Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Influence of Supplementation of Ecklonia cava Polyphenols on Learning, Memory, and Brain Fatty Acid Composition in Mice

Author(s): Jung Woo Lee, Jung Im Lee and Sun Young Lim*

Volume 27, Issue 3, 2024

Published on: 07 September, 2023

Page: [446 - 454] Pages: 9

DOI: 10.2174/1386207326666230818092719

Price: $65

Abstract

Aims: The objective of this study was to determine the effects of intake of polyphenols from Ecklonia cava on spatial task performance and nervous fatty acid composition in mice fed with a high-fat diet.

Methods: Thirty mice were randomly divided into three groups; each group consisted of ten mice. The control group was fed 5% soybean oil as a fat source, whereas the high fat (HF) group was fed a 15% lard diet and the polyphenol (ECP) group was maintained on the HF diet plus 1% E. cava polyphenols.

Results: The ECP group exhibited a short escape latency and better memory retention in the Morris water maze test compared with the control and HF groups (P<0.05). In addition, the ECP group showed a greater increase in avoidance latency than that of the HF group (P<0.05). Moreover, the consumption of polyphenols from E. cava presented higher levels of DHA in the brain and retina (P<0.05).

Conclusion: This study suggested the positive effects of polyphenols from E. cava on memory retention, which might be partially attributed to the increased levels of DHA in the brain.

Graphical Abstract

[1]
Silva, T.H.; Alves, A.; Popa, E.G.; Reys, L.L.; Gomes, M.E.; Sousa, R.A.; Silva, S.S.; Mano, J.F.; Reis, R.L. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter, 2012, 2(4), 278-289.
[http://dx.doi.org/10.4161/biom.22947] [PMID: 23507892]
[2]
Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, Á.; Hernández-González, M.C.; Pereda, S.V.; Gomez-Pinchetti, J.L.; Golberg, A.; Tadmor-Shalev, N.; Critchley, A.T. Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol., 2017, 52(4), 391-406.
[http://dx.doi.org/10.1080/09670262.2017.1365175]
[3]
Bilan, M.I.; Zakharova, A.N.; Grachev, A.A.; Shashkov, A.S.; Nifantiev, N.E.; Usov, A.I. Polysaccharides of algae: 60. Fucoidan from the pacific brown alga Analipus japonicus (Harv.) winne (Ectocarpales, Scytosiphonaceae). Russ. J. Bioorganic Chem., 2007, 33(1), 38-46.
[http://dx.doi.org/10.1134/S1068162007010049]
[4]
Díaz-Rubio, M.E.; Pérez-Jiménez, J.; Saura-Calixto, F. Dietary fiber and antioxidant capacity in Fucus vesiculosus products. Int. J. Food Sci. Nutr., 2009, 60(S2), 23-34.
[http://dx.doi.org/10.1080/09637480802189643] [PMID: 18951280]
[5]
Zhang, Z.; Wang, F.; Wang, X.; Liu, X.; Hou, Y.; Zhang, Q. Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydr. Polym., 2010, 82(1), 118-121.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.031]
[6]
Ahn, M.J.; Yoon, K.D.; Min, S.Y.; Lee, J.S.; Kim, J.H.; Kim, T.G.; Kim, S.H.; Kim, N.G.; Huh, H.; Kim, J. Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biol. Pharm. Bull., 2004, 27(4), 544-547.
[http://dx.doi.org/10.1248/bpb.27.544] [PMID: 15056863]
[7]
Kang, H.S.; Chung, H.Y.; Kim, J.Y.; Son, B.W.; Jung, H.A.; Choi, J.S. Inhibitory phlorotannins from the edible brown alga Ecklonia stolonifera on total reactive oxygen species (ROS) generation. Arch. Pharm. Res., 2004, 27(2), 194-198.
[http://dx.doi.org/10.1007/BF02980106] [PMID: 15022722]
[8]
Kim, M.M.; Ta, Q.V.; Mendis, E.; Rajapakse, N.; Jung, W.K.; Byun, H.G.; Jeon, Y.J.; Kim, S.K. Phlorotannins in Ecklonia cava extract inhibit matrix metalloproteinase activity. Life. Sci., 2006, 79(15), 1436-1443.
[http://dx.doi.org/10.1016/j.lfs.2006.04.022] [PMID: 16737716]
[9]
Shin, H.C.; Hwang, H.J.; Kang, K.J.; Lee, B.H. An antioxidative and antiinflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm. Res., 2006, 29(2), 165-171.
[http://dx.doi.org/10.1007/BF02974279] [PMID: 16526282]
[10]
Beking, K.; Vieira, A. Flavonoid intake and disability-adjusted life years due to Alzheimer’s and related dementias: A population-based study involving twenty-three developed countries. Public Health Nutr., 2010, 13(9), 1403-1409.
[http://dx.doi.org/10.1017/S1368980009992990] [PMID: 20059796]
[11]
Commenges, D.; Scotet, V.; Renaud, S.; Jacqmin-Gadda, H.; Barberger-Gateau, P.; Dartigues, J.F. Intake of flavonoids and risk of dementia. Eur. J. Epidemiol., 2000, 16(4), 357-363.
[http://dx.doi.org/10.1023/A:1007614613771] [PMID: 10959944]
[12]
Nurk, E.; Refsum, H.; Drevon, C.A.; Tell, G.S.; Nygaard, H.A.; Engedal, K.; Smith, A.D. Intake of flavonoid-rich wine, tea, and chocolate by elderly men and women is associated with better cognitive test performance. J. Nutr., 2009, 139(1), 120-127.
[http://dx.doi.org/10.3945/jn.108.095182] [PMID: 19056649]
[13]
Letenneur, L.; Proust-Lima, C.; Le Gouge, A.; Dartigues, J.; Barberger-Gateau, P. Flavonoid intake and cognitive decline over a 10-year period. Am. J. Epidemiol., 2007, 165(12), 1364-1371.
[http://dx.doi.org/10.1093/aje/kwm036] [PMID: 17369607]
[14]
Haskell-Ramsay, C.; Jackson, P.; Dodd, F.; Forster, J.; Bérubé, J.; Levinton, C.; Kennedy, D. Acute pors-prandial cognitive effects of brown seaweed extract in humans. Nutrients, 2018, 10(1), 85.
[http://dx.doi.org/10.3390/nu10010085]
[15]
Myung, C.S.; Shin, H.C.; Bao, H.Y.; Yeo, S.J.; Lee, B.H.; Kang, J.S. Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: Possible involvement of the inhibition of acetylcholinesterase. Arch. Pharm. Res., 2005, 28(6), 691-698.
[http://dx.doi.org/10.1007/BF02969360] [PMID: 16042079]
[16]
Nho, J.A.; Shin, Y.S.; Jeong, H.R.; Cho, S.; Heo, H.J.; Kim, G.H.; Kim, D.O. Neuroprotective effects of phlorotannin-rich extract from brown seaweed Ecklonia cava on neuronal PC-12 and SH-SY5Y cells with oxidative stress. J. Microbiol. Biotechnol., 2020, 30(3), 359-367.
[http://dx.doi.org/10.4014/jmb.1910.10068] [PMID: 31752064]
[17]
Ounnas, F.; de Lorgeril, M.; Salen, P.; Laporte, F.; Calani, L.; Mena, P.; Brighenti, F.; Del Rio, D.; Demeilliers, C. Rye polyphenols and the metabolism of n-3 fatty acids in rats: a dose dependent fatty fish-like effect. Sci. Rep., 2017, 7(1), 40162.
[http://dx.doi.org/10.1038/srep40162] [PMID: 28071699]
[18]
Park, E.Y.; Kim, E.H.; Kim, M.H.; Seo, Y.W.; Lee, J.I.; Jun, H.S. Polyphenol-rich fraction of brown alga Ecklonia cava collected from gijian, Korea, reduces obesity and glucose levels in high-fat diet-induced obese mice. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/418912] [PMID: 22844333]
[19]
Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 1993, 123(11), 1939-1951.
[http://dx.doi.org/10.1093/jn/123.11.1939] [PMID: 8229312]
[20]
Lim, S.Y.; Choi, H.J. Effect of intake of dried mackerel on brain fatty acid composition and passive avoidance performance. Open Nutraceuti J., 2009, 2(1), 4-8.
[http://dx.doi.org/10.2174/1876396000902010004]
[21]
Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods, 1984, 11(1), 47-60.
[http://dx.doi.org/10.1016/0165-0270(84)90007-4] [PMID: 6471907]
[22]
Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 1957, 226(1), 497-509.
[http://dx.doi.org/10.1016/S0021-9258(18)64849-5] [PMID: 13428781]
[23]
Morrison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J. Lipid Res., 1964, 5(4), 600-608.
[http://dx.doi.org/10.1016/S0022-2275(20)40190-7] [PMID: 14221106]
[24]
Salem, N.; Reyzer, M.; Karanian, J. Losses of arachidonic acid in rat liver after alcohol inhalation. Lipids, 1996, (S31), S153-S156.
[http://dx.doi.org/10.1007/BF02637068]
[25]
Lakshmi, S.; Prakash, P.; Essa, M.M.; Qoronfleh, W.M.; Akbar, M.; Song, B.J.; Kumar, S.; Elumalai, P. Marine derived bioactive compounds for treatment of Alzheimer’s disease. Front. Biosci., 2018, 10(3), 537-548.
[PMID: 29772526]
[26]
Méndez, L.; Medina, I. Polyphenols and fish oils for improving metabolic health: A revision of the recent evidence for their combined nutraceutical effects. Molecules, 2021, 26(9), 2438.
[http://dx.doi.org/10.3390/molecules26092438] [PMID: 33922113]
[27]
Park, S.K.; Kang, J.Y.; Kim, J.M.; Yoo, S.K.; Han, H.J.; Chung, D.H.; Kim, D.O.; Kim, G.H.; Heo, H.J. Fucodian-rich substrates from Ecklonia cava improve trimethyltin-induced cognitive dysfunction via down-regulation of amyloid β production/tau hyperphosphorylation. Mar. Drugs, 2019, 17(10), 591.
[http://dx.doi.org/10.3390/md17100591] [PMID: 31627432]
[28]
Ramis, M.R.; Sarubbo, F.; Moranta, D.; Tejada, S.; Lladó, J.; Miralles, A.; Esteban, S. Cognitive and neurochemical changes following polyphenol-enriched diet in rats. Nutrients, 2020, 13(1), 59.
[http://dx.doi.org/10.3390/nu13010059] [PMID: 33375450]
[29]
Yoon, N.Y.; Chung, H.Y.; Kim, H.R.; Choi, J.S. Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish. Sci., 2008, 74(1), 200-207.
[http://dx.doi.org/10.1111/j.1444-2906.2007.01511.x]
[30]
Field, B.H.; Vadnal, R. Ginkgo biloba abd memory: An overview. Nutr. Neurosci., 1998, 1(4), 255-267.
[http://dx.doi.org/10.1080/1028415X.1998.11747236] [PMID: 27414695]
[31]
Martín, M.A.; Goya, L.; de Pascual-Teresa, S. Effect of cocoa and cocoa products on cognitive performance in young adult. Nutrients., 2020, 12(12), 3691.
[http://dx.doi.org/10.3390/nu12123691] [PMID: 33265948]
[32]
Andres-Lacueva, C.; Shukitt-Hale, B.; Galli, R.L.; Jauregui, O.; Lamuela-Raventos, R.M.; Joseph, J.A. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr. Neurosci., 2005, 8(2), 111-120.
[http://dx.doi.org/10.1080/10284150500078117] [PMID: 16053243]
[33]
Godos, J.; Caraci, F.; Castellano, S.; Currenti, W.; Galvano, F.; Ferri, R.; Grosso, G. Association between dietary flavonoids intake and cognitive function in an Italian cohort. Biomolecules, 2020, 10(9), 1300. a
[http://dx.doi.org/10.3390/biom10091300] [PMID: 32916935]
[34]
Godos, J.; Currenti, W.; Angelino, D.; Mena, P.; Castellano, S.; Caraci, F.; Galvano, F.; Del Rio, D.; Ferri, R.; Grosso, G. Diet and mental health: Review of the recent updates on molecular mechanisms. Antioxidants, 2020, 9(4), 346. b
[http://dx.doi.org/10.3390/antiox9040346] [PMID: 32340112]
[35]
Dyall, S.C.; Michael-Titus, A.T. Neurological benefits of omega-3 fatty acids. Neuromolecular Med., 2008, 10(4), 219-235.
[http://dx.doi.org/10.1007/s12017-008-8036-z] [PMID: 18543124]
[36]
Calder, P.C. Docosahexaenoic acid. Ann. Nutr. Metab., 2016, 69(S1), 8-21.
[http://dx.doi.org/10.1159/000448262] [PMID: 27842299]
[37]
Rodríguez-Cruz, M.; Serna, D.S. Nutrigenomics of ω-3 fatty acids: Regulators of the master transcription factors. Nutrition, 2017, 41(9), 90-96.
[http://dx.doi.org/10.1016/j.nut.2017.04.012]
[38]
Toufektsian, M.C.; Salen, P.; Laporte, F.; Tonelli, C.; de Lorgeril, M. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats. J. Nutr., 2011, 141(1), 37-41.
[http://dx.doi.org/10.3945/jn.110.127225] [PMID: 21068183]
[39]
Lankinen, M.; Schwab, U.; Gopalacharyulu, P.V.; Seppänen-Laakso, T.; Yetukuri, L.; Sysi-Aho, M.; Kallio, P.; Suortti, T.; Laaksonen, D.E.; Gylling, H.; Poutanen, K.; Kolehmainen, M. Orešič M. Dietary carbohydrate modification alters serum metabolic profiles in individuals with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis., 2010, 20(4), 249-257.
[http://dx.doi.org/10.1016/j.numecd.2009.04.009] [PMID: 19553094]
[40]
Maestre, R.; Douglass, J.D.; Kodukula, S.; Medina, I.; Storch, J. Alterations in the intestinal assimilation of oxidized PUFAs are ameliorated by a polyphenol-rich grape seed extract in an in vitro model and Caco-2 cells. J. Nutr., 2013, 143(3), 295-301.
[http://dx.doi.org/10.3945/jn.112.160101] [PMID: 23325921]
[41]
Gu, C.; Suleria, H.A.R.; Dunshea, F.R.; Howell, K. Dietary lipids influence bioaccessibility of polyphenols from black carrots and affect microbial diversity under simulated gastrointestinal digestion. Antioxidants, 2020, 9(8), 762.
[http://dx.doi.org/10.3390/antiox9080762] [PMID: 32824607]
[42]
Fernández-Fernández, L.; Comes, G.; Bolea, I.; Valente, T.; Ruiz, J.; Murtra, P.; Ramirez, B.; Anglés, N.; Reguant, J.; Morelló, J.R.; Boada, M.; Hidalgo, J.; Escorihuela, R.M.; Unzeta, M. LMN diet, rich in polyphenols and polyunsaturated fatty acids, improves mouse cognitive decline associated with aging and Alzheimer’s disease. Behav. Brain Res., 2012, 228(2), 261-271.
[http://dx.doi.org/10.1016/j.bbr.2011.11.014] [PMID: 22119712]
[43]
Fernández-Fernández, L.; Esteban, G.; Giralt, M.; Valente, T.; Bolea, I.; Solé, M.; Sun, P.; Benítez, S.; Morelló, J.R.; Reguant, J.; Ramírez, B.; Hidalgo, J.; Unzeta, M. Catecholaminergic and cholinergic systems of mouse brain are modulated by LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids. Food Funct., 2015, 6(4), 1251-1260.
[http://dx.doi.org/10.1039/C5FO00052A] [PMID: 25756794]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy