Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Dual Role of Exosome in Neurodegenerative Diseases: A Review Study

Author(s): Mohsen Sheykhhasan, Fatemeh Heidari, Mohsen Eslami Farsani, Maryam Azimzadeh, Naser Kalhor, Shima Ababzadeh and Reihaneh Seyedebrahimi*

Volume 19, Issue 6, 2024

Published on: 15 August, 2023

Page: [852 - 864] Pages: 13

DOI: 10.2174/1574888X18666230726161035

Price: $65

Abstract

Introduction: Extracellular vesicles (EVs) are one of the crucial means of intercellular communication, which takes many different forms. They are heterogeneous, secreted by a range of cell types, and can be generally classified into microvesicles and exosomes depending on their location and function. Exosomes are small EVs with diameters of about 30–150 nm and diverse cell sources.

Methods: The MEDLINE/PubMed database was reviewed for papers written in English and publication dates of recent years, using the search string "Exosome" and "Neurodegenerative diseases."

Results: The exosomes have attracted interest as a significant biomarker for a better understanding of disease development, gene silencing delivery, and alternatives to stem cell-based therapy because of their low-invasive therapeutic approach, repeatable distribution in the central nervous system (CNS), and high efficiency. Also, they are nanovesicles that carry various substances, which can have an impact on neural plasticity and cognitive functioning in both healthy and pathological circumstances. Therefore, exosomes are conceived as nanovesicles containing proteins, lipids, and nucleic acids. However, their composition varies considerably depending on the cells from which they are produced.

Conclusion: In the present review, we discuss several techniques for the isolation of exosomes from different cell sources. Furthermore, reviewing research on exosomes' possible functions as carriers of bioactive substances implicated in the etiology of neurodegenerative illnesses, we further examine them. We also analyze the preclinical and clinical research that shows exosomes to have therapeutic potential.

Graphical Abstract

[1]
Beck S, Hochreiter B, Schmid JA. Extracellular vesicles linking inflammation, cancer and thrombotic risks. Front Cell Dev Biol 2022; 10: 859863.
[http://dx.doi.org/10.3389/fcell.2022.859863] [PMID: 35372327]
[2]
Gupta D, Zickler AM, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev 2021; 178: 113961.
[http://dx.doi.org/10.1016/j.addr.2021.113961] [PMID: 34481030]
[3]
Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: Emerging complexities. Trends Cell Biol 2023; S0962-8924(23): 00005-3.
[PMID: 36737375]
[4]
Chung IM, Rajakumar G, Venkidasamy B, Subramanian U, Thiruvengadam M. Exosomes: Current use and future applications. Clin Chim Acta 2020; 500: 226-32.
[http://dx.doi.org/10.1016/j.cca.2019.10.022] [PMID: 31678573]
[5]
Doyle L, Wang M. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 2019; 8(7): 727-9.
[http://dx.doi.org/10.3390/cells8070727] [PMID: 31311206]
[6]
Kim YS, Ahn JS, Kim S, Kim HJ, Kim SH, Kang JS. The potential theragnostic (diagnostic+therapeutic) application of exosomes in diverse biomedical fields. Korean J Physiol Pharmacol 2018; 22(2): 113-25.
[http://dx.doi.org/10.4196/kjpp.2018.22.2.113] [PMID: 29520164]
[7]
Wan R, Hussain A, Behfar A, Moran SL, Zhao C. The therapeutic potential of exosomes in soft tissue repair and regeneration. Int J Mol Sci 2022; 23(7): 3869.
[http://dx.doi.org/10.3390/ijms23073869] [PMID: 35409228]
[8]
Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987; 262(19): 9412-20.
[http://dx.doi.org/10.1016/S0021-9258(18)48095-7] [PMID: 3597417]
[9]
Chen J, Zhang Q, Liu D, Liu Z. Exosomes: Advances, development and potential therapeutic strategies in diabetic nephropathy. Metabolism 2021; 122: 154834.
[http://dx.doi.org/10.1016/j.metabol.2021.154834] [PMID: 34217734]
[10]
Elahi FM, Farwell DG, Nolta JA, Anderson JD. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells 2020; 38(1): 15-21.
[http://dx.doi.org/10.1002/stem.3061] [PMID: 31381842]
[11]
Allan D, Tieu A, Lalu M, Burger D. Mesenchymal stromal cell-derived extracellular vesicles for regenerative therapy and immune modulation: Progress and challenges toward clinical application. Stem Cells Transl Med 2020; 9(1): 39-46.
[http://dx.doi.org/10.1002/sctm.19-0114] [PMID: 31411820]
[12]
Wu R, Gao W, Yao K, Ge J. Roles of exosomes derived from immune cells in cardiovascular diseases. Front Immunol 2019; 10: 648-51.
[http://dx.doi.org/10.3389/fimmu.2019.00648] [PMID: 30984201]
[13]
Aheget H, Tristán-Manzano M, Mazini L, et al. Exosome: A new player in translational nanomedicine. J Clin Med 2020; 9(8): 2380.
[http://dx.doi.org/10.3390/jcm9082380] [PMID: 32722531]
[14]
Li N, Zhao L, Wei Y, Ea VL, Nian H, Wei R. Recent advances of exosomes in immune-mediated eye diseases. Stem Cell Res Ther 2019; 10(1): 278.
[http://dx.doi.org/10.1186/s13287-019-1372-0] [PMID: 31470892]
[15]
Nojehdehi S, Soudi S, Hesampour A, Rasouli S, Soleimani M, Hashemi SM. Immunomodulatory effects of mesenchymal stem cell–derived exosomes on experimental type 1 autoimmune diabetes. J Cell Biochem 2018; 119(11): 9433-43.
[http://dx.doi.org/10.1002/jcb.27260] [PMID: 30074271]
[16]
Cho BS, Kim JO, Ha DH, Yi YW. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res Ther 2018; 9(1): 187.
[http://dx.doi.org/10.1186/s13287-018-0939-5] [PMID: 29996938]
[17]
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[18]
Jiang L, Dong H, Cao H, Ji X, Luan S, Liu J. Exosomes in pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Med Sci Monit 2019; 25: 3329-35.
[http://dx.doi.org/10.12659/MSM.914027] [PMID: 31056537]
[19]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[20]
Farooqi AA, Desai NN, Qureshi MZ, et al. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv 2018; 36(1): 328-34.
[http://dx.doi.org/10.1016/j.biotechadv.2017.12.010] [PMID: 29248680]
[21]
Li XX, Yang LX, Wang C, Li H, Shi DS, Wang J. The roles of exosomal proteins: Classification, function, and applications. Int J Mol Sci 2023; 24(4): 3061.
[http://dx.doi.org/10.3390/ijms24043061] [PMID: 36834471]
[22]
Hedayat M, Ahmadi M, Shoaran M, Rezaie J. Therapeutic application of mesenchymal stem cells derived exosomes in neurodegenerative diseases: A focus on non-coding RNAs cargo, drug delivery potential, perspective. Life Sci 2023; 320: 121566.
[http://dx.doi.org/10.1016/j.lfs.2023.121566] [PMID: 36907326]
[23]
Salvioli S, Olivieri F, Marchegiani F, et al. Genes, ageing and longevity in humans: Problems, advantages and perspectives. Free Radic Res 2006; 40(12): 1303-23.
[http://dx.doi.org/10.1080/10715760600917136] [PMID: 17090420]
[24]
Pedersen SF, Ho YC. SARS-CoV-2: A storm is raging. J Clin Invest 2020; 130(5): 2202-5.
[http://dx.doi.org/10.1172/JCI137647] [PMID: 32217834]
[25]
Kordelas L, Rebmann V, Ludwig A-K, et al. MSC-derived exosomes: A novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 2014; 28(4): 970-3.
[http://dx.doi.org/10.1038/leu.2014.41] [PMID: 24445866]
[26]
Phinney DG. Functional heterogeneity of mesenchymal stem cells: Implications for cell therapy. J Cell Biochem 2012; 113(9): 2806-12.
[http://dx.doi.org/10.1002/jcb.24166] [PMID: 22511358]
[27]
Huang R, Qin C, Wang J, et al. Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging 2019; 11(18): 7996-8014.
[http://dx.doi.org/10.18632/aging.102314] [PMID: 31575829]
[28]
Yuan L, Li JY. Exosomes in Parkinson’s disease: Current perspectives and future challenges. ACS Chem Neurosci 2019; 10(2): 964-72.
[http://dx.doi.org/10.1021/acschemneuro.8b00469] [PMID: 30664350]
[29]
Dai J, Su Y, Zhong S, et al. Exosomes: Key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 2020; 5(1): 145.
[http://dx.doi.org/10.1038/s41392-020-00261-0] [PMID: 32759948]
[30]
Castaño C, Kalko S, Novials A, Párrizas M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci 2018; 115(48): 12158-63.
[http://dx.doi.org/10.1073/pnas.1808855115] [PMID: 30429322]
[31]
Lener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 2015; 4(1): 30087.
[http://dx.doi.org/10.3402/jev.v4.30087] [PMID: 26725829]
[32]
Sun Y, Shi H, Yin S, et al. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano 2018; 12(8): 7613-28.
[http://dx.doi.org/10.1021/acsnano.7b07643] [PMID: 30052036]
[33]
Rezaie J, Feghhi M, Etemadi T. A review on exosomes application in clinical trials: Perspective, questions, and challenges. Cell Commun Signal 2022; 20(1): 145.
[http://dx.doi.org/10.1186/s12964-022-00959-4] [PMID: 36123730]
[34]
Corradetti B, Gonzalez D, Mendes Pinto I, Conlan RS. Editorial: Exosomes as therapeutic systems. Front Cell Dev Biol 2021; 9: 714743.
[http://dx.doi.org/10.3389/fcell.2021.714743] [PMID: 34368165]
[35]
Hussen BM, Faraj GSH, Rasul MF, et al. Strategies to overcome the main challenges of the use of exosomes as drug carrier for cancer therapy. Cancer Cell Int 2022; 22(1): 323-7.
[http://dx.doi.org/10.1186/s12935-022-02743-3] [PMID: 36258195]
[36]
Weng S, Lai QL, Wang J, et al. The role of exosomes as mediators of neuroinflammation in the pathogenesis and treatment of Alzheimer’s disease. Front Aging Neurosci 2022; 14: 899944.
[http://dx.doi.org/10.3389/fnagi.2022.899944] [PMID: 35837481]
[37]
Gandham S, Su X, Wood J, et al. Technologies and standardization in research on extracellular vesicles. Trends Biotechnol 2020; 38(10): 1066-98.
[http://dx.doi.org/10.1016/j.tibtech.2020.05.012] [PMID: 32564882]
[38]
Willms E, Cabañas C, Mäger I, Wood MJA, Vader P. Extracellular vesicle heterogeneity: Subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol 2018; 9: 738-41.
[http://dx.doi.org/10.3389/fimmu.2018.00738] [PMID: 29760691]
[39]
Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics 2017; 7(3): 789-804.
[http://dx.doi.org/10.7150/thno.18133] [PMID: 28255367]
[40]
Karimi N, Cvjetkovic A, Jang SC, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci 2018; 75(15): 2873-86.
[http://dx.doi.org/10.1007/s00018-018-2773-4] [PMID: 29441425]
[41]
Yang D, Zhang W, Zhang H, et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics 2020; 10(8): 3684-707.
[http://dx.doi.org/10.7150/thno.41580] [PMID: 32206116]
[42]
Chen J, Li P, Zhang T, et al. Review on strategies and technologies for exosome isolation and purification. Front Bioeng Biotechnol 2022; 9: 811971.
[http://dx.doi.org/10.3389/fbioe.2021.811971] [PMID: 35071216]
[43]
Liangsupree T, Multia E, Riekkola ML. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A 2021; 1636: 461773.
[http://dx.doi.org/10.1016/j.chroma.2020.461773] [PMID: 33316564]
[44]
Sidhom K, Obi PO, Saleem A. A review of exosomal isolation methods: Is size exclusion chromatography the best option? Int J Mol Sci 2020; 21(18): 6466.
[http://dx.doi.org/10.3390/ijms21186466] [PMID: 32899828]
[45]
Talebjedi B, Tasnim N, Hoorfar M, Mastromonaco GF, De Almeida Monteiro Melo Ferraz M. Exploiting microfluidics for extracellular vesicle isolation and characterization: Potential use for standardized embryo quality assessment. Front Vet Sci 2021; 7: 620809.
[http://dx.doi.org/10.3389/fvets.2020.620809] [PMID: 33469556]
[46]
Singh PK, Patel A, Kaffenes A, Hord C, Kesterson D, Prakash S. Microfluidic approaches and methods enabling extracellular vesicle isolation for cancer diagnostics. Micromachines 2022; 13(1): 139.
[http://dx.doi.org/10.3390/mi13010139] [PMID: 35056304]
[47]
Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012; 32(11): 1959-72.
[http://dx.doi.org/10.1038/jcbfm.2012.126] [PMID: 22929442]
[48]
Tomlinson PR, Zheng Y, Fischer R, et al. Identification of distinct circulating exosomes in Parkinson’s disease. Ann Clin Transl Neurol 2015; 2(4): 353-61.
[http://dx.doi.org/10.1002/acn3.175] [PMID: 25909081]
[49]
Heidarzadeh M, Gürsoy-Özdemir Y, Kaya M, et al. Exosomal delivery of therapeutic modulators through the blood–brain barrier; promise and pitfalls. Cell Biosci 2021; 11(1): 142.
[http://dx.doi.org/10.1186/s13578-021-00650-0] [PMID: 34294165]
[50]
Huang Y, Liu Z, Li N, et al. Parkinson’s disease derived exosomes aggravate neuropathology inSNCA * A53T Mice. Ann Neurol 2022; 92(2): 230-45.
[http://dx.doi.org/10.1002/ana.26421] [PMID: 35596947]
[51]
Sun K, Zheng X, Jin H, Yu F, Zhao W. Exosomes as CNS drug delivery tools and their applications. Pharmaceutics 2022; 14(10): 2252.
[http://dx.doi.org/10.3390/pharmaceutics14102252] [PMID: 36297688]
[52]
Khan SU, Khan MU, Gao Y, et al. Unique therapeutic potentialities of exosomes based nanodrug carriers to target tumor microenvironment in cancer therapy. OpenNano 2022; 8: 100091.
[http://dx.doi.org/10.1016/j.onano.2022.100091]
[53]
Khan SU, Khan MI, Khan MU, Khan NM, Bungau S, Hassan SS. Applications of extracellular vesicles in nervous system disorders: An overview of recent advances. Bioengineering 2022; 10(1): 51.
[http://dx.doi.org/10.3390/bioengineering10010051] [PMID: 36671622]
[54]
Suire CN, Hade MD. Extracellular vesicles in type 1 diabetes: A versatile tool. Bioengineering 2022; 9(3): 105-10.
[http://dx.doi.org/10.3390/bioengineering9030105] [PMID: 35324794]
[55]
Holm MM, Kaiser J, Schwab ME. Extracellular vesicles: Multimodal envoys in neural maintenance and repair. Trends Neurosci 2018; 41(6): 360-72.
[http://dx.doi.org/10.1016/j.tins.2018.03.006] [PMID: 29605090]
[56]
Delpech JC, Herron S, Botros MB, Ikezu T. Neuroimmune crosstalk through extracellular vesicles in health and disease. Trends Neurosci 2019; 42(5): 361-72.
[http://dx.doi.org/10.1016/j.tins.2019.02.007] [PMID: 30926143]
[57]
Li Z, Liu F, He X, Yang X, Shan F, Feng J. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int Immunopharmacol 2019; 67: 268-80.
[http://dx.doi.org/10.1016/j.intimp.2018.12.001] [PMID: 30572251]
[58]
Farinazzo A, Angiari S, Turano E, et al. Nanovesicles from adipose-derived mesenchymal stem cells inhibit T lymphocyte trafficking and ameliorate chronic experimental autoimmune encephalomyelitis. Sci Rep 2018; 8(1): 7473.
[http://dx.doi.org/10.1038/s41598-018-25676-2] [PMID: 29748664]
[59]
Elia CA, Tamborini M, Rasile M, et al. Intracerebral injection of extracellular vesicles from mesenchymal stem cells exerts reduced Aβ plaque burden in early stages of a preclinical model of alzheimer’s disease. Cells 2019; 8(9): 1059.
[http://dx.doi.org/10.3390/cells8091059] [PMID: 31510042]
[60]
Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 2011; 19(10): 1769-79.
[http://dx.doi.org/10.1038/mt.2011.164] [PMID: 21915101]
[61]
Jahangard Y, Monfared H, Moradi A, Zare M, Mirnajafi-Zadeh J, Mowla SJ. Therapeutic effects of transplanted exosomes containing miR-29b to a rat model of Alzheimer’s disease. Front Neurosci 2020; 14: 564.
[http://dx.doi.org/10.3389/fnins.2020.00564] [PMID: 32625049]
[62]
Mobahat M, Sadroddiny E, Nooshabadi VT, Ebrahimi-Barough S, Goodarzi A, Malekshahi ZV, et al. Curcumin-loaded human endometrial stem cells derived exosomes as an effective carrier to suppress alpha-synuclein aggregates in 6OHDA-induced Parkinson’s disease mouse model. Cell Tissue Bank 2022; 24(1): 75-91.
[PMID: 35641803]
[63]
Xue C, Li X, Ba L, et al. MSC-derived exosomes can enhance the angiogenesis of human brain MECs and show therapeutic potential in a mouse model of Parkinson’s disease. Aging Dis 2021; 12(5): 1211-22.
[http://dx.doi.org/10.14336/AD.2020.1221] [PMID: 34341703]
[64]
Sun T, Ding ZX, Luo X, Liu QS, Cheng Y. Blood exosomes have neuroprotective effects in a mouse model of Parkinson’s disease. Oxid Med Cell Longev 2020; 2020: 1-14.
[http://dx.doi.org/10.1155/2020/3807476] [PMID: 33294121]
[65]
Lee M, Liu T, Im W, Kim M. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s disease in vitro model. Eur J Neurosci 2016; 44(4): 2114-9.
[http://dx.doi.org/10.1111/ejn.13275] [PMID: 27177616]
[66]
Lee ST, Im W, Ban JJ, et al. Exosome-based delivery of miR-124 in a Huntington’s disease model. J Mov Disord 2017; 10(1): 45-52.
[http://dx.doi.org/10.14802/jmd.16054] [PMID: 28122430]
[67]
Joshi BS, Youssef SA, Bron R. DNAJB6-enriched exosomes decrease polyglutamine aggregation in in vitro and in vivo models of Huntington’s disease. iScience 2021; 163-6.
[68]
Zhou Y, Xiao S, Li C, Chen Z, Zhu C, Zhou Q, et al. Extracellular vesicle-encapsulated miR-183-5p from rhynchophylline-treated H9c2 cells protect against methamphetamine-induced dependence in mouse brain by targeting NRG1. Evid Based Complement Alternat Med 2021; 2021: 2136076.
[http://dx.doi.org/10.1155/2021/2136076] [PMID: 34484386]
[69]
Ezquer F, Quintanilla ME, Morales P, et al. Intranasal delivery of mesenchymal stem cell-derived exosomes reduces oxidative stress and markedly inhibits ethanol consumption and post-deprivation relapse drinking. Addict Biol 2019; 24(5): 994-1007.
[http://dx.doi.org/10.1111/adb.12675] [PMID: 30239077]
[70]
Azimzadeh M, Möhn N, Ghane Ezabadi S, et al. The immunological therapeutic strategies for controlling multiple sclerosis: Considerations during the covid-19 pandemic. Biomolecules 2021; 11(9): 1372.
[http://dx.doi.org/10.3390/biom11091372] [PMID: 34572585]
[71]
Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple sclerosis: Mechanisms and immunotherapy. Neuron 2018; 97(4): 742-68.
[http://dx.doi.org/10.1016/j.neuron.2018.01.021] [PMID: 29470968]
[72]
Pusic AD, Pusic KM, Kraig RP. What are exosomes and how can they be used in multiple sclerosis therapy? Expert Rev Neurother 2014; 14(4): 353-5.
[http://dx.doi.org/10.1586/14737175.2014.890893] [PMID: 24552578]
[73]
Baharlooi H, Salehi Z, Minbashi Moeini M, Rezaei N, Azimi M. Immunomo sis. Adv Pharm Bull 2022; 12(2): 389-97.
[PMID: 35620339]
[74]
Riazifar M, Mohammadi MR, Pone EJ, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano 2019; 13(6): 6670-88.
[http://dx.doi.org/10.1021/acsnano.9b01004] [PMID: 31117376]
[75]
Zhang J, Buller BA, Zhang ZG, et al. Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system. Exp Neurol 2022; 347: 113895.
[http://dx.doi.org/10.1016/j.expneurol.2021.113895] [PMID: 34653510]
[76]
Gupta D, Wiklander OPB, Görgens A, Conceição M, Corso G, Liang X, et al. Engineering of extracellular vesicles for display of protein biotherapeutics. bioRxiv 2020; 2021: 149823.
[http://dx.doi.org/10.1101/2020.06.14.149823]
[77]
Zheng X, Sun K, Liu Y, et al. Resveratrol-loaded macrophage exosomes alleviate multiple sclerosis through targeting microglia. J Control Release 2023; 353: 675-84.
[http://dx.doi.org/10.1016/j.jconrel.2022.12.026] [PMID: 36521687]
[78]
Fayazi N, Sheykhhasan M, Soleimani Asl S, Najafi R. Stem cell-derived exosomes: A new strategy of neurodegenerative disease treatment. Mol Neurobiol 2021; 58(7): 3494-514.
[http://dx.doi.org/10.1007/s12035-021-02324-x] [PMID: 33745116]
[79]
Hosseini Shamili F, Alibolandi M, Rafatpanah H, et al. Immunomodulatory properties of MSC-derived exosomes armed with high affinity aptamer toward mylein as a platform for reducing multiple sclerosis clinical score. J Control Release 2019; 299: 149-64.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.032] [PMID: 30807806]
[80]
Wu XY, Liao BY, Xiao D, et al. Encapsulation of bryostatin-1 by targeted exosomes enhances remyelination and neuroprotection effects in the cuprizone-induced demyelinating animal model of multiple sclerosis. Biomater Sci 2022; 10(3): 714-27.
[http://dx.doi.org/10.1039/D1BM01142A] [PMID: 34928285]
[81]
Kimura K, Hohjoh H, Yamamura T. The role for exosomal microRNAs in disruption of regulatory T cell homeostasis in multiple sclerosis. J Exp Neurosci 2018; 12.
[http://dx.doi.org/10.1177/1179069518764892] [PMID: 29623002]
[82]
Ebrahimkhani S, Vafaee F, Young PE, et al. Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci Rep 2017; 7(1): 14293.
[http://dx.doi.org/10.1038/s41598-017-14301-3] [PMID: 29084979]
[83]
Gandhi R, Healy B, Gholipour T, et al. Circulating MicroRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol 2013; 73(6): 729-40.
[http://dx.doi.org/10.1002/ana.23880] [PMID: 23494648]
[84]
Manna I, Iaccino E, Dattilo V, et al. Exosome associated miRNA profile as a prognostic tool for therapy response monitoring in multiple sclerosis patients. FASEB J 2018; 32(8): 4241-6.
[http://dx.doi.org/10.1096/fj.201701533R] [PMID: 29505299]
[85]
Ebrahimkhani S, Beadnall HN, Wang C, et al. Serum exosome microRNAs predict multiple sclerosis disease activity after fingolimod treatment. Mol Neurobiol 2020; 57(2): 1245-58.
[http://dx.doi.org/10.1007/s12035-019-01792-6] [PMID: 31721043]
[86]
Mrad MF, Saba ES, Nakib L, Khoury SJ. Exosomes from subjects with multiple sclerosis express EBV-derived proteins and activate monocyte-derived macrophages. Neurol Neuroimmunol Neuroinflamm 2021; 8(4): e1004.
[http://dx.doi.org/10.1212/NXI.0000000000001004] [PMID: 34006621]
[87]
Ising C, Heneka MT. Functional and structural damage of neurons by innate immune mechanisms during neurodegeneration. Cell Death Dis 2018; 9(2): 120.
[http://dx.doi.org/10.1038/s41419-017-0153-x] [PMID: 29371603]
[88]
Khan TK, Alkon DL. Peripheral biomarkers of Alzheimer’s disease. J Alzheimers Dis 2015; 44(3): 729-44.
[http://dx.doi.org/10.3233/JAD-142262] [PMID: 25374110]
[89]
Beker M, Gunay N, Sarikamis B, et al. Dual action of exosomes derived from in vitro Aβ toxicity model: The role of age for pathological response. Arch Gerontol Geriatr 2023; 106: 104874.
[http://dx.doi.org/10.1016/j.archger.2022.104874] [PMID: 36470179]
[90]
Takahashi RH, Milner TA, Li F, et al. Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 2002; 161(5): 1869-79.
[http://dx.doi.org/10.1016/S0002-9440(10)64463-X] [PMID: 12414533]
[91]
Saman S, Kim W, Raya M, et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 2012; 287(6): 3842-9.
[http://dx.doi.org/10.1074/jbc.M111.277061] [PMID: 22057275]
[92]
Fiandaca MS, Kapogiannis D, Mapstone M, et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case control study. Alzheimers Dement 2015; 11(6): 600-7.e1.
[http://dx.doi.org/10.1016/j.jalz.2014.06.008] [PMID: 25130657]
[93]
Lark DS, LaRocca TJ. Expression of exosome biogenesis genes is differentially altered by aging in the mouse and in the human brain during Alzheimer’s Disease. J Gerontol A Biol Sci Med Sci 2022; 77(4): 659-63.
[http://dx.doi.org/10.1093/gerona/glab322] [PMID: 34687299]
[94]
Chen YA, Lu CH, Ke CC, et al. Mesenchymal stem cell-derived exosomes ameliorate Alzheimer’s disease pathology and improve cognitive deficits. Biomedicines 2021; 9(6): 594.
[http://dx.doi.org/10.3390/biomedicines9060594] [PMID: 34073900]
[95]
Soares Martins T, Trindade D, Vaz M, et al. Diagnostic and therapeutic potential of exosomes in Alzheimer’s disease. J Neurochem 2021; 156(2): 162-81.
[http://dx.doi.org/10.1111/jnc.15112] [PMID: 32618370]
[96]
Nakano M, Fujimiya M. Potential effects of mesenchymal stem cell derived extracellular vesicles and exosomal miRNAs in neurological disorders. Neural Regen Res 2021; 16(12): 2359-66.
[http://dx.doi.org/10.4103/1673-5374.313026] [PMID: 33907007]
[97]
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4): 341-5.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[98]
Cone AS, Yuan X, Sun L, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer’s disease-like phenotypes in a preclinical mouse model. Theranostics 2021; 11(17): 8129-42.
[http://dx.doi.org/10.7150/thno.62069] [PMID: 34373732]
[99]
Cheng L, Doecke JD, Sharples RA, et al. Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry 2015; 20(10): 1188-96.
[http://dx.doi.org/10.1038/mp.2014.127] [PMID: 25349172]
[100]
Gui Y, Liu H, Zhang L, Lv W, Hu X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015; 6(35): 37043-53.
[http://dx.doi.org/10.18632/oncotarget.6158] [PMID: 26497684]
[101]
Dong Z, Gu H, Guo Q, et al. Circulating small extracellular vesicle-derived miR-342-5p ameliorates beta-amyloid formation via targeting beta-site APP cleaving enzyme 1 in Alzheimer’s Disease. Cells 2022; 11(23): 3830.
[http://dx.doi.org/10.3390/cells11233830] [PMID: 36497090]
[102]
Goetzl EJ, Kapogiannis D, Schwartz JB, et al. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease. FASEB J 2016; 30(12): 4141-8.
[http://dx.doi.org/10.1096/fj.201600816R] [PMID: 27601437]
[103]
Liang X, Fa W, Wang N, Peng Y, Liu C, Zhu M, et al. Exosomal miR-532-5p induced by long-term exercise rescues blood-brain barrier function in 5XFAD mice via downregulation of EPHA4. Aging Cell 2023; 22(1): e13748.
[http://dx.doi.org/10.1111/acel.13748.] [PMID: 36494892]
[104]
Cai H, Pang Y, Wang Q, et al. Proteomic profiling of circulating plasma exosomes reveals novel biomarkers of Alzheimer’s disease. Alzheimers Res Ther 2022; 14(1): 181-6.
[http://dx.doi.org/10.1186/s13195-022-01133-1] [PMID: 36471423]
[105]
Wang S, Cesca F, Loers G, et al. Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J Neurosci 2011; 31(20): 7275-90.
[http://dx.doi.org/10.1523/JNEUROSCI.6476-10.2011] [PMID: 21593312]
[106]
Lotfy A, AboQuella NM, Wang H. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Res Ther 2023; 14(1): 66-71.
[http://dx.doi.org/10.1186/s13287-023-03287-7] [PMID: 37024925]
[107]
Charvin D, Medori R, Hauser RA, Rascol O. Therapeutic strategies for Parkinson disease: Beyond dopaminergic drugs. Nat Rev Drug Discov 2018; 17(11): 804-22.
[http://dx.doi.org/10.1038/nrd.2018.136] [PMID: 30262889]
[108]
Yu H, Sun T, An J, et al. Potential roles of exosomes in Parkinson’s disease: From pathogenesis, diagnosis, and treatment to prognosis. Front Cell Dev Biol 2020; 8: 86.
[http://dx.doi.org/10.3389/fcell.2020.00086] [PMID: 32154247]
[109]
Stuendl A, Kunadt M, Kruse N, et al. Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain 2016; 139(2): 481-94.
[http://dx.doi.org/10.1093/brain/awv346] [PMID: 26647156]
[110]
Shi M, Liu C, Cook TJ, et al. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 2014; 128(5): 639-50.
[http://dx.doi.org/10.1007/s00401-014-1314-y] [PMID: 24997849]
[111]
Grey M, Dunning CJ, Gaspar R, et al. Acceleration of α-synuclein aggregation by exosomes. J Biol Chem 2015; 290(5): 2969-82.
[http://dx.doi.org/10.1074/jbc.M114.585703] [PMID: 25425650]
[112]
de Rus Jacquet A, Tancredi JL, Lemire AL, DeSantis MC, Li WP, O’Shea EK. The LRRK2 G2019S mutation alters astrocyte-to-neuron communication via extracellular vesicles and induces neuron atrophy in a human iPSC-derived model of Parkinson’s disease. eLife 2021; 10: e73062.
[http://dx.doi.org/10.7554/eLife.73062] [PMID: 34590578]
[113]
Mysiris DS, Vavougios GD, Karamichali E, et al. Post-COVID-19 parkinsonism and parkinson’s disease pathogenesis: The exosomal cargo hypothesis. Int J Mol Sci 2022; 23(17): 9739.
[http://dx.doi.org/10.3390/ijms23179739] [PMID: 36077138]
[114]
Zhang P, Rasheed M, Liang J, Wang C, Feng L, Chen Z. Emerging potential of exosomal Non-coding RNA in Parkinson’s Disease: A review. Front Aging Neurosci 2022; 14: 819836.
[http://dx.doi.org/10.3389/fnagi.2022.819836] [PMID: 35360206]
[115]
Nila IS, Sumsuzzman DM, Khan ZA, et al. Identification of exosomal biomarkers and its optimal isolation and detection method for the diagnosis of Parkinson’s disease: A systematic review and meta-analysis. Ageing Res Rev 2022; 82: 101764.
[http://dx.doi.org/10.1016/j.arr.2022.101764] [PMID: 36273807]
[116]
Jiang T, Xu C, Gao S, Zhang J, Zheng J, Wu X, et al. Cathepsin Lcontaining exosomes from α-synuclein-activated microglia induce neurotoxicity through the P2X7 receptor. NPJ Parkinsons Dis 2022; 8(1): 127.
[http://dx.doi.org/10.1038/s41531-022-00394-9.] [PMID: 36202834]
[117]
Peng H, Li Y, Ji W, et al. Intranasal administration of self-oriented nanocarriers based on therapeutic exosomes for synergistic treatment of parkinson’s disease. ACS Nano 2022; 16(1): 869-84.
[http://dx.doi.org/10.1021/acsnano.1c08473] [PMID: 34985280]
[118]
Chen Z, Xu C, Li G, Wen Z, Liu J, Mao Z. Neuron-derived exosomes trigger a PD-L1-mediated broad suppression of T cells in Parkinson’s disease. Res Square 2022.
[http://dx.doi.org/10.21203/rs.3.rs-2109216/v1]
[119]
Lee HK, Finniss S, Cazacu S, Xiang C, Brodie C. Mesenchymal stem cells deliver exogenous miRNAs to neural cells and induce their differentiation and glutamate transporter expression. Stem Cells Dev 2014; 23(23): 2851-61.
[http://dx.doi.org/10.1089/scd.2014.0146] [PMID: 25036385]
[120]
Qu M, Lin Q, Huang L, et al. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J Control Release 2018; 287: 156-66.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.035] [PMID: 30165139]
[121]
McColgan P, Tabrizi SJ. Huntington’s disease: A clinical review. Eur J Neurol 2018; 25(1): 24-34.
[http://dx.doi.org/10.1111/ene.13413] [PMID: 28817209]
[122]
Dayalu P, Albin RL. Huntington Disease. Neurol Clin 2015; 33(1): 101-14.
[http://dx.doi.org/10.1016/j.ncl.2014.09.003] [PMID: 25432725]
[123]
Hong Y, Zhao T, Li XJ, Li S. Mutant huntingtin inhibits αB-crystallin expression and impairs exosome secretion from astrocytes. J Neurosci 2017; 37(39): 9550-63.
[http://dx.doi.org/10.1523/JNEUROSCI.1418-17.2017] [PMID: 28893927]
[124]
Didiot MC, Hall LM, Coles AH, et al. Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing. Mol Ther 2016; 24(10): 1836-47.
[http://dx.doi.org/10.1038/mt.2016.126] [PMID: 27506293]
[125]
Lee M, Im W, Kim M. Exosomes as a potential messenger unit during heterochronic parabiosis for amelioration of Huntington’s disease. Neurobiol Dis 2021; 155: 105374.
[http://dx.doi.org/10.1016/j.nbd.2021.105374] [PMID: 33940179]
[126]
Barbagallo C, Mostile G, Baglieri G, et al. Specific signatures of serum miRNAs as potential biomarkers to discriminate clinically similar neurodegenerative and vascular-related diseases. Cell Mol Neurobiol 2020; 40(4): 531-46.
[http://dx.doi.org/10.1007/s10571-019-00751-y] [PMID: 31691877]
[127]
Rani P, Karthik S. Molecular signatures in exosomes as diagnostic markers for neurodegenerative disorders. Ann Alzheimers Dement Care 2020; 4(1): 012-7.
[128]
Ananbeh H, Vodicka P, Kupcova Skalnikova H. Emerging roles of exosomes in Huntington’s Disease. Int J Mol Sci 2021; 22(8): 4085.
[http://dx.doi.org/10.3390/ijms22084085] [PMID: 33920936]
[129]
Cao X, Pfaff SL, Gage FH. A functional study of miR-124 in the developing neural tube. Genes Dev 2007; 21(5): 531-6.
[http://dx.doi.org/10.1101/gad.1519207] [PMID: 17344415]
[130]
Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 2018; 13(1): 44.
[http://dx.doi.org/10.1186/s11671-018-2457-x] [PMID: 29417375]
[131]
Kranzler HR, Li T-K. What is addiction? Alcohol Res Health 2008; 31(2): 93-5.
[PMID: 23584810]
[132]
Cooper S, Robison AJ, Mazei-Robison MS. Reward circuitry in addiction. Neurotherapeutics 2017; 14(3): 687-97.
[http://dx.doi.org/10.1007/s13311-017-0525-z] [PMID: 28324454]
[133]
Kumar A, Kim S, Su Y, et al. Brain cell-derived exosomes in plasma serve as neurodegeneration biomarkers in male cynomolgus monkeys self-administrating oxycodone. EBioMedicine 2021; 63: 103192.
[http://dx.doi.org/10.1016/j.ebiom.2020.103192] [PMID: 33418508]
[134]
Anthony IC, Norrby KE, Dingwall T, et al. Predisposition to accelerated Alzheimer-related changes in the brains of human immunodeficiency virus negative opiate abusers. Brain 2010; 133(12): 3685-98.
[http://dx.doi.org/10.1093/brain/awq263] [PMID: 21126996]
[135]
Dominy SS, Brown JN, Ryder MI, Gritsenko M, Jacobs JM, Smith RD. Proteomic analysis of saliva in HIV-positive heroin addicts reveals proteins correlated with cognition. PLoS One 2014; 9(4): e89366.
[http://dx.doi.org/10.1371/journal.pone.0089366] [PMID: 24717448]
[136]
Shahjin F, Guda RS, Schaal VL, et al. Brain-derived extracellular vesicle microRNA signatures associated with in utero and postnatal oxycodone exposure. Cells 2019; 9(1): 21-5.
[http://dx.doi.org/10.3390/cells9010021] [PMID: 31861723]
[137]
Hollander JA. Striatal microRNA controls cocaine intake through CREB signalling. Nature 2010; 466(7303): 197-202.
[138]
Carone C, Genedani S, Leo G, Filaferro M, Fuxe K, Agnati LF. in vitro effects of cocaine on tunneling nanotube formation and extracellular vesicle release in glioblastoma cell cultures. J Mol Neurosci 2015; 55(1): 42-50.
[http://dx.doi.org/10.1007/s12031-014-0365-9] [PMID: 24996625]
[139]
Liu Y, Li D, Liu Z, et al. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci Rep 2015; 5(1): 17543.
[http://dx.doi.org/10.1038/srep17543] [PMID: 26633001]
[140]
Sheykhhasan M, Amini R, Soleimani Asl S, Saidijam M, Hashemi SM, Najafi R. Neuroprotective effects of coenzyme Q10-loaded exosomes obtained from adipose-derived stem cells in a rat model of Alzheimer's disease. Biomed Pharmacother 2022; 152: 113224. Epub 2022 Jun 6.
[http://dx.doi.org/10.1016/j.biopha.2022.113224] [PMID: 35679720]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy