Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

FOXD3 Suppresses the Proliferation of CRC Bone Metastatic Cells via the Ras/Raf/MEK/ERK Signaling Pathway

Author(s): Kangwei Wang*, Yan Chu*, Hongqiang Zhang, Xinglong Qu, Bing Wang and Yu Han

Volume 27, Issue 3, 2024

Published on: 13 June, 2023

Page: [436 - 445] Pages: 10

DOI: 10.2174/1386207326666230505111008

Price: $65

Abstract

Background: The improvements in the treatment of colorectal cancer (CRC) and prolongation of survival time have improved the incidence of bone metastasis. Forkhead box D3 (FOXD3) is involved in the development of CRC. However, the role and mechanism of FOXD3 in CRC bone metastases development are unknown.

Objective: Using the combined bioinformatics and cytology experimental analyses, this study aimed to explore the mechanistic role of FOXD3 in the bone metastasis of colon cancer, thereby aiding in the treatment of colon cancer bone metastasis and identification of drug-targeting markers.

Methods: First, the changes in the expression levels of the FOXD3 gene and differentially expressed genes (DEGs) between the colon cancer samples and colon cancer metastases were obtained from The Cancer Genome Atlas (TCGA) database. Then, the correlations of the FOXD3 gene with the DEGs were identified. Next, the effects of the FOXD3 on the proliferation and invasion abilities of colon cancer bone metastatic cells were identified using Cell Counting Kit-8 (CCK8) and Transwell cell migration assays, respectively. In addition, Western blot analysis was used to identify the expression levels of the proteins related to the EGFR/Ras/Raf/MEK/ERK (EGFR/ERK) signaling pathway and epithelial-to-mesenchymal transition (EMT).

Results: FOXD3 was downregulated in colon cancer and could interact with multiple DEGs in colon cancer bone metastases. FOXD3 gene knockdown could increase the proliferation of human colon cancer bone metastatic cells and their invasive ability. FOXD3 gene knockdown could activate the expression of EGFR/ERK signaling pathway-related proteins and inhibit/promote the expression of EMT-related proteins, which in turn promoted the proliferation and metastasis of LoVo cells from colon cancer bone metastases.

Conclusion: Overall, this study demonstrated that the downregulation of the FOXD3 gene might promote the proliferation of colon cancer bone metastatic cell lines through the EGFR/ERK pathway and promote their migration through EMT, thereby serving as a promising therapeutic target.

Graphical Abstract

Animated Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[3]
Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J., 2022, 135(5), 584-590.
[http://dx.doi.org/10.1097/CM9.0000000000002108] [PMID: 35143424]
[4]
Jimi, S.; Yasui, T.; Hotokezaka, M.; Shimada, K.; Shinagawa, Y.; Shiozaki, H.; Tsutsumi, N.; Takeda, S. Clinical features and prognostic factors of bone metastases from colorectal cancer. Surg. Today, 2013, 43(7), 751-756.
[http://dx.doi.org/10.1007/s00595-012-0450-z] [PMID: 23224335]
[5]
Wang, J.; Li, S.; Liu, Y.; Zhang, C.; Li, H.; Lai, B. Metastatic patterns and survival outcomes in patients with stage IV colon cancer: A population‐based analysis. Cancer Med., 2020, 9(1), 361-373.
[http://dx.doi.org/10.1002/cam4.2673] [PMID: 31693304]
[6]
Kawamura, H.; Yamaguchi, T.; Yano, Y.; Hozumi, T.; Takaki, Y.; Matsumoto, H.; Nakano, D.; Takahashi, K. Characteristics and prognostic factors of bone metastasis in patients with colorectal cancer. Dis. Colon Rectum, 2018, 61(6), 673-678.
[http://dx.doi.org/10.1097/DCR.0000000000001071] [PMID: 29722726]
[7]
Salim, H.; Akbar, N.S.; Zong, D.; Vaculova, A.H.; Lewensohn, R.; Moshfegh, A.; Viktorsson, K.; Zhivotovsky, B. miRNA-214 modulates radiotherapy response of non-small cell lung cancer cells through regulation of p38MAPK, apoptosis and senescence. Br. J. Cancer, 2012, 107(8), 1361-1373.
[http://dx.doi.org/10.1038/bjc.2012.382] [PMID: 22929890]
[8]
Herman, L.; Todeschini, A.L.; Veitia, R.A. Forkhead transcription factors in health and disease. Trends Genet., 2021, 37(5), 460-475.
[http://dx.doi.org/10.1016/j.tig.2020.11.003] [PMID: 33303287]
[9]
Jin, Y.; Liang, Z.; Lou, H. The emerging roles of fox family transcription factors in chromosome replication, organization, and genome stability. Cells, 2020, 9(1), 258.
[http://dx.doi.org/10.3390/cells9010258] [PMID: 31968679]
[10]
Costa, R.; Muccioli, S.; Brillo, V.; Bachmann, M.; Szabò, I.; Leanza, L. Mitochondrial dysfunction interferes with neural crest specification through the FoxD3 transcription factor. Pharmacol. Res., 2021, 164, 105385.
[http://dx.doi.org/10.1016/j.phrs.2020.105385] [PMID: 33348025]
[11]
Zeng, Z.L.; Zhu, H.K.; He, L.F.; Xu, X.; Xie, A.; Zheng, E.K.; Ni, J.J.; Liu, J.T.; Zhao, G.F. Highly expressed lncRNA FOXD3-AS1 promotes non-small cell lung cancer progression via regulating miR-127-3p/mediator complex subunit 28 axis. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(5), 2525-2538.
[http://dx.doi.org/10.26355/eurrev_202003_20520] [PMID: 32196603]
[12]
Rosenbaum, S.R.; Knecht, M.; Mollaee, M.; Zhong, Z.; Erkes, D.A.; McCue, P.A.; Chervoneva, I.; Berger, A.C.; Lo, J.A.; Fisher, D.E.; Gershenwald, J.E.; Davies, M.A.; Purwin, T.J.; Aplin, A.E. FOXD3 regulates VISTA expression in melanoma. Cell Rep., 2020, 30(2), 510-524.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.12.036] [PMID: 31940493]
[13]
Zhao, H.; Chen, D.; Wang, J.; Yin, Y.; Gao, Q.; Zhang, Y. Downregulation of the transcription factor, FoxD3, is associated with lymph node metastases in invasive ductal carcinomas of the breast. Int. J. Clin. Exp. Pathol., 2014, 7(2), 670-676.
[PMID: 24551288]
[14]
Wu, H.; Shang, J.; Zhan, W.; Liu, J.; Ning, H.; Chen, N. miR-425-5p promotes cell proliferation, migration and invasion by directly targeting FOXD3 in hepatocellular carcinoma cells. Mol. Med. Rep., 2019, 20(2), 1883-1892.
[http://dx.doi.org/10.3892/mmr.2019.10427] [PMID: 31257522]
[15]
Wu, Q.; Shi, M.; Meng, W.; Wang, Y.; Hui, P.; Ma, J. Long noncoding RNA FOXD3‐AS1 promotes colon adenocarcinoma progression and functions as a competing endogenous RNA to regulate SIRT1 by sponging miR‐135a‐5p. J. Cell. Physiol., 2019, 234(12), 21889-21902.
[http://dx.doi.org/10.1002/jcp.28752] [PMID: 31058315]
[16]
Chen, Y.; Gao, H.; Li, Y. Inhibition of LncRNA FOXD3-AS1 suppresses the aggressive biological behaviors of thyroid cancer via elevating miR-296-5p and inactivating TGF-β1/Smads signaling pathway. Mol. Cell. Endocrinol., 2020, 500, 110634.
[http://dx.doi.org/10.1016/j.mce.2019.110634] [PMID: 31678422]
[17]
Tompers, D.M.; Foreman, R.K.; Wang, Q.; Kumanova, M.; Labosky, P.A. Foxd3 is required in the trophoblast progenitor cell lineage of the mouse embryo. Dev. Biol., 2005, 285(1), 126-137.
[http://dx.doi.org/10.1016/j.ydbio.2005.06.008] [PMID: 16039639]
[18]
Xiao, L.; Shan, Y.; Ma, L.; Dunk, C.; Yu, Y.; Wei, Y. Tuning FOXD3 expression dose-dependently balances human embryonic stem cells between pluripotency and meso-endoderm fates. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(12), 118531.
[http://dx.doi.org/10.1016/j.bbamcr.2019.118531] [PMID: 31415841]
[19]
Xie, X.; Xiong, G.; Chen, W.; Fu, H.; Li, M.; Cui, X. FOXD3 inhibits cell proliferation, migration, and invasion in nasopharyngeal carcinoma through regulation of the PI3K–Akt pathway. Biochem. Cell Biol., 2020, 98(6), 653-660.
[http://dx.doi.org/10.1139/bcb-2020-0011] [PMID: 32459973]
[20]
Xu, W.; Li, J.; Li, L.; Hou, T.; Cai, X.; Liu, T.; Yang, X.; Wei, H.; Jiang, C.; Xiao, J. FOXD3 suppresses tumor-initiating features in lung cancer via transcriptional repression of WDR5. Stem Cells, 2019, 37(5), 582-592.
[http://dx.doi.org/10.1002/stem.2984] [PMID: 30703266]
[21]
He, G.; Hu, S.; Zhang, D.; Wu, P.; Zhu, X.; Xin, S.; Lu, G.; Ding, Y.; Liang, L. Hypermethylation of FOXD3 suppresses cell proliferation, invasion and metastasis in hepatocellular carcinoma. Exp. Mol. Pathol., 2015, 99(2), 374-382.
[http://dx.doi.org/10.1016/j.yexmp.2015.06.017] [PMID: 26112097]
[22]
Chu, T.L.; Zhao, H.M.; Li, Y.; Chen, A.X.; Sun, X.; Ge, J. FoxD3 deficiency promotes breast cancer progression by induction of epithelial–mesenchymal transition. Biochem. Biophys. Res. Commun., 2014, 446(2), 580-584.
[http://dx.doi.org/10.1016/j.bbrc.2014.03.019] [PMID: 24632201]
[23]
Xu, M.; Zhu, J.; Liu, S.; Wang, C.; Shi, Q.; Kuang, Y.; Fang, X.; Hu, X. FOXD3, frequently methylated in colorectal cancer, acts as a tumor suppressor and induces tumor cell apoptosis under ER stress via p53. Carcinogenesis, 2020, 41(9), 1253-1262.
[http://dx.doi.org/10.1093/carcin/bgz198] [PMID: 31784734]
[24]
Yan, J.H.; Zhao, C.L.; Ding, L.B.; Zhou, X. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer. Biochem. Biophys. Res. Commun., 2015, 466(1), 111-116.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.116] [PMID: 26341266]
[25]
Liu, L.L.; Lu, S.X.; Li, M.; Li, L.Z.; Fu, J.; Hu, W.; Yang, Y.Z.; Luo, R.Z.; Zhang, C.Z.; Yun, J.P. FoxD3-regulated microRNA-137 suppresses tumour growth and metastasis in human hepatocellular carcinoma by targeting AKT2. Oncotarget, 2014, 5(13), 5113-5124.
[http://dx.doi.org/10.18632/oncotarget.2089] [PMID: 24970808]
[26]
Chen, X.; Gao, J.; Yu, Y.; Zhao, Z.; Pan, Y. LncRNA FOXD3-AS1 promotes proliferation, invasion and migration of cutaneous malignant melanoma via regulating miR-325/MAP3K2. Biomed. Pharmacother., 2019, 120, 109438.
[http://dx.doi.org/10.1016/j.biopha.2019.109438] [PMID: 31541886]
[27]
Degirmenci, U.; Wang, M.; Hu, J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells, 2020, 9(1), 198.
[http://dx.doi.org/10.3390/cells9010198] [PMID: 31941155]
[28]
Li, K.; Guo, Q.; Yang, J.; Chen, H.; Hu, K.; Zhao, J.; Zheng, S.; Pang, X.; Zhou, S.; Dang, Y.; Li, L. FOXD3 is a tumor suppressor of colon cancer by inhibiting EGFR-Ras-Raf-MEK-ERK signal pathway. Oncotarget, 2017, 8(3), 5048-5056.
[http://dx.doi.org/10.18632/oncotarget.13790] [PMID: 27926503]
[29]
Prahallad, A.; Sun, C.; Huang, S.; Di Nicolantonio, F.; Salazar, R.; Zecchin, D.; Beijersbergen, R.L.; Bardelli, A.; Bernards, R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature, 2012, 483(7387), 100-103.
[http://dx.doi.org/10.1038/nature10868] [PMID: 22281684]
[30]
Roberts, P.J.; Der, C.J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007, 26(22), 3291-3310.
[http://dx.doi.org/10.1038/sj.onc.1210422] [PMID: 17496923]
[31]
Yin, H.; Meng, T.; Zhou, L.; Zhao, F.; Li, X.; Li, Y.; Hu, M.; Chen, H.; Song, D. FOXD3 regulates anaplastic thyroid cancer progression. Oncotarget, 2017, 8(20), 33644-33651.
[http://dx.doi.org/10.18632/oncotarget.16853] [PMID: 28430585]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy