Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Curcumin as a Potential Phytoconstituent used for Cancer Treatment: An Overview

Author(s): Gurleen Kaur, Sujit Bose*, Tanushka Kataria, Ankit Tyagi, Keshav Singla, Sakshi Sharma, Silpa Ghosh and Chandan Bhogendra Jha

Volume 14, Issue 3, 2024

Published on: 28 August, 2023

Article ID: e160823219803 Pages: 13

DOI: 10.2174/2210315514666230816095321

Price: $65

conference banner
Abstract

Background: Cancer is one of the leading causes of death worldwide. Therapy for cancer has remained a challenge for a very long period of time, though developments of various treatment strategies have been introduced. However, Curcuma longa L (Turmeric) attains major attention to cure cancer due to its phytoconstituents which can be used in the treatment of various cancers. Due to the wide availability and minimal adverse effects, curcumin has become a source of significant interest in research for cancer treatment which can lead to heavy cost cut off in the treatment.

Objective: In this review article, the anti-cancer properties of curcumin in the treatment of cancer are highlighted.

Conclusion: Scientists from all over the world have been interested in curcumin, a polyphenol isolated from Curcuma longa, for its biological properties, the most well-known of which is its ability to fight cancer. It is one of the most promising classes of bioactive natural substances, particularly in the treatment of various cancer types. Curcumin demonstrates anticancer properties. To overcome the limitation of curcumin numerous studies, analysis, and research has been already completed and many are still going on. The use of curcumin either alone or in combination might alter the treatment of cancer.

Graphical Abstract

[1]
Calì, B.; Molon, B.; Viola, A. Tuning cancer fate: The unremitting role of host immunity. Open Biol., 2017, 7(4), 170006.
[http://dx.doi.org/10.1098/rsob.170006] [PMID: 28404796]
[2]
Atun, R.; Jaffray, D.A.; Barton, M.B.; Bray, F.; Baumann, M.; Vikram, B.; Hanna, T.P.; Knaul, F.M.; Lievens, Y.; Lui, T.Y.M.; Milosevic, M.; O’Sullivan, B.; Rodin, D.L.; Rosenblatt, E.; Van Dyk, J.; Yap, M.L.; Zubizarreta, E.; Gospodarowicz, M. Expanding global access to radiotherapy. Lancet Oncol., 2015, 16(10), 1153-1186.
[http://dx.doi.org/10.1016/S1470-2045(15)00222-3] [PMID: 26419354]
[3]
Sathishkumar, K.; Chaturvedi, M.; Das, P.; Stephen, S.; Mathur, P. Cancer incidence estimates for 2022 & projection for 2025: Result from national cancer registry programme, India. Indian J. Med. Res., 2022, 156(4&5), 598-607.
[PMID: 36510887]
[4]
Kuryk, L.; Bertinato, L.; Staniszewska, M.; Pancer, K.; Wieczorek, M.; Salmaso, S.; Caliceti, P.; Garofalo, M. From conventional therapies to immunotherapy: Melanoma treatment in review. Cancers, 2020, 12(10), 3057.
[http://dx.doi.org/10.3390/cancers12103057] [PMID: 33092131]
[5]
Clapp, R.W.; Jacobs, M.M.; Loechler, E.L. Environmental and occupational causes of cancer: New evidence 2005-2007. Rev. Environ. Health, 2008, 23(1), 1-38.
[http://dx.doi.org/10.1515/REVEH.2008.23.1.1] [PMID: 18557596]
[6]
Tajan, M.; Vousden, K.H. Dietary approaches to cancer therapy. Cancer Cell, 2020, 37(6), 767-785.
[http://dx.doi.org/10.1016/j.ccell.2020.04.005] [PMID: 32413275]
[7]
Pandya, P.H.; Murray, M.E.; Pollok, K.E.; Renbarger, J.L. The immune system in cancer pathogenesis: Potential therapeutic approaches. J. Immunol. Res., 2016, 2016, 1-13.
[http://dx.doi.org/10.1155/2016/4273943] [PMID: 28116316]
[8]
Chow, M.T.; Möller, A.; Smyth, M.J. Inflammation and immune surveillance in cancer. Semin. Cancer Biol., 2012, 22(1), 23-32.
[http://dx.doi.org/10.1016/j.semcancer.2011.12.004] [PMID: 22210181]
[9]
Chidambaram, M.; Manavalan, R.; Kathiresan, K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharm. Sci., 2011, 14(1), 67-77.
[http://dx.doi.org/10.18433/J30C7D] [PMID: 21501554]
[10]
Zhang, J.; Li, X.; Huang, L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv. Drug Deliv. Rev., 2020, 154-155, 245-273.
[http://dx.doi.org/10.1016/j.addr.2020.05.006] [PMID: 32473991]
[11]
Rich, J.N.; Bao, S. Chemotherapy and cancer stem cells. Cell Stem Cell, 2007, 1(4), 353-355.
[http://dx.doi.org/10.1016/j.stem.2007.09.011] [PMID: 18371369]
[12]
Nygren, P. What is cancer chemotherapy? Acta Oncol., 2001, 40(2-3), 166-174.
[http://dx.doi.org/10.1080/02841860151116204] [PMID: 11441929]
[13]
Wyld, L.; Audisio, R.A.; Poston, G.J. The evolution of cancer surgery and future perspectives. Nat. Rev. Clin. Oncol., 2015, 12(2), 115-124.
[http://dx.doi.org/10.1038/nrclinonc.2014.191] [PMID: 25384943]
[14]
Omura, K. Current status of oral cancer treatment strategies: Surgical treatments for oral squamous cell carcinoma. Int. J. Clin. Oncol., 2014, 19(3), 423-430.
[http://dx.doi.org/10.1007/s10147-014-0689-z] [PMID: 24682763]
[15]
Yang, Y. Cancer immunotherapy: Harnessing the immune system to battle cancer. J. Clin. Invest., 2015, 125(9), 3335-3337.
[http://dx.doi.org/10.1172/JCI83871] [PMID: 26325031]
[16]
Richmond, J.P.; Kelly, M.G.; Johnston, A.; Murphy, P.J.; Murphy, A.W. Current management of adults receiving oral anti-cancer medications: A scoping review. Eur. J. Oncol. Nurs., 2021, 54, 102015.
[http://dx.doi.org/10.1016/j.ejon.2021.102015] [PMID: 34500319]
[17]
Srivastava, R.; Tiwari, P. Medicinal plant used against cancer: A review. Asian j. pharm. res. dev, 2022, 10(4), pdf.
[http://dx.doi.org/10.22270/ajprd.v10i4.1150]
[18]
Reza Nazifi, S.M.; Asgharshamsi, M.H.; Dehkordi, M.M.; Zborowski, K.K. Antioxidant properties of Aloe vera components: A DFT theoretical evaluation. Free Radic. Res., 2019, 53(8), 922-931.
[http://dx.doi.org/10.1080/10715762.2019.1648798] [PMID: 31357895]
[19]
Thomson, M.; Ali, M. Garlic [Allium sativum]: A review of its potential use as an anti-cancer agent. Curr. Cancer Drug Targets, 2003, 3(1), 67-81.
[http://dx.doi.org/10.2174/1568009033333736] [PMID: 12570662]
[20]
Mandlik Ingawale, D.S.; Namdeo, A.G. Pharmacological evaluation of Ashwagandha highlighting its healthcare claims, safety, and toxicity aspects. J. Diet. Suppl., 2021, 18(2), 183-226.
[http://dx.doi.org/10.1080/19390211.2020.1741484] [PMID: 32242751]
[21]
Imenshahidi, M.; Hosseinzadeh, H. Berberis vulgaris and berberine: An update review. Phytother. Res., 2016, 30(11), 1745-1764.
[http://dx.doi.org/10.1002/ptr.5693] [PMID: 27528198]
[22]
Amekyeh, H.; Alkhader, E.; Sabra, R.; Billa, N. Prospects of curcumin nanoformulations in cancer management. Molecules, 2022, 27(2), 361.
[http://dx.doi.org/10.3390/molecules27020361] [PMID: 35056675]
[23]
Perrone, D.; Ardito, F.; Giannatempo, G.; Dioguardi, M.; Troiano, G.; Lo Russo, L.; De Lillo, A.; Laino, L.; Lo Muzio, L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med., 2015, 10(5), 1615-1623.
[http://dx.doi.org/10.3892/etm.2015.2749] [PMID: 26640527]
[24]
Liu, S.; Zhang, M.; Feng, F.; Tian, Z. Toward a “green revolution” for soybean. Mol. Plant, 2020, 13(5), 688-697.
[http://dx.doi.org/10.1016/j.molp.2020.03.002] [PMID: 32171732]
[25]
Baliga, M.S.; Dsouza, J.J. Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur. J. Cancer Prev., 2011, 20(3), 225-239.
[http://dx.doi.org/10.1097/CEJ.0b013e32834473f4] [PMID: 21317655]
[26]
Cohen, M. Tulsi - Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med., 2014, 5(4), 251-259.
[http://dx.doi.org/10.4103/0975-9476.146554] [PMID: 25624701]
[27]
Zhang, M.; Zhao, R.; Wang, D.; Wang, L.; Zhang, Q.; Wei, S.; Lu, F.; Peng, W.; Wu, C. Ginger (ZINGIBER OFFICINALE Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother. Res., 2021, 35(2), 711-742.
[http://dx.doi.org/10.1002/ptr.6858] [PMID: 32954562]
[28]
Aung, H.T.; Zar, T.; Sein, M.M.; Komori, Y.; Vidari, G.; Takaya, Y. Constituents of Aegle marmelos from Myanmar. J. Asian Nat. Prod. Res., 2021, 23(9), 844-850.
[http://dx.doi.org/10.1080/10286020.2020.1804378] [PMID: 32851864]
[29]
de Oliveira Zanuso, B.; de Oliveira dos Santos, A.R.; Miola, V.F.B.; Guissoni Campos, L.M.; Spilla, C.S.G.; Barbalho, S.M. Panax ginseng and aging related disorders: A systematic review. Exp. Gerontol., 2022, 161, 111731.
[http://dx.doi.org/10.1016/j.exger.2022.111731] [PMID: 35143871]
[30]
Verma, D.K.; G, K.; Kumar, P.; El-Shazly, M. Unmasking the many faces of giloy (Tinosporac cordifolia L.): A fresh look on its phytochemical and medicinal properties. Curr. Pharm. Des., 2021, 27(22), 2571-2581.
[http://dx.doi.org/10.2174/1381612826666200625111530] [PMID: 32586250]
[31]
Al Sinani, S.S.; Eltayeb, E.A.; Coomber, B.L.; Adham, S.A. Solamargine triggers cellular necrosis selectively in different types of human melanoma cancer cells through extrinsic lysosomal mitochondrial death pathway. Cancer Cell Int., 2016, 16(1), 11.
[http://dx.doi.org/10.1186/s12935-016-0287-4] [PMID: 26889092]
[32]
Woźniak, Ł.; Skąpska, S.; Marszałek, K. Ursolic acid—a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules, 2015, 20(11), 20614-20641.
[http://dx.doi.org/10.3390/molecules201119721] [PMID: 26610440]
[33]
Damle, M. Glycyrrhiza glabra (Liquorice)-a potent medicinal herb. Int. J. Herb. Med., 2014, 2(2), 132-136.
[34]
Keglevich, P.; Hazai, L.; Kalaus, G.; Szántay, C. Modifications on the basic skeletons of vinblastine and vincristine. Molecules, 2012, 17(5), 5893-5914.
[http://dx.doi.org/10.3390/molecules17055893] [PMID: 22609781]
[35]
Kalam, M.A.; Malik, A.H.; Ganie, A.H.; Butt, T.A. Medicinal importance of papra (Podophyllum hexandrum Royle) in unani system of medicine. J. Complement. Integr. Med., 2021, 18(3), 485-490.
[http://dx.doi.org/10.1515/jcim-2020-0178] [PMID: 33544520]
[36]
Xiong, M.; Wang, L.; Yu, H.L.; Han, H.; Mao, D.; Chen, J.; Zeng, Y.; He, N.; Liu, Z.G.; Wang, Z.Y.; Xu, S.J.; Guo, L.Y.; Wang, Y. Ginkgetin exerts growth inhibitory and apoptotic effects on osteosarcoma cells through inhibition of STAT3 and activation of caspase-3/9. Oncol. Rep., 2016, 35(2), 1034-1040.
[http://dx.doi.org/10.3892/or.2015.4427] [PMID: 26573608]
[37]
Laura, V.; Mattia, F.; Roberta, G.; Federico, I.; Emi, D.; Chiara, T.; Luca, B.; Elena, C. Potential of curcumin in skin disorders. Nutrients, 2019, 11(9), 2169.
[http://dx.doi.org/10.3390/nu11092169] [PMID: 31509968]
[38]
Sharma, R.A.; Gescher, A.J.; Steward, W.P. Curcumin: The story so far. Eur. J. Cancer, 2005, 41(13), 1955-1968.
[http://dx.doi.org/10.1016/j.ejca.2005.05.009] [PMID: 16081279]
[39]
Tønnesen, H.H.; Karlsen, J. Studies on curcumin and curcuminoids. VI. Kinetics of curcumin degradation in aqueous solution. Z. Lebensm. Unters. Forsch., 1985, 180(5), 402-404.
[PMID: 4013525]
[40]
Paolino, D.; Vero, A.; Cosco, D.; Pecora, T.M.G.; Cianciolo, S.; Fresta, M.; Pignatello, R. Improvement of oral bioavailability of curcumin upon microencapsulation with methacrylic copolymers. Front. Pharmacol., 2016, 7, 485.
[http://dx.doi.org/10.3389/fphar.2016.00485] [PMID: 28066239]
[41]
Mohanty, C.; Das, M.; Sahoo, S.K. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin. Drug Deliv., 2012, 9(11), 1347-1364.
[http://dx.doi.org/10.1517/17425247.2012.724676] [PMID: 22971222]
[42]
Kotha, R.R.; Luthria, D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules, 2019, 24(16), 2930.
[http://dx.doi.org/10.3390/molecules24162930] [PMID: 31412624]
[43]
Péret-Almeida, L.; Cherubino, A.P.F.; Alves, R.J.; Dufossé, L.; Glória, M.B.A. Separation and determination of the physico-chemical characteristics of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Res. Int., 2005, 38(8-9), 1039-1044.
[http://dx.doi.org/10.1016/j.foodres.2005.02.021]
[44]
Hewlings, S.; Kalman, D. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[45]
Jabczyk, M.; Nowak, J.; Hudzik, B.; Zubelewicz-Szkodzińska, B. Curcumin and its potential impact on microbiota. Nutrients, 2021, 13(6), 2004.
[http://dx.doi.org/10.3390/nu13062004] [PMID: 34200819]
[46]
Sak, K. Radiosensitizing potential of curcumin in different cancer models. Nutr. Cancer, 2020, 72(8), 1276-1289.
[http://dx.doi.org/10.1080/01635581.2019.1681480] [PMID: 31648572]
[47]
Zia, A.; Farkhondeh, T.; Pourbagher-Shahri, A.M.; Samarghandian, S. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed. Pharmacother., 2021, 134, 111119.
[http://dx.doi.org/10.1016/j.biopha.2020.111119] [PMID: 33360051]
[48]
Kuo, M.L.; Huang, T.S.; Lin, J.K. Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells. Biochim. Biophys. Acta Mol. Basis Dis., 1996, 1317(2), 95-100.
[http://dx.doi.org/10.1016/S0925-4439(96)00032-4] [PMID: 8950193]
[49]
Maheshwari, R.K.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple biological activities of curcumin: A short review. Life Sci., 2006, 78(18), 2081-2087.
[http://dx.doi.org/10.1016/j.lfs.2005.12.007] [PMID: 16413584]
[50]
Sethi, G.; Sung, B.; Aggarwal, B.B. Nuclear factor-kappaB activation: From bench to bedside. Exp. Biol. Med., 2008, 233(1), 21-31.
[http://dx.doi.org/10.3181/0707-MR-196] [PMID: 18156302]
[51]
Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients, 2019, 11(10), 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[52]
Joe, B.; Lokesh, B.R. Role of capsaicin, curcumin and dietary n 3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim. Biophys. Acta Mol. Cell Res., 1994, 1224(2), 255-263.
[http://dx.doi.org/10.1016/0167-4889(94)90198-8] [PMID: 7981240]
[53]
Zandi, K.; Ramedani, E.; Mohammadi, K.; Tajbakhsh, S.; Deilami, I.; Rastian, Z.; Fouladvand, M.; Yousefi, F.; Farshadpour, F. Evaluation of antiviral activities of curcumin derivatives against HSV-1 in vero cell line. Nat. Prod. Commun., 2010, 5(12), 1934578X1000501.
[http://dx.doi.org/10.1177/1934578X1000501220] [PMID: 21299124]
[54]
Zhou, H.; Beevers, C.S.; Huang, S. The targets of curcumin. Curr. Drug Targets, 2011, 12(3), 332-347.
[http://dx.doi.org/10.2174/138945011794815356] [PMID: 20955148]
[55]
Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci., 2008, 65(11), 1631-1652.
[http://dx.doi.org/10.1007/s00018-008-7452-4] [PMID: 18324353]
[56]
Shishodia, S.; Sethi, G.; Aggarwal, B.B. Curcumin: Getting back to the roots. Ann. N. Y. Acad. Sci., 2005, 1056(1), 206-217.
[http://dx.doi.org/10.1196/annals.1352.010] [PMID: 16387689]
[57]
Anthwal, A.; Thakur, B.K.; Rawat, M.S.M.; Rawat, D.S.; Tyagi, A.K.; Aggarwal, B.B. Synthesis, characterization and in vitro anticancer activity of C-5 curcumin analogues with potential to inhibit TNF-α-induced NF-κB activation. BioMed Res. Int., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/524161] [PMID: 25157362]
[58]
Han, S.; Yang, Y. Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigments, 2005, 64(2), 157-161.
[http://dx.doi.org/10.1016/j.dyepig.2004.05.008]
[59]
Rai, D.; Singh, J.K.; Roy, N.; Panda, D. Curcumin inhibits FtsZ assembly: An attractive mechanism for its antibacterial activity. Biochem. J., 2008, 410(1), 147-155.
[http://dx.doi.org/10.1042/BJ20070891] [PMID: 17953519]
[60]
De, R.; Kundu, P.; Swarnakar, S.; Ramamurthy, T.; Chowdhury, A.; Nair, G.B.; Mukhopadhyay, A.K. Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrob. Agents Chemother., 2009, 53(4), 1592-1597.
[http://dx.doi.org/10.1128/AAC.01242-08] [PMID: 19204190]
[61]
Gera, M.; Sharma, N.; Ghosh, M.; Huynh, D.L.; Lee, S.J.; Min, T.; Kwon, T.; Jeong, D.K. Nanoformulations of curcumin: An emerging paradigm for improved remedial application. Oncotarget, 2017, 8(39), 66680-66698.
[http://dx.doi.org/10.18632/oncotarget.19164] [PMID: 29029547]
[62]
Adams, B.K.; Cai, J.; Armstrong, J.; Herold, M.; Lu, Y.J.; Sun, A.; Snyder, J.P.; Liotta, D.C.; Jones, D.P.; Shoji, M. EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs, 2005, 16(3), 263-275.
[http://dx.doi.org/10.1097/00001813-200503000-00005] [PMID: 15711178]
[63]
Akhilender Naidu, K.; Thippeswamy, N.B. Inhibition of human low density lipoprotein oxidation by active principles from spices. Mol. Cell. Biochem., 2002, 229(1/2), 19-23.
[http://dx.doi.org/10.1023/A:1017930708099] [PMID: 11936843]
[64]
M Khopde, S.; Priyadarsini, K.I.; Venkatesan, , P.; Rao, M.N.A. Free radical scavenging ability and antioxidant efficiency of curcumin and its substituted analogue. Biophys. Chem., 1999, 80(2), 85-91.
[http://dx.doi.org/10.1016/S0301-4622(99)00070-8] [PMID: 17030320]
[65]
Liu, T.; Chi, H.; Chen, J.; Chen, C.; Huang, Y.; Xi, H.; Xue, J.; Si, Y. Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR. Gene, 2017, 631, 29-38.
[http://dx.doi.org/10.1016/j.gene.2017.08.008] [PMID: 28843521]
[66]
Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric ( Curcuma longa ), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[67]
Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M.C. Curcumin and health. Molecules, 2016, 21(3), 264.
[http://dx.doi.org/10.3390/molecules21030264] [PMID: 26927041]
[68]
Noorafshan, A.; Ashkani-Esfahani, S. A review of therapeutic effects of curcumin. Curr. Pharm. Des., 2013, 19(11), 2032-2046.
[PMID: 23116311]
[69]
Alam, J.; Dilnawaz, F.; Sahoo, S.; Singh, D.; Mukhopadhyay, A.; Hussain, T.; Pati, S. Curcumin encapsulated into biocompatible co-polymer PLGA nanoparticle enhanced anti-gastric cancer and anti-Helicobacter pylori effect. Asian Pac. J. Cancer Prev., 2022, 23(1), 61-70.
[http://dx.doi.org/10.31557/APJCP.2022.23.1.61] [PMID: 35092372]
[70]
Emami, A.; Babaei, E.; Nagishbandi, A.; Azeez, H.J.; Feizi, M.A.H.; Golizadeh, A. Cellular uptake and apoptotic properties of gemini curcumin in gastric cancer cells. Mol. Biol. Rep., 2021, 48(11), 7215-7222.
[http://dx.doi.org/10.1007/s11033-021-06713-2] [PMID: 34623595]
[71]
Tong, R; Wu, X; Liu, Y; Liu, Y; Zhou, J; Jiang, X; Zhang, L; He, X; Ma, L. Curcumin-induced DNA demethylation in human gastric cancer cells is mediated by the DNA-damage response pathway. Oxid. Med. Cell. Longev, 2020, 2020
[72]
Zhang, N.; Gao, M.; Wang, Z.; Zhang, J.; Cui, W.; Li, J.; Zhu, X.; Zhang, H.; Yang, D.H.; Xu, X. Curcumin reverses doxorubicin resistance in colon cancer cells at the metabolic level. J. Pharm. Biomed. Anal., 2021, 201, 114129.
[http://dx.doi.org/10.1016/j.jpba.2021.114129] [PMID: 34000577]
[73]
DiMarco-Crook, C.; Rakariyatham, K.; Li, Z.; Du, Z.; Zheng, J.; Wu, X.; Xiao, H. Synergistic anticancer effects of curcumin and 3′,4′‐didemethylnobiletin in combination on colon cancer cells. J. Food Sci., 2020, 85(4), 1292-1301.
[http://dx.doi.org/10.1111/1750-3841.15073] [PMID: 32144766]
[74]
Rahim, N.F.C.; Hussin, Y.; Aziz, M.N.M.; Mohamad, N.E.; Yeap, S.K.; Masarudin, M.J.; Abdullah, R.; Akhtar, M.N.; Alitheen, N.B. Cytotoxicity and apoptosis effects of curcumin analogue (2e, 6e)-2, 6-bis (2, 3-dimethoxybenzylidine) cyclohexanone (DMCH) on human colon cancer cells HT29 and SW620 in vitro. Molecules, 2021, 26(5), 1261.
[http://dx.doi.org/10.3390/molecules26051261] [PMID: 33652694]
[75]
Ismail, N.I.; Othman, I.; Abas, F.; H Lajis, N.; Naidu, R. H.; Lajis N, Naidu R. The curcumin analogue, MS13 (1, 5-Bis (4-hydroxy-3-methoxyphenyl)-1, 4-pentadiene-3-one), inhibits cell proliferation and induces apoptosis in primary and metastatic human colon cancer cells. Molecules, 2020, 25(17), 3798.
[http://dx.doi.org/10.3390/molecules25173798] [PMID: 32825505]
[76]
Elbadawy, M.; Hayashi, K.; Ayame, H.; Ishihara, Y.; Abugomaa, A.; Shibutani, M.; Hayashi, S.M.; Hazama, S.; Takenouchi, H.; Nakajima, M.; Tsunedomi, R.; Suzuki, N.; Nagano, H.; Shinohara, Y.; Kaneda, M.; Yamawaki, H.; Usui, T.; Sasaki, K. Anti-cancer activity of amorphous curcumin preparation in patient-derived colorectal cancer organoids. Biomed. Pharmacother., 2021, 142, 112043.
[http://dx.doi.org/10.1016/j.biopha.2021.112043] [PMID: 34411919]
[77]
Kane, A.M.; Liu, C.; Akhter, D.T.; McKeone, D.M.; Bell, C.A.; Thurecht, K.J.; Leggett, B.A.; Whitehall, V.L.J. Curcumin chemoprevention reduces the incidence of Braf mutant colorectal cancer in a preclinical study. Dig. Dis. Sci., 2021, 66(12), 4326-4332.
[http://dx.doi.org/10.1007/s10620-020-06752-y] [PMID: 33387125]
[78]
Wang, Z.; He, S.; Jiang, M.; Li, X.; Chen, N. Mechanism study on radiosensitization effect of curcumin in bladder cancer cells regulated by filamin A. Dose Response, 2022, 20(2)
[http://dx.doi.org/10.1177/15593258221100997] [PMID: 35677349]
[79]
Ebrahimi, M.; Babaei, E.; Neri, F.; Feizi, M.A.H. Anti-proliferative and apoptotic effect of gemini curcumin in p53-wild type and p53-mutant colorectal cancer cell lines. Int. J. Pharm., 2021, 601, 120592.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120592] [PMID: 33857585]
[80]
Zhu, J.; Wang, Y.; Yang, P.; Liu, Q.; Hu, J.; Yang, W.; Liu, P.; He, F.; Bai, Y.; Gai, S.; Xie, R.; Li, C. GPC3-targeted and curcumin-loaded phospholipid microbubbles for sono-photodynamic therapy in liver cancer cells. Colloids Surf. B Biointerfaces, 2021, 197, 111358.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111358] [PMID: 33068823]
[81]
Sharma, A.; Hawthorne, S.; Jha, S.K.; Jha, N.K.; Kumar, D.; Girgis, S.; Goswami, V.K.; Gupta, G.; Singh, S.; Dureja, H.; Chellappan, D.K.; Dua, K. Effects of curcumin-loaded poly(lactic-co-glycolic acid) nanoparticles in MDA-MB231 human breast cancer cells. Nanomedicine, 2021, 16(20), 1763-1773.
[http://dx.doi.org/10.2217/nnm-2021-0066] [PMID: 34296625]
[82]
Shen, H.; Shen, J.; Pan, H.; Xu, L.; Sheng, H.; Liu, B.; Yao, M. Curcumin analog B14 has high bioavailability and enhances the effect of anti breast cancer cells in vitro and in vivo. Cancer Sci., 2021, 112(2), 815-827.
[http://dx.doi.org/10.1111/cas.14770] [PMID: 33316116]
[83]
Mahmoudi, R.; Hassandokht, F.; Ardakani, M.T.; Karimi, B.; Roustazadeh, A.; Tarvirdipour, S.; Barmak, M.J.; Nikseresht, M.; Baneshi, M.; Mousavizadeh, A.; Shirazi, M.S.; Alipour, M.; Bardania, H. Intercalation of curcumin into liposomal chemotherapeutic agent augments apoptosis in breast cancer cells. J. Biomater. Appl., 2021, 35(8), 1005-1018.
[http://dx.doi.org/10.1177/0885328220976331] [PMID: 33283585]
[84]
Bazzolo, B.; Mittal, L.; Sieni, E.; Piovan, A.; Filippini, R.; Conconi, M.T.; Camarillo, I.G.; Sundararajan, R. The electrical pulse application enhances intra-cellular localization and potentiates cytotoxicity of curcumin in breast cancer cells. Bioelectrochemistry, 2021, 140, 107817.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107817] [PMID: 33940353]
[85]
Muhanmode, Y.; Wen, M.K.; Maitinuri, A.; Shen, G. RETRACTED: Curcumin and resveratrol inhibit chemoresistance in cisplatin-resistant epithelial ovarian cancer cells via targeting P13K pathway. Hum. Exp. Toxicol., 2021, 40(12_suppl)(Suppl.), S861-S868.
[http://dx.doi.org/10.1177/09603271211052985] [PMID: 34791915]
[86]
Mapoung, S.; Suzuki, S.; Fuji, S.; Naiki-Ito, A.; Kato, H.; Yodkeeree, S.; Sakorn, N.; Ovatlarnporn, C.; Takahashi, S.; Limtrakul Dejkriengkraikul, P. Dehydrozingerone, a curcumin analog, as a potential anti-prostate cancer inhibitor in vitro and in vivo. Molecules, 2020, 25(12), 2737.
[http://dx.doi.org/10.3390/molecules25122737] [PMID: 32545675]
[87]
Passildas-Jahanmohan, J.; Eymard, J.C.; Pouget, M.; Kwiatkowski, F.; Van Praagh, I.; Savareux, L.; Atger, M.; Durando, X.; Abrial, C.; Richard, D.; Ginzac Couvé, A.; Thivat, E.; Monange, B.; Chollet, P.; Mahammedi, H. Multicenter randomized phase II study comparing docetaxel plus curcumin versus docetaxel plus placebo in first line treatment of metastatic castration resistant prostate cancer. Cancer Med., 2021, 10(7), 2332-2340.
[http://dx.doi.org/10.1002/cam4.3806] [PMID: 33666378]
[88]
Slika, L.; Moubarak, A.; Borjac, J.; Baydoun, E.; Patra, D. Preparation of curcumin-poly (allyl amine) hydrochloride based nanocapsules: Piperine in nanocapsules accelerates encapsulation and release of curcumin and effectiveness against colon cancer cells. Mater. Sci. Eng. C, 2020, 109, 110550.
[http://dx.doi.org/10.1016/j.msec.2019.110550] [PMID: 32228916]
[89]
Sminia, P.; van den Berg, J.; van Kootwijk, A.; Hageman, E.; Slotman, B.J.; Verbakel, W.F.A.R. Experimental and clinical studies on radiation and curcumin in human glioma. J. Cancer Res. Clin. Oncol., 2021, 147(2), 403-409.
[http://dx.doi.org/10.1007/s00432-020-03432-2] [PMID: 33118056]
[90]
Borges, G.A.; Elias, S.T.; Amorim, B.; Lima, C.L.; Coletta, R.D.; Castilho, R.M.; Squarize, C.H.; Guerra, E.N.S. Curcumin downregulates the PI3K–AKT–MTOR pathway and inhibits growth and progression in head and neck cancer cells. Phytother. Res., 2020, 34(12), 3311-3324.
[http://dx.doi.org/10.1002/ptr.6780] [PMID: 32628350]
[91]
Ghosh, S.; Dutta, S.; Sarkar, A.; Kundu, M.; Sil, P.C. Targeted delivery of curcumin in breast cancer cells via hyaluronic acid modified mesoporous silica nanoparticle to enhance anticancer efficiency. Colloids Surf. B Biointerfaces, 2021, 197, 111404.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111404] [PMID: 33142257]
[92]
Endo, H.; Inoue, I.; Masunaka, K.; Tanaka, M.; Yano, M. Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of Bad. Biosci. Biotechnol. Biochem., 2020, 84(12), 2440-2447.
[http://dx.doi.org/10.1080/09168451.2020.1808443] [PMID: 32841581]
[93]
Curcumin for the prevention of radiation-induced dermatitis in breast cancer patients. Patent NCT01042938, 2012.
[94]
Avastin/FOLFIRI in combination with curcumin in colorectal cancer patients with unresectable metastasis. Patent NCT02439385, 2022.
[95]
"Curcumin" in combination with chemotherapy in advanced breast cancer. Patent NCT03072992, 2019.
[96]
ClinicalTrials.gov is a place to learn about clinical studies from around the world. Patent NCT04208334.,
[97]
Trial of curcumin in advanced pancreatic cancer Patent NCT03072992, 2020.
[98]
Study investigating the ability of plant exosomes to deliver curcumin to normal and colon cancer tissue. Patent NCT03072992, 2021.
[99]
Sotorasib activity in subjects with advanced solid tumors with KRAS p.G12C mutation (CodeBreak 101). Patent NCT03072992, 2023.
[100]
A Study to Evaluate Enfortumab Vedotin Versus (vs) Chemotherapy in Subjects With Previously Treated Locally Advanced or Metastatic Urothelial Cancer (EV-301). Patent NCT03072992, 2023.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy