016-0189-y]
[11]
Song J, Li Z, Wu H. Blowspinning: A new choice for nanofibers. ACS Appl Mater Interfaces 2020; 12(30): 33447-64.
[http://dx.doi.org/10.1021/acsami.0c05740] [PMID: 32628010]
[12]
Zhiming Z, Boya C, Zilong L, Jiawei W, Yaoshuai D. Spinning solution flow model in the nozzle and experimental study of nanofibers fabrication via high speed centrifugal spinning. Polymer 2020; 205: 122794.
[http://dx.doi.org/10.1016/j.polymer.2020.122794]
[13]
Elahi MF, Lu W. Core-shell fibers for biomedical applications-a review. J Bioeng Biomed Sci 2013; 3(1)
[http://dx.doi.org/10.4172/2155-9538.1000121]
[14]
Guerrero-Pérez MO. Research progress on the applications of electrospun nanofibers in catalysis. Catalysts 2021; 12(1): 9.
[http://dx.doi.org/10.3390/catal12010009]
[15]
Ferraris S, Spriano S, Scalia AC, et al. Topographical and biomechanical guidance of electrospun fibers for biomedical applications. Polymers 2020; 12(12): 2896.
[http://dx.doi.org/10.3390/polym12122896] [PMID: 33287236]
[16]
Gupta P, Wilkes GL. Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach. Polymer 2003; 44(20): 6353-9.
[http://dx.doi.org/10.1016/S0032-3861(03)00616-5]
[17]
Kyzas GZ, Mitropoulos AC. Novel Nanomaterials - Synthesis and Applications. London: IntechOpen 2018.
[http://dx.doi.org/10.5772/intechopen.70149]
[18]
Li D, McCann JT, Xia Y. Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces. Small 2005; 1(1): 83-6.
[http://dx.doi.org/10.1002/smll.200400056] [PMID: 17193354]
[19]
Abazari MF, Soleimanifar F, Faskhodi AM, et al. Improved osteogenic differentiation of human induced pluripotent stem cells cultured on polyvinylidene fluoride/collagen/platelet‐rich plasma composite nanofibers. J Cell Physiol 2020; 235(2): 1155-64.
[http://dx.doi.org/10.1002/jcp.29029] [PMID: 31250436]
[20]
Wang D, Jang J, Kim K, Kim J, Park CB. “Tree to Bone”: Lignin/polycaprolactone nanofibers for hydroxyapatite biomineralization. Biomacromolecules 2019; 20(7): 2684-93.
[http://dx.doi.org/10.1021/acs.biomac.9b00451] [PMID: 31117353]
[21]
Bhattarai D, Aguilar L, Park C, Kim C. A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes 2018; 8(3): 62.
[http://dx.doi.org/10.3390/membranes8030062] [PMID: 30110968]
[22]
Barhoum A, Pal K, Rahier H, Uludag H, Kim IS, Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl Mater Today 2019; 17: 1-35.
[http://dx.doi.org/10.1016/j.apmt.2019.06.015]
[23]
Ding Z, Cheng W, Mia MS, Lu Q. Silk biomaterials for bone tissue engineering. Macromol Biosci 2021; 21(8): 2100153.
[http://dx.doi.org/10.1002/mabi.202100153] [PMID: 34117836]
[24]
Mbese Z, Alven S, Aderibigbe BA. Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers 2021; 13(24): 4368.
[http://dx.doi.org/10.3390/polym13244368] [PMID: 34960918]
[25]
Dibazar ZE, Mohammadpour M, Samadian H, et al. Bacterial polyglucuronic acid/alginate/carbon nanofibers hydrogel nanocomposite as a potential scaffold for bone tissue engineering. Materials 2022; 15(7): 2494.
[http://dx.doi.org/10.3390/ma15072494] [PMID: 35407826]
[26]
Hejazi F, Ebrahimi V, Asgary M, et al. Improved healing of critical-size femoral defect in osteoporosis rat models using 3D elastin/polycaprolactone/nHA scaffold in combination with mesenchymal stem cells. J Mater Sci Mater Med 2021; 32(3): 27.
[http://dx.doi.org/10.1007/s10856-021-06495-w] [PMID: 33683483]
[27]
Raj Preeth D, Saravanan S, Shairam M, et al. Bioactive Zinc(II) complex incorporated PCL/gelatin electrospun nanofiber enhanced bone tissue regeneration. Eur J Pharm Sci 2021; 160: 105768.
[http://dx.doi.org/10.1016/j.ejps.2021.105768] [PMID: 33607242]
[28]
Siddiqui N, Kishori B, Rao S, et al. Electropsun polycaprolactone fibres in bone tissue engineering: A review. Mol Biotechnol 2021; 63(5): 363-88.
[http://dx.doi.org/10.1007/s12033-021-00311-0] [PMID: 33689142]
[29]
Orafa Z, Irani S, Zamanian A, Bakhshi H, Nikukar H, Ghalandari B. Coating of laponite on PLA nanofibrous for bone tissue engineering application. Macromol Res 2021; 29(3): 191-8.
[http://dx.doi.org/10.1007/s13233-021-9028-1]
[30]
Cakmak S. Compressible polyglycolic acid-based nanofibrous matrices as a bone filler: fabrication, physicochemical characterisations, and biocompatibility evaluation. Mater Technol 2022; 37(1): 9-20.
[http://dx.doi.org/10.1080/10667857.2021.1959216]
[31]
Wang SF, Wu YC, Cheng YC, Hu WW. The development of polylactic acid/multi-wall carbon nanotubes/polyethylene glycol scaffolds for bone tissue regeneration application. Polymers 2021; 13(11): 1740.
[http://dx.doi.org/10.3390/polym13111740] [PMID: 34073347]
[32]
Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev 2019; 119(8): 5298-415.
[http://dx.doi.org/10.1021/acs.chemrev.8b00593] [PMID: 30916938]
[33]
SalehHudin HS, Mohamad EN, Mahadi WNL, Muhammad Afifi A. Multiple-jet electrospinning methods for nanofiber processing: A review. Mater Manuf Process 2018; 33(5): 479-98.
[http://dx.doi.org/10.1080/10426914.2017.1388523]
[34]
Jadbabaei S, Kolahdoozan M, Naeimi F, Ebadi-Dehaghani H. Preparation and characterization of sodium alginate–PVA polymeric scaffolds by electrospinning method for skin tissue engineering applications. RSC Adv 2021; 11(49): 30674-88.
[http://dx.doi.org/10.1039/D1RA04176B] [PMID: 35479869]
[35]
Omer S, Forgách L, Zelkó R, Sebe I. Scale-up of electrospinning: Market overview of products and devices for pharmaceutical and biomedical purposes. Pharmaceutics 2021; 13(2): 286.
[http://dx.doi.org/10.3390/pharmaceutics13020286] [PMID: 33671624]
[36]
Baghali M, Ziyadi H, Faridi-Majidi R. Fabrication and characterization of core–shell TiO2-containing nanofibers of PCL-zein by coaxial electrospinning method as an erythromycin drug carrier. Polym Bull 2022; 79(3): 1729-49.
[http://dx.doi.org/10.1007/s00289-021-03591-3]
[37]
Mukhiya T, Muthurasu A, Tiwari AP, et al. Integrating the essence of a metal–organic framework with electrospinning: A new approach for making a metal nanoparticle confined N-doped carbon nanotubes/porous carbon nanofibrous membrane for energy storage and conversion. ACS Appl Mater Interfaces 2021; 13(20): 23732-42.
[http://dx.doi.org/10.1021/acsami.1c04104] [PMID: 33977710]
[38]
Li X, Chen W, Qian Q, et al. Electrospinning‐based strategies for battery materials. Adv Energy Mater 2021; 11(2): 2000845.
[http://dx.doi.org/10.1002/aenm.202000845]
[39]
Zhu S, Nie L. Progress in fabrication of one-dimensional catalytic materials by electrospinning technology. J Ind Eng Chem 2021; 93: 28-56.
[http://dx.doi.org/10.1016/j.jiec.2020.09.016]
[40]
Lyu C, Zhao P, Xie J, et al. Electrospinning of nanofibrous membrane and its applications in air filtration: A review. Nanomaterials 2021; 11(6): 1501.
[http://dx.doi.org/10.3390/nano11061501] [PMID: 34204161]
[41]
Park K, Kang S, Park J, Hwang J. Fabrication of silver nanowire coated fibrous air filter medium via a two-step process of electrospinning and electrospray for anti-bioaerosol treatment. J Hazard Mater 2021; 411: 125043.
[http://dx.doi.org/10.1016/j.jhazmat.2021.125043] [PMID: 33485235]
[42]
Buivydiene D, Todea AM, Asbach C, Krugly E, Martuzevicius D, Kliucininkas L. Composite micro/nano fibrous air filter by simultaneous melt and solution electrospinning. J Aerosol Sci 2021; 154: 105754.
[http://dx.doi.org/10.1016/j.jaerosci.2021.105754]
[43]
Can-Herrera LA, Oliva AI, Dzul-Cervantes MAA, Pacheco-Salazar OF, Cervantes-Uc JM. Morphological and mechanical properties of electrospun polycaprolactone scaffolds: Effect of applied voltage. Polymers 2021; 13(4): 662.
[http://dx.doi.org/10.3390/polym13040662] [PMID: 33672211]
[44]
Ziyadi H, Baghali M, Bagherianfar M, Mehrali F, Faridi-Majidi R. An investigation of factors affecting the electrospinning of poly (vinyl alcohol)/kefiran composite nanofibers. Adv Compos Hybrid Mater 2021; 4(3): 768-79.
[http://dx.doi.org/10.1007/s42114-021-00230-3] [PMID: 33748671]
[45]
Abdullah MF, Andriyana A, Muhamad F, Ang BC. Effect of core-to-shell flowrate ratio on morphology, crystallinity, mechanical properties and wettability of poly(lactic acid) fibers prepared via modified coaxial electrospinning. Polymer 2021; 237: 124378.
[http://dx.doi.org/10.1016/j.polymer.2021.124378]
[46]
Oteyaka M, Ozel E, Yıldırım M. Experimental study on relationship of applied power and feeding rate on production of polyurethane nanofibre. Gazi Univ J Sci 2013; 26(4): 611-8.
[47]
Shin SH, Purevdorj O, Castano O, Planell JA, Kim HW. A short review: Recent advances in electrospinning for bone tissue regeneration. J Tissue Eng 2012; 3(1)
[http://dx.doi.org/10.1177/2041731412443530] [PMID: 22511995]
[48]
Nitti P, Gallo N, Natta L, et al. Influence of nanofiber orientation on morphological and mechanical properties of electrospun chitosan mats. J Healthc Eng 2018; 2018: 1-12.
[http://dx.doi.org/10.1155/2018/3651480] [PMID: 30538809]
[49]
Sofi HS, Akram T, Shabir N, Vasita R, Jadhav AH, Sheikh FA. Regenerated cellulose nanofibers from cellulose acetate: Incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications. Mater Sci Eng C 2021; 118: 111547.
[http://dx.doi.org/10.1016/j.msec.2020.111547] [PMID: 33255098]
[50]
Qin X. 3 - Coaxial electrospinning of nanofibers. In: Afshari M, Ed. Electrospun Nanofibers. Woodhead Publishing 2017; pp. 41-71.
[http://dx.doi.org/10.1016/B978-0-08-100907-9.00003-9]
[51]
Davani F, Alishahi M, Sabzi M, Khorram M, Arastehfar A, Zomorodian K. Dual drug delivery of vancomycin and imipenem/cilastatin by coaxial nanofibers for treatment of diabetic foot ulcer infections. Mater Sci Eng C 2021; 123: 111975.
[http://dx.doi.org/10.1016/j.msec.2021.111975] [PMID: 33812603]
[52]
Yang Y, Chang S, Bai Y, Du Y, Yu DG. Electrospun triaxial nanofibers with middle blank cellulose acetate layers for accurate dual-stage drug release. Carbohydr Polym 2020; 243: 116477.
[http://dx.doi.org/10.1016/j.carbpol.2020.116477] [PMID: 32532400]
[53]
Ghosal K, Augustine R, Zaszczynska A, et al. Novel drug delivery systems based on triaxial electrospinning based nanofibers. React Funct Polym 2021; 163: 104895.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2021.104895]
[54]
Cooley J. Apparatus for electrically dispersing fluids. Patent US692631A, 1902.
[55]
Badmus M, Jing L, Wang N. Hierarchically electrospun nanofibers and their applications: A review. Nano Mater Sci 2020; 3(3): 213-32.
[56]
Li H, Wang M. 18 - Electrospinning and nanofibrous structures for biomedical applications. In: Osaka A, Narayan R, Eds. Bioceramics. Elsevier 2021; pp. 401-36.
[http://dx.doi.org/10.1016/B978-0-08-102999-2.00018-1]
[57]
Wang N, Zhao Y. Coaxial electrospinning. In: Ding B, Wang X, Yu J, Eds. Electrospinning: Nanofabrication and Applications. William Andrew Publishing 2019; pp. 125-200.
[http://dx.doi.org/10.1016/B978-0-323-51270-1.00005-4]
[58]
Wang M, Yu D-G, Li X, Williams GR. The development and bio-applications of multifluid electrospinning. Materials Highlights 2020; 1(1-2): 1-13.
[http://dx.doi.org/10.2991/mathi.k.200521.001]
[59]
Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer 2008; 49(26): 5603-21.
[http://dx.doi.org/10.1016/j.polymer.2008.09.014]
[60]
Khajavi R, Abbasipour M. Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Sci Iran 2012; 19(6): 2029-34.
[http://dx.doi.org/10.1016/j.scient.2012.10.037]
[61]
Zhang Q, Li Y, Lin ZYW, et al. Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications. Drug Discov Today 2017; 22(9): 1351-66.
[http://dx.doi.org/10.1016/j.drudis.2017.05.007] [PMID: 28552498]
[62]
Mondal K, Ali MA, Srivastava S, Malhotra BD, Sharma A. Electrospun functional micro/nanochannels embedded in porous carbon electrodes for microfluidic biosensing. Sens Actuators B Chem 2016; 229: 82-91.
[http://dx.doi.org/10.1016/j.snb.2015.12.108]
[63]
Shi X, Zhou W, Ma D, et al. Electrospinning of nanofibers and their applications for energy devices. J Nanomater 2015; 2015: 1-20.
[http://dx.doi.org/10.1155/2015/140716]
[64]
Li L, Peng S, Lee JKY, Ji D, Srinivasan M, Ramakrishna S. Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 2017; 39: 111-39.
[http://dx.doi.org/10.1016/j.nanoen.2017.06.050]
[65]
Di J, Chen H, Wang X, et al. Fabrication of zeolite hollow fibers by coaxial electrospinning. Chem Mater 2008; 20(11): 3543-5.
[http://dx.doi.org/10.1021/cm8006809]
[66]
Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 2004; 4(5): 933-8.
[http://dx.doi.org/10.1021/nl049590f]
[67]
Zhan S, Chen D, Jiao X, Liu S. Facile fabrication of long α-Fe2O3, α-Fe and γ-Fe2O3 hollow fibers using sol–gel combined co-electrospinning technology. J Colloid Interface Sci 2007; 308(1): 265-70.
[http://dx.doi.org/10.1016/j.jcis.2006.12.026] [PMID: 17196607]
[68]
Cleeton C, Keirouz A, Chen X, Radacsi N. Electrospun nanofibers for drug delivery and biosensing. ACS Biomater Sci Eng 2019; 5(9): 4183-205.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00853] [PMID: 33417777]
[69]
Schreuder-Gibson HL, Gibson P, Tsai P. Cooperative charging effects of fibers from electrospinning of electrically dissimilar polymers. J Eng Fibers Fabr 2004.
[http://dx.doi.org/10.1177/1558925004os-1300406]
[70]
Baykara T, Taylan G. Coaxial electrospinning of PVA/Nigella seed oil nanofibers: Processing and morphological characterization. Mater Sci Eng B 2021; 265: 115012.
[http://dx.doi.org/10.1016/j.mseb.2020.115012]
[71]
Su S, Bedir T, Kalkandelen C, et al. Coaxial and emulsion electrospinning of extracted hyaluronic acid and keratin based nanofibers for wound healing applications. Eur Polym J 2021; 142: 110158.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110158]
[72]
Silva JC, Udangawa RN, Chen J, et al. Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Mater Sci Eng C 2020; 107: 110291.
[http://dx.doi.org/10.1016/j.msec.2019.110291] [PMID: 31761240]
[73]
Chen W, Wang C, Gao Y, et al. Incorporating chitin derived glucosamine sulfate into nanofibers via coaxial electrospinning for cartilage regeneration. Carbohydr Polym 2020; 229: 115544.
[http://dx.doi.org/10.1016/j.carbpol.2019.115544] [PMID: 31826435]
[74]
Alharbi HF, Luqman M, Khalil KA, et al. Fabrication of core-shell structured nanofibers of poly (lactic acid) and poly (vinyl alcohol) by coaxial electrospinning for tissue engineering. Eur Polym J 2018; 98: 483-91.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.11.052]
[75]
Sabra S, Ragab DM, Agwa MM, Rohani S. Recent advances in electrospun nanofibers for some biomedical applications. Eur J Pharm Sci 2020; 144: 105224.
[http://dx.doi.org/10.1016/j.ejps.2020.105224] [PMID: 31954183]
[76]
Yıldız A, Kara AA, Acartürk F. Peptide-protein based nanofibers in pharmaceutical and biomedical applications. Int J Biol Macromol 2020; 148: 1084-97.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.275] [PMID: 31917213]
[77]
Esmaeili A, Haseli M. Optimization, synthesis, and characterization of coaxial electrospun sodium carboxymethyl cellulose-graft-methyl acrylate/poly(ethylene oxide) nanofibers for potential drug-delivery applications. Carbohydr Polym 2017; 173: 645-53.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.037] [PMID: 28732909]
[78]
Sedghi R, Sayyari N, Shaabani A, Niknejad H, Tayebi T. Novel biocompatible zinc-curcumin loaded coaxial nanofibers for bone tissue engineering application. Polymer 2018; 142: 244-55.
[http://dx.doi.org/10.1016/j.polymer.2018.03.045]
[79]
Li F, Zhao Y, Song Y. Core-shell nanofibers: Nano channel and capsule by coaxial electrospinning. In: Kumar A, Ed. Nanofibers. IntechOpen 2010.
[http://dx.doi.org/10.5772/8166]
[80]
Nair LS, Laurencin CT. Nanofibers and nanoparticles for orthopaedic surgery applications. J Bone Joint Surg Am 2008; 90(S1): 128-31.
[http://dx.doi.org/10.2106/JBJS.G.01520] [PMID: 18292367]
[81]
Hu S, Chen H, Zhou X, et al. Thermally induced self-agglomeration 3D scaffolds with BMP-2-loaded core–shell fibers for enhanced osteogenic differentiation of rat adipose-derived stem cells. Int J Nanomedicine 2018; 13: 4145-55.
[http://dx.doi.org/10.2147/IJN.S167035] [PMID: 30046239]
[82]
Wang C, Wang J, Zeng L, et al. Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules 2019; 24(5): 834.
[http://dx.doi.org/10.3390/molecules24050834] [PMID: 30813599]
[83]
Ranjbar-Mohammadi M, Rabbani S, Bahrami SH, Joghataei MT, Moayer F. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mater Sci Eng C 2016; 69: 1183-91.
[http://dx.doi.org/10.1016/j.msec.2016.08.032] [PMID: 27612816]
[84]
He Z, Liu S, Li Z, Xu J, Liu Y, Luo E. Coaxial TP/APR electrospun nanofibers for programmed controlling inflammation and promoting bone regeneration in periodontitis-related alveolar bone defect models. Mater Today Bio 2022; 16: 100438.
[http://dx.doi.org/10.1016/j.mtbio.2022.100438] [PMID: 36193342]
[85]
Yao J, Liu Z, Ma W, et al. Three-dimensional coating of SF/PLGA coaxial nanofiber membranes on surfaces of calcium phosphate cement for enhanced bone regeneration. ACS Biomater Sci Eng 2020; 6(5): 2970-84.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01729] [PMID: 33463266]
[86]
Jin S, Gao J, Yang R, et al. A baicalin-loaded coaxial nanofiber scaffold regulated inflammation and osteoclast differentiation for vascularized bone regeneration. Bioact Mater 2022; 8: 559-72.
[http://dx.doi.org/10.1016/j.bioactmat.2021.06.028] [PMID: 34541420]
[87]
Chutimasakul T, Uetake Y, Tantirungrotechai J, Asoh T, Uyama H, Sakurai H. Size-controlled preparation of gold nanoparticles deposited on surface-fibrillated cellulose obtained by citric acid modification. ACS Omega 2020; 5(51): 33206-13.
[http://dx.doi.org/10.1021/acsomega.0c04894] [PMID: 33403282]
[88]
Xing D, Zuo W, Chen J, et al. Spatial delivery of triple functional nanoparticles via an extracellular matrix-mimicking coaxial scaffold synergistically enhancing bone regeneration. ACS Appl Mater Interfaces 2022; 14(33): 37380-95.
[http://dx.doi.org/10.1021/acsami.2c08784] [PMID: 35946874]
[89]
Khalf A, Madihally SV. Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm 2017; 112: 1-17.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.010] [PMID: 27865991]
[90]
Williams GR, Raimi-Abraham BT, Luo CJ. Coaxial and multi-axial electrospinning. In: Nanofibres in Drug Delivery. UCL Press 2018; pp. 106-48.
[http://dx.doi.org/10.2307/j.ctv550dd1.8]
[91]
Han D, Steckl AJ. Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules. ACS Appl Mater Interfaces 2013; 5(16): 8241-5.
[http://dx.doi.org/10.1021/am402376c] [PMID: 23924226]
[92]
Jiang S, Duan G, Zussman E, Greiner A, Agarwal S. Highly flexible and tough concentric triaxial polystyrene fibers. ACS Appl Mater Interfaces 2014; 6(8): 5918-23.
[http://dx.doi.org/10.1021/am500837s] [PMID: 24684423]
[93]
Wang M. The Development and Bio-applications of Multifluid Electrospinning. Materials Highlights 2020.
[http://dx.doi.org/10.2991/mathi.k.200521.001]
[94]
Khalf A, Singarapu K, Madihally SV. Influence of solvent characteristics in triaxial electrospun fiber formation. React Funct Polym 2015; 90: 36-46.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2015.03.004]
[95]
Han D, Sherman S, Filocamo S, Steckl AJ. Long-term antimicrobial effect of nisin released from electrospun triaxial fiber membranes. Acta Biomater 2017; 53: 242-9.
[http://dx.doi.org/10.1016/j.actbio.2017.02.029] [PMID: 28216302]
[96]
Yang Y, Li W, Yu DG, Wang G, Williams GR, Zhang Z. Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning. Carbohydr Polym 2019; 203: 228-37.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.061] [PMID: 30318208]
[97]
Liu X, Yang Y, Yu D-G, Zhu M-J, Zhao M, Williams GR. Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chem Eng J 2019; 356: 886-94.
[http://dx.doi.org/10.1016/j.cej.2018.09.096]
[98]
Liu W, Ni C, Chase DB, Rabolt JF. Preparation of multilayer biodegradable nanofibers by triaxial electrospinning. ACS Macro Lett 2013; 2(6): 466-8.
[http://dx.doi.org/10.1021/mz4000688] [PMID: 35581798]
[99]
Nagiah N, Murdock CJ, Bhattacharjee M, Nair L, Laurencin CT. Development of tripolymeric triaxial electrospun fibrous matrices for dual drug delivery applications. Sci Rep 2020; 10(1): 609.
[http://dx.doi.org/10.1038/s41598-020-57412-0] [PMID: 31953439]
[100]
Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 2005; 233(3): 706-20.
[http://dx.doi.org/10.1002/dvdy.20345] [PMID: 15937929]
[101]
Jin SW, Sim KB, Kim SD. Development and growth of the normal cranial vault : An embryologic review. J Korean Neurosurg Soc 2016; 59(3): 192-6.
[http://dx.doi.org/10.3340/jkns.2016.59.3.192] [PMID: 27226848]
[102]
Breeland G, Sinkler MA, Menezes RG. Embryology, Bone Ossification. Treasure Island (FL): StatPearls 2022.
[103]
Percival CJ, Richtsmeier JT. Angiogenesis and intramembranous osteogenesis. Dev Dyn 2013; 242(8): 909-22.
[http://dx.doi.org/10.1002/dvdy.23992] [PMID: 23737393]
[104]
Hall BK. Earliest evidence of cartilage and bone development in embryonic life. Clin Orthop Relat Res 1987; 225(&NA;): 255-72.
[http://dx.doi.org/10.1097/00003086-198712000-00023] [PMID: 3315379]
[105]
Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 1997; 89(5): 747-54.
[http://dx.doi.org/10.1016/S0092-8674(00)80257-3] [PMID: 9182762]
[106]
Ortega N, Behonick DJ, Werb Z. Matrix remodeling during endochondral ossification. Trends Cell Biol 2004; 14(2): 86-93.
[http://dx.doi.org/10.1016/j.tcb.2003.12.003] [PMID: 15102440]
[107]
Šošić D, Brand-Saberi B, Schmidt C, Christ B, Olson EN. Regulation of paraxis expression and somite formation by ectoderm- and neural tube-derived signals. Dev Biol 1997; 185(2): 229-43.
[http://dx.doi.org/10.1006/dbio.1997.8561] [PMID: 9187085]
[108]
Pirraco RP, Marques AP, Reis RL. Cell interactions in bone tissue engineering. J Cell Mol Med 2010; 14(1-2): 93-102.
[http://dx.doi.org/10.1111/j.1582-4934.2009.01005.x] [PMID: 20050963]
[109]
Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology. I: Structure, blood supply, cells, matrix, and mineralization. Instr Course Lect 1996; 45: 371-86.
[PMID: 8727757]
[110]
Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 2006; 8(1): 455-98.
[http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095721] [PMID: 16834564]
[111]
Florencio-Silva R, Sasso GRS, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Res Int 2015; 2015: 1-17.
[http://dx.doi.org/10.1155/2015/421746] [PMID: 26247020]
[112]
Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008; 3(S3): S131-9.
[http://dx.doi.org/10.2215/CJN.04151206] [PMID: 18988698]
[113]
Dallas SL, Prideaux M, Bonewald LF. The osteocyte: An endocrine cell... and more. Endocr Rev 2013; 34(5): 658-90.
[http://dx.doi.org/10.1210/er.2012-1026] [PMID: 23612223]
[114]
Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab 2012; 23(11): 576-81.
[http://dx.doi.org/10.1016/j.tem.2012.03.008] [PMID: 22595550]
[115]
Johnson TF, Morris DC, Anderson HC. Matrix vesicles and calcification of rachitic rat osteoid. J Exp Pathol 1989; 4(3): 123-32.
[PMID: 2769451]
[116]
Yoshiko Y, Candeliere GA, Maeda N, Aubin JE. Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization. Mol Cell Biol 2007; 27(12): 4465-74.
[http://dx.doi.org/10.1128/MCB.00104-07] [PMID: 17438129]
[117]
Kenny AM, Gallagher JC, Prestwood KM, Gruman CA, Raisz LG. Bone density, bone turnover, and hormone levels in men over age 75. J Gerontol A Biol Sci Med Sci 1998; 53A(6): M419-25.
[http://dx.doi.org/10.1093/gerona/53A.6.M419] [PMID: 9823745]
[118]
Negishi-Koga T, Takayanagi H. Bone cell communication factors and Semaphorins. Bonekey Rep 2012; 1: 183.
[http://dx.doi.org/10.1038/bonekey.2012.183] [PMID: 24171101]
[119]
Alt E, Yan Y, Gehmert S, et al. Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biol Cell 2011; 103(4): 197-208.
[http://dx.doi.org/10.1042/BC20100117] [PMID: 21332447]
[120]
Phan TC, Xu J, Zheng MH. Interaction between osteoblast and osteoclast: impact in bone disease. Histol Histopathol 2004; 19(4): 1325-44.
[PMID: 15375775]
[121]
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther 2019; 10(1): 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5] [PMID: 30808416]
[122]
Tonti-Filippini N, McCullagh P. Embryonic stem cells and totipotency. Ethics Medics 2000; 25(7): 1-3.
[http://dx.doi.org/10.5840/em200025713] [PMID: 11842860]
[123]
Lin H, Sohn J, Shen H, Langhans MT, Tuan RS. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials 2019; 203: 96-110.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.026] [PMID: 29980291]
[124]
Gómez-López S, Lerner RG, Petritsch C. Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell Mol Life Sci 2014; 71(4): 575-97.
[http://dx.doi.org/10.1007/s00018-013-1386-1] [PMID: 23771628]
[125]
Basson MA. Signaling in cell differentiation and morphogenesis. Cold Spring Harb Perspect Biol 2012; 4(6): a008151.
[http://dx.doi.org/10.1101/cshperspect.a008151] [PMID: 22570373]
[126]
Isern J, García-García A, Martín AM, et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. eLife 2014; 3: e03696.
[http://dx.doi.org/10.7554/eLife.03696] [PMID: 25255216]
[127]
Mansoor H, Ong HS, Riau AK, Stanzel TP, Mehta JS, Yam GHF. Current trends and future perspective of mesenchymal stem cells and exosomes in corneal diseases. Int J Mol Sci 2019; 20(12): 2853.
[http://dx.doi.org/10.3390/ijms20122853] [PMID: 31212734]
[128]
Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004; 32(3): 477-86.
[http://dx.doi.org/10.1023/B:ABME.0000017544.36001.8e] [PMID: 15095822]
[129]
Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet 1999; 22(1): 85-9.
[http://dx.doi.org/10.1038/8792] [PMID: 10319868]
[130]
Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: Signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 2015; 142(5): 817-31.
[http://dx.doi.org/10.1242/dev.105536] [PMID: 25715393]
[131]
Yang L, Tsang KY, Tang HC, Chan D, Cheah KSE. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci USA 2014; 111(33): 12097-102.
[http://dx.doi.org/10.1073/pnas.1302703111] [PMID: 25092332]
[132]
Miron RJ, Zhang YF. Osteoinduction. J Dent Res 2012; 91(8): 736-44.
[http://dx.doi.org/10.1177/0022034511435260] [PMID: 22318372]
[133]
Amarasekara DS, Kim S, Rho J. Regulation of osteoblast differentiation by cytokine networks. Int J Mol Sci 2021; 22(6): 2851.
[http://dx.doi.org/10.3390/ijms22062851] [PMID: 33799644]
[134]
Lin X, Patil S, Gao YG, Qian A. The bone extracellular matrix in bone formation and regeneration. Front Pharmacol 2020; 11: 757.
[http://dx.doi.org/10.3389/fphar.2020.00757] [PMID: 32528290]
[135]
Owen R, Reilly GC. In vitro models of bone remodelling and associated disorders. Front Bioeng Biotechnol 2018; 6: 134.
[http://dx.doi.org/10.3389/fbioe.2018.00134] [PMID: 30364287]
[136]
Meijer GJ, de Bruijn JD, Koole R, van Blitterswijk CA. Cell-based bone tissue engineering. PLoS Med 2007; 4(2): e9.
[http://dx.doi.org/10.1371/journal.pmed.0040009] [PMID: 17311467]
[137]
Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C 2021; 130: 112466.
[http://dx.doi.org/10.1016/j.msec.2021.112466] [PMID: 34702541]
[138]
Ghelich P, Kazemzadeh-Narbat M, Hassani Najafabadi A, Samandari M, Memić A, Tamayol A. (Bio)manufactured solutions for treatment of bone defects with an emphasis on US‐FDA regulatory science perspective. Adv NanoBiomed Res 2022; 2(4): 2100073.
[http://dx.doi.org/10.1002/anbr.202100073] [PMID: 35935166]
[139]
Ebrahimi F, Ramezani DH. Poly lactic acid (PLA) polymers: From properties to biomedical applications. Int J Polym Mater 2021; 71(15): 1117-30.
[140]
Dwivedi R, Kumar S, Pandey R, et al. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J Oral Biol Craniofac Res 2020; 10(1): 381-8.
[http://dx.doi.org/10.1016/j.jobcr.2019.10.003] [PMID: 31754598]
[141]
Banimohamad-Shotorbani B, Rahmani Del Bakhshayesh A, Mehdipour A, Jarolmasjed S, Shafaei H. The efficiency of PCL/HAp electrospun nanofibers in bone regeneration: a review. J Med Eng Technol 2021; 45(7): 511-31.
[http://dx.doi.org/10.1080/03091902.2021.1893396] [PMID: 34251971]
[142]
Kolluru PV, Lipner J, Liu W, et al. Strong and tough mineralized PLGA nanofibers for tendon-to-bone scaffolds. Acta Biomater 2013; 9(12): 9442-50.
[http://dx.doi.org/10.1016/j.actbio.2013.07.042] [PMID: 23933048]
[143]
Yan X, Yao H, Luo J, Li Z, Wei J. Functionalization of electrospun nanofiber for bone tissue engineering. Polymers 2022; 14(14): 2940.
[http://dx.doi.org/10.3390/polym14142940] [PMID: 35890716]
[144]
Spasova M, Stoilova O, Manolova N, Rashkov I, Altankov G. Preparation of PLLA/PEG nanofibers by electrospinning and potential applications. J Bioact Compat Polym 2007; 22(1): 62-76.
[http://dx.doi.org/10.1177/0883911506073570]
[145]
Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C 2020; 110: 110698.
[http://dx.doi.org/10.1016/j.msec.2020.110698] [PMID: 32204012]
[146]
Hartatiek , Yudyanto , Wuriantika MI, et al. Nanostructure, porosity and tensile strength of PVA/Hydroxyapatite composite nanofiber for bone tissue engineering. Mater Today Proc 2021; 44: 3203-6.
[http://dx.doi.org/10.1016/j.matpr.2020.11.438]
[147]
Kamoun EA, Loutfy SA, Hussein Y, Kenawy ERS. Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review. Int J Biol Macromol 2021; 187: 755-68.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.002] [PMID: 34358597]
[148]
Asghari N, Irani S, Pezeshki-Moddaress M, Zandi M, Mohamadali M. Neuronal differentiation of mesenchymal stem cells by polyvinyl alcohol/Gelatin/crocin and beta-carotene. Mol Biol Rep 2022; 49(4): 2999-3006.
[http://dx.doi.org/10.1007/s11033-022-07123-8] [PMID: 35025028]
[149]
Long F. Building strong bones: Molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 2012; 13(1): 27-38.
[http://dx.doi.org/10.1038/nrm3254] [PMID: 22189423]
[150]
Joshi J, Brennan D, Beachley V, Kothapalli CR. Cardiomyogenic differentiation of human bone marrow‐derived mesenchymal stem cell spheroids within electrospun collagen nanofiber mats. J Biomed Mater Res A 2018; 106(12): 3303-12.
[http://dx.doi.org/10.1002/jbm.a.36530] [PMID: 30242963]
[151]
Guo S, He L, Yang R, et al. Enhanced effects of electrospun collagen-chitosan nanofiber membranes on guided bone regeneration. J Biomater Sci Polym Ed 2020; 31(2): 155-68.
[http://dx.doi.org/10.1080/09205063.2019.1680927] [PMID: 31710268]
[152]
Yue S, He H, Li B, Hou T. Hydrogel as a biomaterial for bone tissue engineering: a review. Nanomaterials 2020; 10(8): 1511.
[http://dx.doi.org/10.3390/nano10081511] [PMID: 32752105]
[153]
Cheng Y, Cheng G, Xie C, et al. Biomimetic silk fibroin hydrogels strengthened by silica nanoparticles distributed nanofibers facilitate bone repair. Adv Healthc Mater 2021; 10(9): 2001646.
[http://dx.doi.org/10.1002/adhm.202001646] [PMID: 33694330]
[154]
Li G, Sun S. Silk fibroin-based biomaterials for tissue engineering applications. Molecules 2022; 27(9): 2757.
[http://dx.doi.org/10.3390/molecules27092757] [PMID: 35566110]
[155]
Mejía-Suaza ML, Moncada ME, Ossa-Orozco CP. Characterization of electrospun silk fibroin scaffolds for bone tissue engineering: A review. TecnoLógicas 2020; 23: 228-46.
[156]
Cui J, Yu X, Yu B, et al. Coaxially fabricated dual‐drug loading electrospinning fibrous mat with programmed releasing behavior to boost vascularized bone regeneration. Adv Healthc Mater 2022; 11(16): 2200571.
[http://dx.doi.org/10.1002/adhm.202200571] [PMID: 35668705]
[157]
Pathmanapan S, Sekar M, Pandurangan AK, Anandasadagopan SK. Fabrication of mesoporous silica nanoparticle–incorporated coaxial nanofiber for evaluating the in vitro osteogenic potential. Appl Biochem Biotechnol 2022; 194(1): 302-22.
[http://dx.doi.org/10.1007/s12010-021-03741-3] [PMID: 34762271]
[158]
Rastegar A, Mahmoodi M, Mirjalili M, Nasirizadeh N. Platelet-rich fibrin-loaded PCL/chitosan core-shell fibers scaffold for enhanced osteogenic differentiation of mesenchymal stem cells. Carbohydr Polym 2021; 269: 118351.
[http://dx.doi.org/10.1016/j.carbpol.2021.118351] [PMID: 34294355]
[159]
Lam LRWANG, Schilling K, Romas S, et al. Electrospun core-shell nanofibers with encapsulated enamel matrix derivative for guided periodontal tissue regeneration. Dent Mater J 2021; 40(5): 1208-16.
[http://dx.doi.org/10.4012/dmj.2020-412] [PMID: 34121026]
[160]
Peng W, Ren S, Zhang Y, et al. MgO nanoparticles-incorporated PCL/gelatin-derived coaxial electrospinning nanocellulose membranes for periodontal tissue regeneration. Front Bioeng Biotechnol 2021; 9: 668428.
[http://dx.doi.org/10.3389/fbioe.2021.668428] [PMID: 33842452]
[161]
Sruthi R, Balagangadharan K, Selvamurugan N. Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration. Colloids Surf B Biointerfaces 2020; 193: 111110.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111110] [PMID: 32416516]
[162]
Kalani MM, Nourmohammadi J, Negahdari B, Rahimi A, Sell SA. Electrospun core-sheath poly(vinyl alcohol)/silk fibroin nanofibers with Rosuvastatin release functionality for enhancing osteogenesis of human adipose-derived stem cells. Mater Sci Eng C 2019; 99: 129-39.
[http://dx.doi.org/10.1016/j.msec.2019.01.100] [PMID: 30889664]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy