Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

TiO2/SO42- Solid Superacid: A Rapid, Solventless, Recoverable Nanocatalyst for Eco-Friendly Synthesis of Piperidin-4-one Oximes

Author(s): Narayanasamy Nivetha, Arumugam Thangamani* and Pandian Bothi Raja

Volume 27, Issue 11, 2023

Published on: 18 September, 2023

Page: [967 - 978] Pages: 12

DOI: 10.2174/1385272827666230817144738

Price: $65

Abstract

A potent, eco-friendly approach for converting 2,6-arylpiperidin-4-ones into their corresponding oximes in the presence of hydroxylamine hydrochloride and catalysed by nanosize sulfated titania (TiO2/SO42-) solid superacid was developed. Sol-gel method was employed to synthesize the catalyst and confirmed standard characterization techniques viz., by FT-IR, XRD, TEM, SEM, and EDS analysis. After adding 0.05 g of catalyst, the reaction was carried out under stirring in an oil bath at 130°C for 3-7 min under solvent-free conditions. This approach has advantages like catalyst recyclability, high yields, shorter reaction time, and simple work-up. Additionally, the catalyst TiO2/SO42- exhibited good stability, recoverability, and reusability for five consecutive runs without tremendous loss in its catalytic activity. The compounds 3a-o were characterised by IR, 1H and 13C NMR spectral analysis. The coupling constant values in NMR results suggested that the compounds 3a-o exhibit chair conformation with equatorial orientations with all the substituents. This is in agreement with the X-ray crystallography of 3c, confirming that the chair conformation of =N-OH group is syn to C-5 and anti to benzyl group at C-3 and hence if forms more stable (E)-configuration of the oxime 3c.

Graphical Abstract

[1]
José Climent, M.; Corma, A.; Iborra, S. Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Advances, 2012, 2(1), 16-58.
[http://dx.doi.org/10.1039/C1RA00807B]
[2]
Baig, R.B.N.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun., 2013, 49(8), 752-770.
[http://dx.doi.org/10.1039/C2CC35663E] [PMID: 23212208]
[3]
Montazeri, H.; Amani, A.; Shahverdi, H.R.; Haratifar, E.; Shahverdi, A.R. Separation of the defect-free Fe3O4-Au core/shell fraction from magnetite-gold composite nanoparticles by an acid wash treatment. J. Nanostructure Chem., 2013, 3(1), 25.
[http://dx.doi.org/10.1186/2193-8865-3-25]
[4]
Nivetha, N.; Thangamani, A.; Velmathi, S. Sulfated titania (TiO2-SO42-) as an efficient catalyst for organic synthesis: Overarching review from 2000 to 2021. ChemistrySelect, 2022, 7(22), e202104505.
[http://dx.doi.org/10.1002/slct.202104505]
[5]
Afshar, S.; Sadehvand, M.; Azad, A.; Dekamin, M.G.; Jalali-Heravi, M.; Mollahosseini, A.; Amani, M.; Tadjarodi, A. Optimization of catalytic activity of sulfated titania for efficient synthesis of isoamyl acetate by response surface methodology. Monatsh. Chem., 2015, 146(12), 1949-1957.
[http://dx.doi.org/10.1007/s00706-015-1533-5]
[6]
Shera Farisya, M.R.; Irmawati, R.; Shafizah, I.N.; Taufiq-Yap, Y.H.; Muhamad, E.N.; Lee, S.L.; Salamun, N. Assessment on the effect of sulfuric acid concentration on physicochemical properties of sulfated-titania catalyst and glycerol acetylation performance. Catalysts, 2021, 11(12), 1542.
[http://dx.doi.org/10.3390/catal11121542]
[7]
Dabbawala, A.A.; Alhassan, S.M.; Mishra, D.K.; Jegal, J.; Hwang, J.S. Solvent free cyclodehydration of sorbitol to isosorbide over mesoporous sulfated titania with enhanced catalytic performance. Mol. Catal., 2018, 454, 77-86.
[http://dx.doi.org/10.1016/j.mcat.2018.05.009]
[8]
Zhao, H.; Jiang, P.; Dong, Y.; Huang, M.; Liu, B. A high-surface-area mesoporous sulfated nano-titania solid superacid catalyst with exposed (101) facets for esterification: Facile preparation and catalytic performance. New J. Chem., 2014, 38(9), 4541-4548.
[http://dx.doi.org/10.1039/C4NJ00494A]
[9]
Nakhate, A.V.; Doke, S.M.; Yadav, G.D. Template assisted synthesis of nanocrystalline sulfated titania: Active and robust catalyst for regioselective ring opening of epoxide with aniline and kinetic modelling. Ind. Eng. Chem. Res., 2016, 55(41), 10829-10838.
[http://dx.doi.org/10.1021/acs.iecr.6b02619]
[10]
Raj, K.J.A.; Viswanathan, B. Single-step synthesis and structural study of mesoporous sulfated titania nanopowder by a controlled hydrolysis process. ACS Appl. Mater. Interfaces, 2009, 1(11), 2462-2469.
[http://dx.doi.org/10.1021/am900437u] [PMID: 20356115]
[11]
Livage, J.; Henry, M.; Sanchez, C. Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem., 1988, 18(4), 259-341.
[http://dx.doi.org/10.1016/0079-6786(88)90005-2]
[12]
Geetha, S.; Thangamani, A.; Valliappan, R.; Vedanayaki, S.; Ganapathi, A. Sulfated titania (TiO2-SO42−) as an efficient and reusable solid acid catalyst for the multi-component synthesis of highly functionalized piperidines. Chem. Data Collect., 2020, 30, 100565.
[http://dx.doi.org/10.1016/j.cdc.2020.100565]
[13]
Geetha, S.; Thangamani, A.; Valliappan, R.; Vedanayaki, S.; Ganapathi, A. TiO2-SO42− A recyclable heterogeneous catalyst for the microwave-mediated synthesis of benzylamino coumarin derivatives in water. Chem. Data Collect., 2020, 30, 100589.
[http://dx.doi.org/10.1016/j.cdc.2020.100589]
[14]
Sandier, S.R.; Karo, W. Organic Functional Group Preparations, 2nd ed; Academic Press: San Diego, 1989, pp. 431-476.
[15]
Greene, T.W.; Wuts, P.G.M. Protective Groups in Organic Synthesis, 3rd ed; Wiley: Toronto, 1999, pp. 355-358.
[http://dx.doi.org/10.1002/0471220574]
[16]
Negi, S.; Matsukura, M.; Mizuno, M.; Miyake, K.; Minami, N. Synthesis of (2R)-1-(4-chloro-2-pyridyl)-2-(2-pyridyl)ethylamine: A selective oxime reduction and crystallization-induced asymmetric transformation. Synthesis, 1996, 1996(8), 991-996.
[http://dx.doi.org/10.1055/s-1996-4325]
[17]
Singh, S.K.D.R.; Kumar, A.; Kumar, A. One pot synthesis of nitriles from aldehydes and hydroxylamine hydrochloride using sodium sulphate (anhyd) and sodium bicarbonate in dry media under microwave irradiation. Arkivoc, 2005, 2006(2), 41-44.
[http://dx.doi.org/10.3998/ark.5550190.0007.204]
[18]
Smith, P.A.S.; Gloyer, S.E. Oxidation of dibenzylhydroxylamines to nitrones. Effects of structure and oxidizing agent on composition of the products. J. Org. Chem., 1975, 40(17), 2508-2512.
[http://dx.doi.org/10.1021/jo00905a019]
[19]
Dave, P.R.; Forohar, F.; Axenrod, T.; Das, K.K.; Qi, L.; Watnick, C.; Yazdekhasti, H. Facile preparation of 3,7-diazobicyclo[3.3.0]octane and 3,7,10-triheterocyclic[3.3.3]propellane ring systems from 1,5-diazocyclooctane-3,7-derivatives. J. Org. Chem., 1996, 61(25), 8897-8903.
[http://dx.doi.org/10.1021/jo9614755] [PMID: 11667870]
[20]
Ballistreri, F.; Barbuzzi, E.; Tomaselli, G.; Toscano, R. Useful oxidation procedure of oximes to nitro compounds with Benz-Mo in acetonitrile. Synlett, 1996, 1996(11), 1093-1094.
[http://dx.doi.org/10.1055/s-1996-5666]
[21]
Narasaka, K. Synthesis of azaheterocycles from oxime derivatives. Pure Appl. Chem., 2003, 75(1), 19-28.
[http://dx.doi.org/10.1351/pac200375010019]
[22]
Whitesell, J.K.; Whitesell, M.A. Alkylation of ketones and aldehydes via their nitrogen derivatives. Synthesis, 1983, 1983(7), 517-536.
[http://dx.doi.org/10.1055/s-1983-30409]
[23]
Ramalingan, C.; Park, Y.T. Mercury-catalyzed rearrangement of ketoximes into amides and lactams in acetonitrile. J. Org. Chem., 2007, 72(12), 4536-4538.
[http://dx.doi.org/10.1021/jo070297k] [PMID: 17480096]
[24]
Furuya, Y.; Ishihara, K.; Yamamoto, H. Cyanuric chloride as a mild and active Beckmann rearrangement catalyst. J. Am. Chem. Soc., 2005, 127(32), 11240-11241.
[http://dx.doi.org/10.1021/ja053441x] [PMID: 16089442]
[25]
Song, B.A.; Liu, X.H.; Yang, S.; Hu, D.Y.; Jin, L.H.; Zhang, Y.T. Recent advance in synthesis and biological activity of oxime derivatives. Youji Huaxue, 2005, 25(5), 507-525.
[26]
Metzger, J.O. Solvent-free organic syntheses. Angew. Chem. Int. Ed., 1998, 37(21), 2975-2978.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981116)37:21<2975:AID-ANIE2975>3.0.CO;2-A] [PMID: 29711128]
[27]
Tanaka, K.; Toda, F. Solvent-free organic synthesis. Chem. Rev., 2000, 100(3), 1025-1074.
[http://dx.doi.org/10.1021/cr940089p] [PMID: 11749257]
[28]
Kad, G.L.; Bhandari, M.; Kaur, J.; Rathee, R.; Singh, J. Solventless preparation of oximes in the solid state and via microwave irradiation. Green Chem., 2001, 3(6), 275-277.
[http://dx.doi.org/10.1039/b107356g]
[29]
Ren, R.X.; Ou, W. Preparation of cyclic ketoximes using aqueous hydroxylamine in ionic liquids. Tetrahedron Lett., 2001, 42(48), 8445-8446.
[http://dx.doi.org/10.1016/S0040-4039(01)01851-2]
[30]
Damljanović I.; Vukićević M.; Vukićević R.D. A simple synthesis of oximes. Monatsh. Chem., 2006, 137(3), 301-305.
[http://dx.doi.org/10.1007/s00706-005-0427-3]
[31]
Song, F.; Liu, Y.; Wang, L.; Zhang, H.; He, M.; Wu, P. Highly selective synthesis of methyl ethyl ketone oxime through ammoximation over Ti-MWW. Appl. Catal. A Gen., 2007, 327(1), 22-31.
[http://dx.doi.org/10.1016/j.apcata.2007.04.025]
[32]
Zang, H.; Wang, M.; Cheng, B.W.; Song, J. Ultrasound-promoted synthesis of oximes catalyzed by a basic ionic liquid [bmIm]OH. Ultrason. Sonochem., 2009, 16(3), 301-303.
[http://dx.doi.org/10.1016/j.ultsonch.2008.09.003] [PMID: 18977162]
[33]
Sridhar, M.; Narsaiah, C.; Raveendra, J.; Kondal Reddy, G.; Kishore Kumar Reddy, M.; China Ramanaiah, B. Efficient microwave-assisted synthesis of oximes from acetohydroxamic acid and carbonyl compounds using BF3•OEt2 as the catalyst. Tetrahedron Lett., 2011, 52(36), 4701-4704.
[http://dx.doi.org/10.1016/j.tetlet.2011.07.015]
[34]
Kurbah, S.D. One pot synthesis of oximes from carbonyl compounds catalysed by Vanadium(V) complex. Curr. Catal., 2022, 11(2), 127-133.
[http://dx.doi.org/10.2174/2211544712666230103163911]
[35]
Aridoss, G.; Amirthaganesan, S.; Ashok Kumar, N.; Kim, J.T.; Lim, K.T.; Kabilan, S.; Jeong, Y.T. A facile synthesis, antibacterial, and antitubercular studies of some piperidin-4-one and tetrahydropyridine derivatives. Bioorg. Med. Chem. Lett., 2008, 18(24), 6542-6548.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.045] [PMID: 18952418]
[36]
El-Subbagh, H.I.; Abu-Zaid, S.M.; Mahran, M.A.; Badria, F.A.; Al-Obaid, A.M. Synthesis and biological evaluation of certain αβ-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. J. Med. Chem., 2000, 43(15), 2915-2921.
[http://dx.doi.org/10.1021/jm000038m] [PMID: 10956199]
[37]
Ramalingan, C.; Park, Y.T.; Kabilan, S. Synthesis, stereochemistry, and antimicrobial evaluation of substituted piperidin-4-one oxime ethers. Eur. J. Med. Chem., 2006, 41(6), 683-696.
[http://dx.doi.org/10.1016/j.ejmech.2006.02.005] [PMID: 16600438]
[38]
Aridoss, G.; Balasubramanian, S.; Parthiban, P.; Kabilan, S. Synthesis, stereochemistry and antimicrobial evaluation of some N-morpholinoacetyl-2,6-diarylpiperidin-4-ones. Eur. J. Med. Chem., 2007, 42(6), 851-860.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.005] [PMID: 17275965]
[39]
Baracu, I.; Dobre, V.; Niculescu-Duvaz, I. Potential anticancer agents. XXVI. Spin labelled nitrosoureas. J. Prakt. Chem., 1985, 327(4), 667-674.
[http://dx.doi.org/10.1002/prac.19853270418]
[40]
Aridoss, G.; Parthiban, P.; Ramachandran, R.; Prakash, M.; Kabilan, S.; Jeong, Y.T. Synthesis and spectral characterization of a new class of N-(N-methylpiperazinoacetyl)-2,6-diarylpiperidin-4-ones: Antimicrobial, analgesic and antipyretic studies. Eur. J. Med. Chem., 2009, 44(2), 577-592.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.031] [PMID: 18485539]
[41]
Tripathi, P.; Tripathi, A.C.; Chawla, V.; Saraf, S.K. Syntheses, characterization and evaluation of novel 2,6-diarylpiperidin-4-ones as potential analgesic-antipyretic agents. Eur. J. Med. Chem., 2014, 82, 439-448.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.080] [PMID: 24929294]
[42]
Pavadai, P.; Ramalingam, S.; Panneerselvam, T.; Kunjiappan, S.; Perumal, P.; Mani, V.; Saravanan, G.; Alagarasamy, V.; Ammunje, D.N.; Chimakurthy, J. Synthesis of piperidine-4-one derivative containing dipeptides: An acetylcholinesterase and β-secretase inhibitor. Antiinfect. Agents, 2019, 17(1), 1-9.
[http://dx.doi.org/10.2174/2211352517666190405155505]
[43]
Zhang, L.; Yang, M.; Song, Y.; Sun, Z.; Peng, Y.; Qu, K.; Zhu, H. Antihypertensive effect of 3,3,5,5-tetramethyl-4-piperidone, a new compound extracted from Marasmius androsaceus. J. Ethnopharmacol., 2009, 123(1), 34-39.
[http://dx.doi.org/10.1016/j.jep.2009.02.033] [PMID: 19429336]
[44]
Rameshkumar, N.; Veena, A.; Ilavarasan, R.; Adiraj, M.; Shanmugapandiyan, P.; Sridhar, S.K. Synthesis and biological activities of 2,6-diaryl-3-methyl-4-piperidone derivatives. Biol. Pharm. Bull., 2003, 26(2), 188-193.
[http://dx.doi.org/10.1248/bpb.26.188] [PMID: 12576678]
[45]
Ouf, S.A.; Gomha, S.M.; Eweis, M.; Ouf, A.S.; Sharawy, I.A. Efficiency of newly prepared thiazole derivatives against some cutaneous fungi. Bioorg. Med. Chem., 2018, 26(12), 3287-3295.
[http://dx.doi.org/10.1016/j.bmc.2018.04.056] [PMID: 29729988]
[46]
Ouf, S.A.; Gomha, S.M.; Ewies, M.M.; Sharawy, I.A.A. Synthesis, characterization, and antifungal activity evaluation of some novel arylazothiazoles. J. Heterocycl. Chem., 2018, 55(1), 258-264.
[http://dx.doi.org/10.1002/jhet.3040]
[47]
Ganellin, C.R.; Spickett, R.G.W. Compounds affecting the central nervous system. I. 4-Piperidones and related compounds. J. Med. Chem., 1965, 8(5), 619-625.
[http://dx.doi.org/10.1021/jm00329a015] [PMID: 5867943]
[48]
Aridoss, G.; Balasubramanian, S.; Parthiban, P.; Kabilan, S. Synthesis and in vitro microbiological evaluation of imidazo(4,5-b)pyridinylethoxypiperi-dones. Eur. J. Med. Chem., 2006, 41(2), 268-275.
[http://dx.doi.org/10.1016/j.ejmech.2005.10.014] [PMID: 16380194]
[49]
Kassa, J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J. Toxicol. Clin. Toxicol., 2002, 40(6), 803-816.
[http://dx.doi.org/10.1081/CLT-120015840] [PMID: 12475193]
[50]
Gohari, G.; Mohammadi, A.; Akbari, A.; Panahirad, S.; Dadpour, M.R.; Fotopoulos, V.; Kimura, S. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci. Rep., 2020, 10(1), 912.
[http://dx.doi.org/10.1038/s41598-020-57794-1] [PMID: 31969653]
[51]
Weissermer, K.; Arpe, H.J. Industrial Organic Chemistry; Springer Verlag: Berlin, 1978, pp. 222-225.
[52]
Jencks, W.P. Studies on the mechanism of oxime and semicarbazone formation. J. Am. Chem. Soc., 1959, 81(2), 475-481.
[http://dx.doi.org/10.1021/ja01511a053]
[53]
Miller, P.; Kaufman, D.H. Mild and efficient dehydration of oximes to nitriles mediated by the burgess reagent. Synlett, 2000, 2000(8), 1169-1171.
[http://dx.doi.org/10.1055/s-2000-6752]
[54]
Sharghi, H.; Sarvari, M.H. A mild and versatile method for the preparation of oximes by use of calcium oxide. J. Chem. Res., 2000, 2000(1), 24-25.
[http://dx.doi.org/10.3184/030823400103165545]
[55]
Tvarłzˇková, Z.; Habersberger, K.; Zˇilkova, N.; Jírł P. Role of surface complexes on titanium-silicate in the ammoximation of cyclohexanone with hydrogen peroxide. Appl. Catal. A Gen., 1991, 79(1), 105-114.
[http://dx.doi.org/10.1016/0926-860X(91)85009-M]
[56]
Pandiarajan, K.; Mohan, R.T.S.; Hasan, M.U. 13C and 1H NMR spectral studies of some piperidin-4-one oximes. Magn. Reson. Chem., 1986, 24(4), 312-316.
[http://dx.doi.org/10.1002/mrc.1260240409]
[57]
Lambert, J.B.; Netzel, D.A.; Sun, H.N.; Lilianstrom, K.K. Carbon-13 chemical shifts of the pentamethylene heterocycles. J. Am. Chem. Soc., 1976, 98(13), 3778-3783.
[http://dx.doi.org/10.1021/ja00429a007]
[58]
Jayabharathi, J.; Thangamani, A.; Balamurugan, S.; Thiruvalluvar, A.; Linden, A. t-3-Benzyl-r-2, c-6-bis(4-methoxyphenyl)piperidin-4-one oxime. Acta Crystallogr. Sect. E Struct. Rep. Online, 2008, 64(7), o1211.
[http://dx.doi.org/10.1107/S1600536808016449] [PMID: 21202850]
[59]
Ravi, K.; Krishnakumar, B.; Swaminathan, M. An expeditious and solvent-free synthesis of substituted pyrroles using sulfated anatase-titania as a solid acid catalyst. Bull. Chem. Soc. Jpn., 2013, 86(3), 370-375.
[http://dx.doi.org/10.1246/bcsj.20120221]
[60]
Karmakar, B.; Nayak, A.; Banerji, J. Sulfated titania catalyzed water mediated efficient synthesis of dicoumarols-a green approach. Tetrahedron Lett., 2012, 53(33), 4343-4346.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.024]
[61]
Thangamani, A. Synthesis and conformational study of some N-nitroso-t(3)-benzyl-r(2), c(6)-bis(aryl)piperidin-4-one oximes using NMR spectra. J. Mol. Struct., 2020, 1221, 128810.
[http://dx.doi.org/10.1016/j.molstruc.2020.128810]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy