Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Epigrammatic Review on Heterocyclic Moiety Pyrazole: Applications and Synthesis Routes

Author(s): Sapna Jain*

Volume 21, Issue 6, 2024

Published on: 19 September, 2023

Page: [684 - 702] Pages: 19

DOI: 10.2174/1570193X20666230815143007

Price: $65

conference banner
Abstract

Heterocyclic compounds are amongst the most promising and versatile classes of biologically important molecules. One of the heterocycle molecules is pyrazole with a five-membered heterocyclic ring with two neighboring nitrogen. Pyrazole and its derivatives have shown a broad range of biological applications like antibacterial, antifungal, antiviral, anti-inflammatory, anti-cancerous, and herbicidal activities. The study of synthetic routes suggests three broad ways: cyclo-condensation of hydrazine and its derivatives on 1,3 difunctional systems, dipolar cycloadditions, and multicomponent reactions. The synthesis of pyrazoles involves the usage of a conventional catalyst and more progressive and efficient nanoparticles as catalysts. The use of nanocatalysts is grabbing the attention of researchers owing to their more efficacy and reproducibility, low cost, reusability, ease of production, etc. The current review is an epigrammatic study on the importance of pyrazole as a biologically important moiety, recent advances in the three aforementioned routes to synthesize pyrazole and its derivatives, and a brief on the importance of nanocatalysts.

« Previous
Graphical Abstract

[1]
Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Aspects Med., 2006, 27(1), 1-93.
[http://dx.doi.org/10.1016/j.mam.2005.07.008] [PMID: 16105678]
[2]
Costa, R.F.; Turones, L.C.; Cavalcante, K.V.N.; Rosa Júnior, I.A.; Xavier, C.H.; Rosseto, L.P.; Napolitano, H.B.; Castro, P.F.S.; Neto, M.L.F.; Galvão, G.M.; Menegatti, R.; Pedrino, G.R.; Costa, E.A.; Martins, J.L.R.; Fajemiroye, J.O. Heterocyclic compounds: Pharmacology of pyrazole analogs from rational structural considerations. Front. Pharmacol., 2021, 12, 666725.
[http://dx.doi.org/10.3389/fphar.2021.666725] [PMID: 34040529]
[3]
Khan, K.A.; Faidallah, H.M. 1-Substituted carbamoyl and thiocarbamoyl-4,5-dihydro-1H-pyrazoles as possible cytotoxic and antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2016, 31(4), 619-627.
[http://dx.doi.org/10.3109/14756366.2015.1057717] [PMID: 26114308]
[4]
Zhao, Z.; Dai, X.; Li, C.; Wang, X.; Tian, J.; Feng, Y.; Xie, J.; Ma, C.; Nie, Z.; Fan, P.; Qian, M.; He, X.; Wu, S.; Zhang, Y.; Zheng, X. Pyrazolone structural motif in medicinal chemistry: Retrospect and prospect. Eur. J. Med. Chem., 2020, 186, 111893.
[http://dx.doi.org/10.1016/j.ejmech.2019.111893] [PMID: 31761383]
[5]
Mitchell, R.E.; Greenwood, D.R.; Sarojini, V. An antibacterial pyrazole derivative from Burkholderia glumae, a bacterial pathogen of rice. Phytochemistry, 2008, 69(15), 2704-2707.
[http://dx.doi.org/10.1016/j.phytochem.2008.08.013] [PMID: 18834606]
[6]
Magedov, I.V.; Manpadi, M. Van slambrouck, S.; Steelant, W.F.A.; Rozhkova, E.; Przheval’skii, N.M.; Rogelj, S.; Kornienko, A. Discovery and investigation of antiproliferative and apoptosis-inducing properties of new heterocyclic podophyllotoxin analogues accessible by a one-step multicomponent synthesis. J. Med. Chem., 2007, 50(21), 5183-5192.
[http://dx.doi.org/10.1021/jm070528f] [PMID: 17894480]
[7]
Nimavat, K.S.; Popat, K.H.; Joshi, H.S. Synthesis, anticancer, antitubercular and antimicrobial activity of 1-substituted 3-aryl-5-(3′-bromophenyl)-pyrazolines. Indian J. Heterocycl. Chem., 2003, 12(3), 225-228.
[8]
Li, Y.R.; Li, C.; Liu, J.C.; Guo, M.; Zhang, T.Y.; Sun, L.P.; Zheng, C.J.; Piao, H.R. Synthesis and biological evaluation of 1,3-diaryl pyrazole derivatives as potential antibacterial and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2015, 25(22), 5052-5057.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.028] [PMID: 26490095]
[9]
Viveka, S. Dinesha; Shama, P.; Nagaraja, G.K.; Ballav, S.; Kerkar, S. Design and synthesis of some new pyrazolyl-pyrazolines as potential anti-inflammatory, analgesic and antibacterial agents. Eur. J. Med. Chem., 2015, 101, 442-451.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.002] [PMID: 26186150]
[10]
Mohammed, K.O.; Nissan, Y.M. Synthesis, molecular docking, and biological evaluation of some novel hydrazones and pyrazole derivatives as anti-inflammatory agents. Chem. Biol. Drug Des., 2014, 84(4), 473-488.
[http://dx.doi.org/10.1111/cbdd.12336] [PMID: 24720475]
[11]
Abd-El Gawad, N.M.; Hassan, G.S.; Georgey, H.H. Design and synthesis of some pyrazole derivatives of expected anti-inflammatory and analgesic activities. Med. Chem. Res., 2012, 21(7), 983-994.
[http://dx.doi.org/10.1007/s00044-011-9606-4]
[12]
Abdelgawad, M.A.; Labib, M.B.; Abdel-Latif, M. Pyrazole-hydrazone derivatives as anti-inflammatory agents: Design, synthesis, biological evaluation, COX-1,2/5-LOX inhibition and docking study. Bioorg. Chem., 2017, 74, 212-220.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.014] [PMID: 28865292]
[13]
Rajendra Prasad, Y.; Lakshmana Rao, A.; Prasoona, L.; Murali, K.; Ravi Kumar, P. Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2″-hydroxy naphthalen-1″-yl)-1,5-diphenyl-2-pyrazolines. Bioorg. Med. Chem. Lett., 2005, 15(22), 5030-5034.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.040] [PMID: 16168645]
[14]
Özdemir, Z.; Kandilci, H.B.; Gümüşel, B.; Çalış, Ü.; Bilgin, A.A. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(3), 373-379.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.006] [PMID: 17069933]
[15]
Kees, K.L.; Fitzgerald, J.J., Jr; Steiner, K.E.; Mattes, J.F.; Mihan, B.; Tosi, T.; Mondoro, D.; McCaleb, M.L. New potent antihyperglycemic agents in db/db mice: Synthesis and structure-activity relationship studies of (4-substituted benzyl) (trifluoromethyl)pyrazoles and -pyrazolones. J. Med. Chem., 1996, 39(20), 3920-3928.
[http://dx.doi.org/10.1021/jm960444z] [PMID: 8831758]
[16]
Şener, A.; Kasim Şener, M.; Bildmci, I.; Kasimogullari, R.; Akçamur, Y. Studies on the reactions of cyclic oxalyl compounds with hydrazines or hydrazones: Synthesis and reactions of 4‐benzoyl‐1‐(3‐nitrophenyl)‐5‐phenyl‐1 H ‐pyrazole‐3‐carboxylic acid. J. Heterocycl. Chem., 2002, 39(5), 869-875.
[http://dx.doi.org/10.1002/jhet.5570390503]
[17]
Panda, M.; Ramachandran, S.; Ramachandran, V.; Shirude, P.S.; Humnabadkar, V.; Nagalapur, K.; Sharma, S.; Kaur, P.; Guptha, S.; Narayan, A.; Mahadevaswamy, J.; Ambady, A.; Hegde, N.; Rudrapatna, S.S.; Hosagrahara, V.P.; Sambandamurthy, V.K.; Raichurkar, A. Discovery of pyrazolopyridones as a novel class of noncovalent DprE1 inhibitor with potent anti-mycobacterial activity. J. Med. Chem., 2014, 57(11), 4761-4771.
[http://dx.doi.org/10.1021/jm5002937] [PMID: 24818517]
[18]
Bondock, S.; Adel, S.; Etman, H.A.; Badria, F.A. Synthesis and antitumor evaluation of some new 1,3,4-oxadiazole-based heterocycles. Eur. J. Med. Chem., 2012, 48, 192-199.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.013] [PMID: 22204901]
[19]
Ma, H.J.; Zhang, J.H.; Xia, X.D.; Kang, J.; Li, J.H. Design, synthesis and herbicidal evaluation of novel 4-(1 H -pyrazol-1-yl)pyrimidine derivatives. Pest Manag. Sci., 2015, 71(8), 1189-1196.
[http://dx.doi.org/10.1002/ps.3918] [PMID: 25256846]
[20]
Janin, Y.L. Preparation and chemistry of 3/5-halogenopyrazoles. Chem. Rev., 2012, 112(7), 3924-3958.
[http://dx.doi.org/10.1021/cr200427q] [PMID: 22548590]
[21]
Küçükgüzel, Ş.G.; Şenkardeş, S. Recent advances in bioactive pyrazoles. Eur. J. Med. Chem., 2015, 97, 786-815.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.059] [PMID: 25555743]
[22]
Soltesz, S.; Gerbershagen, M.U.; Pantke, B.; Eichler, F.; Molter, G. Parecoxib versus dipyrone (metamizole) for postoperative pain relief after hysterectomy: A prospective, single-centre, randomized, double-blind trial. Clin. Drug Investig., 2008, 28(7), 421-428.
[http://dx.doi.org/10.2165/00044011-200828070-00003] [PMID: 18544002]
[23]
Faour, W.H.; Mroueh, M.; Daher, C.F.; Elbayaa, R.Y.; Ragab, H.M.; Ghoneim, A.I.; El-mallah, A.I.; Ashour, H.M.A. Synthesis of some new amide-linked bipyrazoles and their evaluation as anti-inflammatory and analgesic agents. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1079-1094.
[http://dx.doi.org/10.3109/14756366.2015.1094469] [PMID: 26482802]
[24]
Nasr, T.; Bondock, S.; Eid, S. Design, synthesis, studies of some new thiophene, pyrazole and pyridone derivatives bearing sulfisoxazole moiety. Eur. J. Med. Chem., 2014, 12, 491-504.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.052] [PMID: 25050881]
[25]
Tewari, A.K.; Mishra, L.; Verma, H.N. Mishra, A Synthesis and antifungal activity of pyrido[3′,2′:4,5]thieno[3,2-d]- 1,2,3-triazine deriva-tives. Farmaco, 1993, 48(12), 1725-1733.
[26]
Chetan, B.P.; Sreenivas, M.T.; Bhat, A.R. Synthesis and evaluation of certain pyrazolines and related, compounds for their antitubercular, antibacterial and antifungal activities. Indian J. Heterocycl. Chem., 2004, 13(3), 225-228.
[27]
Zhang, X.; Li, Y.; Ma, J.; Zhu, H.; Wang, B.; Mao, M.; Xiong, L.; Li, Y.; Li, Z. Synthesis and insecticidal evaluation of novel anthranilic diamides containing N-substitued nitrophenylpyrazole. Bioorg. Med. Chem., 2014, 22(1), 186-193.
[http://dx.doi.org/10.1016/j.bmc.2013.11.038] [PMID: 24326275]
[28]
Yamamoto, S.; Sato, T.; Morimoto, K.; Nawamaki, T. New Pyrazole Sulfonylureas: Synthesis and Herbicidal Activity.Synthesis and Chemistry of Agrochemicals III; ACS Publications: Washington, , 1992; 504, pp. 34-42.
[29]
Yang, C.; Li, J.; Zhou, R.; Chen, X.; Gao, Y.; He, Z. Facile synthesis of spirooxindole-pyrazolines and spirobenzofuranone-pyrazolines and their fungicidal activity. Org. Biomol. Chem., 2015, 13(17), 4869-4878.
[http://dx.doi.org/10.1039/C5OB00258C] [PMID: 25765334]
[30]
Abdellatif, K.R.A.; Fadaly, W.A.A.; Elshaier, Y.A.M.M.; Ali, W.A.M.; Kamel, G.M. Non-acidic 1,3,4-trisubstituted-pyrazole derivatives as lonazolac analogs with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorg. Chem., 2018, 77, 568-578.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.018] [PMID: 29475165]
[31]
Ren, S.Z.; Wang, Z.C.; Zhu, X.H.; Zhu, D.; Li, Z.; Shen, F.Q.; Duan, Y.T.; Cao, H.; Zhao, J.; Zhu, H.L. Design and biological evaluation of novel hybrids of 1, 5-diarylpyrazole and Chrysin for selective COX-2 inhibition. Bioorg. Med. Chem., 2018, 26(14), 4264-4275.
[http://dx.doi.org/10.1016/j.bmc.2018.07.022] [PMID: 30031652]
[32]
Ghareb, N.; Elshihawy, H.A.; Abdel-Daim, M.M.; Helal, M.A. Novel pyrazoles and pyrazolo[1,2- a]pyridazines as selective COX-2 inhibitors; Ultrasound-assisted synthesis, biological evaluation, and DFT calculations. Bioorg. Med. Chem. Lett., 2017, 27(11), 2377-2383.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.020] [PMID: 28427813]
[33]
Penning, T.D.; Talley, J.J.; Bertenshaw, S.R.; Carter, J.S.; Collins, P.W.; Docter, S.; Graneto, M.J.; Lee, L.F.; Malecha, J.W.; Miyashiro, J.M.; Rogers, R.S.; Rogier, D.J.; Yu, S.S.; Anderson, G.D.; Burton, E.G.; Cogburn, J.N.; Gregory, S.A.; Koboldt, C.M.; Perkins, W.E.; Seibert, K.; Veenhuizen, A.W.; Zhang, Y.Y.; Isakson, P.C. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: Identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J. Med. Chem., 1997, 40(9), 1347-1365.
[http://dx.doi.org/10.1021/jm960803q] [PMID: 9135032]
[34]
Fioravanti, R.; Bolasco, A.; Manna, F.; Rossi, F.; Orallo, F.; Ortuso, F.; Alcaro, S.; Cirilli, R. Synthesis and biological evaluation of N-substituted-3,5-diphenyl-2-pyrazoline derivatives as cyclooxygenase (COX-2) inhibitors. Eur. J. Med. Chem., 2010, 45(12), 6135-6138.
[http://dx.doi.org/10.1016/j.ejmech.2010.10.005] [PMID: 20974503]
[35]
Isidro, M.; Cordido, F. Drug treatment of obesity: Established and emerging therapies. Mini Rev. Med. Chem., 2009, 9(6), 664-673.
[http://dx.doi.org/10.2174/138955709788452739] [PMID: 19519492]
[36]
Husain, A.; Ahmad, A.; Alam, M.M.; Ajmal, M.; Ahuja, P. Fenbufen based 3-[5-(substituted aryl)-1,3,4-oxadiazol-2-yl]-1-(biphenyl-4-yl)propan-1-ones as safer antiinflammatory and analgesic agents. Eur. J. Med. Chem., 2009, 44(9), 3798-3804.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.009] [PMID: 19457595]
[37]
Ramkumar, K.; Yarovenko, V.N.; Nikitina, A.S.; Zavarzin, I.V.; Krayushkin, M.M.; Kovalenko, L.V.; Esqueda, A.; Odde, S.; Neamati, N. Design, synthesis and structure-activity studies of rhodanine derivatives as HIV-1 integrase inhibitors. Molecules, 2010, 15(6), 3958-3992.
[http://dx.doi.org/10.3390/molecules15063958] [PMID: 20657419]
[38]
Doria, G.; Passarotti, C.; Sala, R.; Magrini, R.; Sberze, P.; Tibolla, M.; Ceserani, R.; Castello, R. Synthesis and antiulcer activity of (E)-5-[2-(3-pyridyl)ethenyl]-1H,7H-pyrazolo [1,5-a]pyrimidine-7-ones. Farmaco, Sci., 1986, 41(6), 417-429.
[PMID: 3743739]
[39]
Kumar, R.; Arora, J.; Ruhil, S.; Phougat, N.; Chhillar, A.K.; Prasad, A.K. Synthesis and antimicrobial studies of pyrimidine pyrazole heterocycles. Advances in Chemistry, 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/329681]
[40]
Cetin, A.; Korkmaz, A.; Erdoğan, E.; Kösemen, A. A study on synthesis, optical properties and surface morphological of novel conjugated oligo-pyrazole films. Mater. Chem. Phys., 2019, 222, 37-44.
[http://dx.doi.org/10.1016/j.matchemphys.2018.09.080]
[41]
Knorr, L. Einwirkung von acetessigester auf phenylhydrazin. Ber. Dtsch. Chem. Ges., 1883, 16(2), 2597-2599.
[http://dx.doi.org/10.1002/cber.188301602194]
[42]
Sullivan, T.J.; Truglio, J.J.; Boyne, M.E.; Novichenok, P.; Zhang, X.; Stratton, C.F.; Li, H.J.; Kaur, T.; Amin, A.; Johnson, F.; Slayden, R.A.; Kisker, C.; Tonge, P.J. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem. Biol., 2006, 1(1), 43-53.
[http://dx.doi.org/10.1021/cb0500042] [PMID: 17163639]
[43]
Rovnyak, G.C.; Millonig, R.C.; Schwartz, J.; Shu, V. Synthesis and antiinflammatory activity of hexahydrothiopyrano[4,3-c]pyrazoles and related analogs. J. Med. Chem., 1982, 25(12), 1482-1488.
[http://dx.doi.org/10.1021/jm00354a018] [PMID: 6218302]
[44]
Basawaraj, R.; Yadav, B. Sangapure, SS Synthesis of some 1H-pyrazolines bearing benzofuran as biologically active agents. Indian J. Heterocycl. Chem., 2010, 11(2), 31-34.
[45]
Robins, R.K. Potential purine antagonists. I. Synthesis of some 4, 6-substituted pyrazolo [3, 4-d] pyrimidines1. J. Am. Chem. Soc., 1956, 78(4), 784-790.
[http://dx.doi.org/10.1021/ja01585a023]
[46]
Kobayashi, S. The synthesis and xanthine oxidase inhibitory activity of pyrazolo(3,4-d)pyrimidines. Chem. Pharm. Bull., 1973, 21(5), 941-951.
[http://dx.doi.org/10.1248/cpb.21.941] [PMID: 4727362]
[47]
George, P.; Rossey, G.; Depoortere, H.; Mompon, B.; Allen, J.; Wick, A. Imidazopyridines: Towards novel hypnotic and anxiolytic drugs. Farmaco, 1991, 46(1 Suppl), 277-288.
[48]
Graneto, M.J.; Kurumbail, R.G.; Vazquez, M.L.; Shieh, H.S.; Pawlitz, J.L.; Williams, J.M.; Stallings, W.C.; Geng, L.; Naraian, A.S.; Koszyk, F.J.; Stealey, M.A.; Xu, X.D.; Weier, R.M.; Hanson, G.J.; Mourey, R.J.; Compton, R.P.; Mnich, S.J.; Anderson, G.D.; Monahan, J.B.; Devraj, R. Synthesis, crystal structure, and activity of pyrazole-based inhibitors of p38 kinase. J. Med. Chem., 2007, 50(23), 5712-5719.
[http://dx.doi.org/10.1021/jm0611915] [PMID: 17948975]
[49]
Silvestri, R.; Cascio, M.G.; La Regina, G.; Piscitelli, F.; Lavecchia, A.; Brizzi, A.; Pasquini, S.; Botta, M.; Novellino, E.; Di Marzo, V.; Corelli, F. Synthesis, cannabinoid receptor affinity, and molecular modeling studies of substituted 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides. J. Med. Chem., 2008, 51(6), 1560-1576.
[http://dx.doi.org/10.1021/jm070566z] [PMID: 18293908]
[50]
Finkelstein, B.L.; Strock, C.J. Synthesis and insecticidal activity of novel pyrazole methanesulfonates. Pestic. Sci., 1997, 50(4), 324-328.
[http://dx.doi.org/10.1002/(SICI)1096-9063(199708)50:4<324:AID-PS596>3.0.CO;2-D]
[51]
Graillot, V.; Tomasetig, F.; Cravedi, J.P.; Audebert, M. Evidence of the in vitro genotoxicity of methyl-pyrazole pesticides in human cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2012, 748(1-2), 8-16.
[http://dx.doi.org/10.1016/j.mrgentox.2012.05.014] [PMID: 22743356]
[52]
Dumas, J.; Hatoum-Mokdad, H.; Sibley, R.; Riedl, B.; Scott, W.J.; Monahan, M.K.; Lowinger, T.B.; Brennan, C.; Natero, R.; Turner, T.; Johnson, J.S.; Schoenleber, R.; Bhargava, A.; Wilhelm, S.M.; Housley, T.J.; Ranges, G.E.; Shrikhande, A. 1-Phenyl-5-pyrazolyl ureas: Potent and selective p38 kinase inhibitors. Bioorg. Med. Chem. Lett., 2000, 10(18), 2051-2054.
[http://dx.doi.org/10.1016/S0960-894X(00)00272-9] [PMID: 10999468]
[53]
Grazia Mamolo, M.; Zampieri, D.; Falagiani, V.; Vio, L.; Banfi, E. Synthesis and antimycobacterial activity of 5-aryl-1-isonicotinoyl-3-(pyridin-2-yl)-4,5-dihydro-1H-pyrazole derivatives. Farmaco, 2001, 56(8), 593-599.
[http://dx.doi.org/10.1016/S0014-827X(01)01098-9] [PMID: 11601645]
[54]
Akbas, E.; Berber, I.; Sener, A.; Hasanov, B. Synthesis and antibacterial activity of 4-benzoyl-1-methyl-5-phenyl-1H-pyrazole-3-carboxylic acid and derivatives. Farmaco, 2005, 60(1), 23-26.
[http://dx.doi.org/10.1016/j.farmac.2004.09.003] [PMID: 15652364]
[55]
Meegalla, S.K.; Doller, D.; Liu, R.; Sha, D.; Soll, R.M.; Dhanoa, D.S. Efficient syntheses of 2-(2,6-dichloro-4-trifluoromethylphenyl)tetrahydrocyclopenta, tetrahydrothiopyrano, hexahydrocycloheptapyrazoles and tetrahydroindazoles. Tetrahedron Lett., 2002, 43(48), 8639-8642.
[http://dx.doi.org/10.1016/S0040-4039(02)02158-5]
[56]
Bekhit, A.A.; Abdel-Aziem, T. Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorg. Med. Chem., 2004, 12(8), 1935-1945.
[http://dx.doi.org/10.1016/j.bmc.2004.01.037] [PMID: 15051061]
[57]
Wei, F.; Zhao, B.X.; Huang, B.; Zhang, L.; Sun, C.H.; Dong, W.L.; Shin, D.S.; Miao, J.Y. Design, synthesis, and preliminary biological evaluation of novel ethyl 1-(2′-hydroxy-3′-aroxypropyl)-3-aryl-1H-pyrazole-5-carboxylate. Bioorg. Med. Chem. Lett., 2006, 16(24), 6342-6347.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.008] [PMID: 17000107]
[58]
Narlawar, R.; Pickhardt, M.; Leuchtenberger, S.; Baumann, K.; Krause, S.; Dyrks, T.; Weggen, S.; Mandelkow, E.; Schmidt, B. Curcumin-derived pyrazoles and isoxazoles: Swiss army knives or blunt tools for Alzheimer’s disease? ChemMedChem, 2008, 3(1), 165-172.
[http://dx.doi.org/10.1002/cmdc.200700218] [PMID: 17943713]
[59]
Bekhit, A.A.; Hymete, A.; El-Din, A.; Bekhit, A.; Damtew, A.; Aboul-Enein, H.Y. Pyrazoles as promising scaffold for the synthesis of anti-inflammatory and/or antimicrobial agent: A review. Mini Rev. Med. Chem., 2010, 10(11), 1014-1033.
[http://dx.doi.org/10.2174/1389557511009011014] [PMID: 20540709]
[60]
Bekhit, A.A.; Ashour, H.M.A.; Abdel Ghany, Y.S.; Bekhit, A.E.D.A.; Baraka, A. Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents. Eur. J. Med. Chem., 2008, 43(3), 456-463.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.030] [PMID: 17532544]
[61]
Ouyang, G.; Chen, Z.; Cai, X.J.; Song, B.A.; Bhadury, P.S.; Yang, S.; Jin, L.H.; Xue, W.; Hu, D.Y.; Zeng, S. Synthesis and antiviral activity of novel pyrazole derivatives containing oxime esters group. Bioorg. Med. Chem., 2008, 16(22), 9699-9707.
[http://dx.doi.org/10.1016/j.bmc.2008.09.070] [PMID: 18945621]
[62]
Lv, P.C.; Li, H.Q.; Sun, J.; Zhou, Y.; Zhu, H.L. Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. Bioorg. Med. Chem., 2010, 18(13), 4606-4614.
[http://dx.doi.org/10.1016/j.bmc.2010.05.034] [PMID: 20627597]
[63]
Lv, P.C.; Sun, J.; Luo, Y.; Yang, Y.; Zhu, H.L. Design, synthesis, and structure–activity relationships of pyrazole derivatives as potential FabH inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(15), 4657-4660.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.105] [PMID: 20594840]
[64]
Bandgar, B.P.; Gawande, S.S.; Bodade, R.G.; Gawande, N.M.; Khobragade, C.N. Synthesis and biological evaluation of a novel series of pyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents. Bioorg. Med. Chem., 2009, 17(24), 8168-8173.
[http://dx.doi.org/10.1016/j.bmc.2009.10.035] [PMID: 19896853]
[65]
Manojkumar, P.; Ravi, T.K.; Gopalakrishnan, S. Antioxidant and antibacterial studies of arylazopyrazoles and arylhydrazonopyrazolones containing coumarin moiety. Eur. J. Med. Chem., 2009, 44(11), 4690-4694.
[http://dx.doi.org/10.1016/j.ejmech.2009.07.004] [PMID: 19646797]
[66]
Nagarapu, L.; Gaikwad, H.K.; Sarikonda, K.; Mateti, J.; Bantu, R.; Raghu, P.S.; Manda, K.M.; Kalvendi, S.V. Synthesis and cytotoxicity evaluation of 1-[3-(9H-carbazol-4-yloxy)-2-hydroxypropyl]-3-aryl-1H-pyrazole-5-carboxylic acid derivatives. Eur. J. Med. Chem., 2010, 45(11), 4720-4725.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.004] [PMID: 20817327]
[67]
Gouda, M.A.; Berghot, M.A.; Shoeib, A.I.; Khalil, A.M. Synthesis and antimicrobial of new anthraquinone derivatives incorporating pyra-zole moiety. Eur. J. Med. Chem., 2010, 45(5), 1843-1848.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.021] [PMID: 20144494]
[68]
Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. Review: Biologically active pyrazole derivatives. New J. Chem., 2017, 41(1), 16-41.
[http://dx.doi.org/10.1039/C6NJ03181A]
[69]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.; Al-aizari, F.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 2018, 23(1), 134.
[http://dx.doi.org/10.3390/molecules23010134] [PMID: 29329257]
[70]
Ebenezer, O.; Shapi, M.; Tuszynski, J.A. A review of the recent development in the synthesis and biological evaluations of pyrazole derivatives. Biomedicines, 2022, 10(5), 1124.
[http://dx.doi.org/10.3390/biomedicines10051124] [PMID: 35625859]
[71]
Dwivedi, J.; Sharma, S.; Jain, S.; Singh, A. The synthetic and biological attributes of pyrazole derivatives: A review. Mini Rev. Med. Chem., 2018, 18(11), 918-947.
[http://dx.doi.org/10.2174/1389557517666170927160919] [PMID: 28971774]
[72]
Ohtsuka, Y.; Uraguchi, D.; Yamamoto, K.; Tokuhisa, K.; Yamakawa, T. Syntheses of 2-(trifluoromethyl)-1,3-dicarbonyl compounds through direct trifluoromethylation with CF3I and their application to fluorinated pyrazoles syntheses. Tetrahedron, 2012, 68(12), 2636-2649.
[http://dx.doi.org/10.1016/j.tet.2012.01.075]
[73]
Gosselin, F.; O’Shea, P.; Webster, R.; Reamer, R.; Tillyer, R.; Grabowski, E. Highly regioselective synthesis of 1-aryl-3, 4, 5-substituted pyrazoles. Synlett, 2006, 2006(19), 3267-3270.
[http://dx.doi.org/10.1055/s-2006-956487]
[74]
Bishop, B.; Brands, K.; Gibb, A.; Kennedy, D. Regioselective synthesis of 1, 3, 5-substituted pyrazoles from acetylenic ketones and hydrazines. Synthesis, 2004, 2004(1), 43-52.
[http://dx.doi.org/10.1055/s-2003-44376]
[75]
Muravev, A.A.; Ovsyannikov, A.S.; Konorov, G.V.; Islamov, D.R.; Usachev, K.S.; Novikov, A.S.; Solovieva, S.E.; Antipin, I.S. Thermodynamic vs. kinetic control in synthesis of O-donor 2,5-substituted furan and 3,5-substituted pyrazole from heteropropargyl precursor. Molecules, 2022, 27(16), 5178.
[http://dx.doi.org/10.3390/molecules27165178] [PMID: 36014420]
[76]
Altowyan, M.S.; Soliman, S.M.; Ismail, M.M.F.; Haukka, M.; Barakat, A.; Ayoup, M.S. New bioprecursor prodrugs of sulfadiazine: Synthesis, x-ray structure and hirshfeld analysis. Crystals , 2022, 12(8), 1016.
[http://dx.doi.org/10.3390/cryst12081016]
[77]
Dhaduk, M.F.; Joshi, H.S. Synthesis, characterization and biological study of some new N-acetyl pyrazole derivatives. Curr Chem Lett, 2022, 11(2), 199-206.
[http://dx.doi.org/10.5267/j.ccl.2022.1.002]
[78]
Zhao, X.B.; Jiang, S.A.; Wang, N.; Yu, H.F. Green and complementary regioselective synthesis of 3-(1 –substituted pyrazol-3(or 5)-yl)indoles from β-ethyltho-β-indolyl-α,β-unsaturated ketones in water. Synth. Commun., 2020, 50(22), 3404-3412.
[http://dx.doi.org/10.1080/00397911.2020.1801747]
[79]
Farouk, O.; Ibrahim, M.A.; El-Gohary, N.M. Synthesis, chemical reactivity and biological evaluation of the novel 2-[(1-chloro-3-oxoprop-1-en-1-yl)amino]-4-(4-methoxyphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile. Synth. Commun., 2021, 51(19), 2991-3003.
[http://dx.doi.org/10.1080/00397911.2021.1958231]
[80]
Sung, P-J.; Hwang, T-L.; Wu, Y-C.; Chen, Y.H.; Chin, H-K.; Peng, B-R.; Chen, Y-Y.; Hu, C-C.; Zheng, L-G.; Huynh, T-H.; Su, T-P.; Zhang, Y-L.; Wen, Z-H. Survey of briarane-type diterpenoids–Part VII. Heterocycles, 2020, 100(6), 857-870.
[http://dx.doi.org/10.3987/REV-19-925]
[81]
Han, T.; Wang, K.H.; Yang, M.; Zhao, P.; Wang, F.; Wang, J.; Huang, D.; Hu, Y. Synthesis of difluoromethylated pyrazoles by the [3+ 2] cycloaddition reaction of difluoroacetohydrazonoyl bromides. J. Org. Chem., 2022, 87(1), 498-511.
[http://dx.doi.org/10.1021/acs.joc.1c02521] [PMID: 34913680]
[82]
Shao, J.; Shu, K.; Chen, W.; Liu, S.; Zhu, H.; Zhang, J.; Zhang, C.; Zeng, L-H. Palladium-catalyzed synthesis of polysubstituted pyrazoles by ring-opening reactions of 2H-azirines with hydrazones. Synlett, 2021, 32(3), 316-320.
[http://dx.doi.org/10.1055/s-0040-1707262]
[83]
Kawai, H.; Yuan, Z.; Tokunaga, E.; Shibata, N. Regioselective synthesis of pyrazole triflones based on triflyl alkyne cycloadditions. Org. Lett., 2012, 14(20), 5330-5333.
[http://dx.doi.org/10.1021/ol3025154] [PMID: 23035910]
[84]
Li, M.; Liu, C.L.; Yang, J.C.; Zhang, J.B.; Li, Z.N.; Zhang, H.; Li, Z.M. Synthesis and biological activity of new (E)-A-(methoxyimino) benzeneacetate derivatives containing a substituted pyrazole ring. Agri and Food Chem, 2010, 58(5), 2664-2667.
[85]
He, S.; Chen, L.; Niu, Y.N.; Wu, L.Y.; Liang, Y.M. 1,3-Dipolar cycloaddition of diazoacetate compounds to terminal alkynes promoted by Zn(OTf)2: An efficient way to the preparation of pyrazoles. Tetrahedron Lett., 2009, 50(20), 2443-2445.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.030]
[86]
Gioiello, A.; Khamidullina, A.; Fulco, M.C.; Venturoni, F.; Zlotsky, S.; Pellicciari, R. New one-pot synthesis of pyrazole-5-carboxylates by 1,3-dipole cycloadditions of ethyl diazoacetate with α-methylene carbonyl compounds. Tetrahedron Lett., 2009, 50(44), 5978-5980.
[http://dx.doi.org/10.1016/j.tetlet.2009.07.152]
[87]
Jiang, N.; Li, C.J. Novel 1,3-dipolar cycloaddition of diazocarbonyl compounds to alkynes catalyzed by InCl3 in water. Chem. Commun., 2004, (4), 394-395.
[http://dx.doi.org/10.1039/b311763d] [PMID: 14765225]
[88]
Qi, X.; Ready, J.M. Copper-promoted cycloaddition of diazocarbonyl compounds and acetylides. Angew. Chem. Int. Ed., 2007, 46(18), 3242-3244.
[http://dx.doi.org/10.1002/anie.200700069] [PMID: 17378008]
[89]
Delaunay, T.; Genix, P.; Es-Sayed, M.; Vors, J.P.; Monteiro, N.; Balme, G. A modular sydnone cycloaddition/Suzuki-Miyaura cross-coupling strategy to unsymmetrical 3,5-bis(hetero)aromatic pyrazoles. Org. Lett., 2010, 12(15), 3328-3331.
[http://dx.doi.org/10.1021/ol101087j] [PMID: 20597542]
[90]
Yi, F.; Zhao, W.; Wang, Z.; Bi, X. Silver-mediated [3+ 2] cycloaddition of alkynes and N-isocyanoiminotriphenylphosphorane: Access to monosubstituted pyrazoles. Org. Lett., 2019, 21(9), 3158-3161.
[http://dx.doi.org/10.1021/acs.orglett.9b00860] [PMID: 30990050]
[91]
Pascual-Escudero, A.; Ortiz-Rojano, L.; Simón-Fuente, S.; Adrio, J.; Ribagorda, M. Aldehydes as photoremovable directing groups: synthesis of pyrazoles by a photocatalyzed [3+2] cycloaddition/norrish type fragmentation sequence. Org. Lett., 2021, 23(12), 4903-4908.
[http://dx.doi.org/10.1021/acs.orglett.1c01665] [PMID: 34097415]
[92]
Harigae, R.; Moriyama, K.; Togo, H. Preparation of 3,5-disubstituted pyrazoles and isoxazoles from terminal alkynes, aldehydes, hydrazines, and hydroxylamine. J. Org. Chem., 2014, 79(5), 2049-2058.
[http://dx.doi.org/10.1021/jo4027116] [PMID: 24512630]
[93]
Iizuka, M.; Kondo, Y. Palladium‐catalyzed alkynylcarbonylation of aryl iodides with the use of mo (CO) 6 in the presence of tBu3P ligand. Eur. J. Org. Chem., 2007, 2007(31), 5180-5182.
[94]
Kovács, S.; Novák, Z. Copper on iron promoted one-pot synthesis of β-aminoenones and 3,5-disubstituted pyrazoles. Tetrahedron, 2013, 69(43), 8987-8993.
[http://dx.doi.org/10.1016/j.tet.2013.08.047]
[95]
Pearce, A.J.; Harkins, R.P.; Reiner, B.R.; Wotal, A.C.; Dunscomb, R.J.; Tonks, I.A. Multicomponent pyrazole synthesis from alkynes, nitriles, and titanium imido complexes via oxidatively induced N–N bond coupling. J. Am. Chem. Soc., 2020, 142(9), 4390-4399.
[http://dx.doi.org/10.1021/jacs.9b13173] [PMID: 32043879]
[96]
Guo, H.; Tian, L.; Liu, Y.; Wan, J.P. DMSO as a C1 source for [2+ 2+ 1] pyrazole ring construction via metal-free annulation with enaminones and hydrazines. Org. Lett., 2022, 24(1), 228-233.
[http://dx.doi.org/10.1021/acs.orglett.1c03879] [PMID: 34908420]
[97]
Zhang, G.; Ni, H.; Chen, W.; Shao, J.; Liu, H.; Chen, B.; Yu, Y. One-pot three-component approach to the synthesis of polyfunctional pyrazoles. Org. Lett., 2013, 15(23), 5967-5969.
[http://dx.doi.org/10.1021/ol402810f] [PMID: 24255982]
[98]
Guo, Y.; Wang, G.; Wei, L.; Wan, J.P. Domino CH sulfonylation and pyrazole annulation for fully substituted pyrazole synthesis in water using hydrophilic enaminones. J. Org. Chem., 2019, 84(5), 2984-2990.
[http://dx.doi.org/10.1021/acs.joc.8b02897] [PMID: 30714367]
[99]
Alimohammadi, E.; Kaveh, K.; Ali, Z.M. Preparation of triazine-based functionalized HY zeolite and its application in the green synthesis of tetrahydrobenzo [b] pyran and 1, 4-dihydropyrano [2, 3-c] pyrazole derivatives as a novel mesoporous recyclable nanocatalyst. J Iranian Chem Soc, 2022, 19, 4721-4734.
[100]
Chen, D.; Wan, C.; Liu, Y.; Wan, J.P. Three-Component Fusion to Pyrazolo[5,1-a]isoquinolines via Rh-Catalyzed Multiple Order Transformation of Enaminones. J. Org. Chem., 2023, 88(7), 4833-4838.
[http://dx.doi.org/10.1021/acs.joc.3c00019] [PMID: 36947699]
[101]
Yin, X.; Song, Z.J.; Kalisiak, J.; Tripp, J.C.; Lei, X.; Li, H.; Zhang, A. Development of a concise process for the synthesis of the azaindazole Core of the CD73 Inhibitor AB680. Org. Process Res. Dev., 2023, 27(5), 945-953.
[http://dx.doi.org/10.1021/acs.oprd.3c00056]
[102]
Soleimani, E.; Ghorbani, S.; Taran, M.; Sarvary, A. Synthesis of 4,4′-(arylmethylene)bis(3-methyl-1H-pyrazol-5-ol) derivatives in water. C. R. Chim., 2012, 15(11-12), 955-961.
[http://dx.doi.org/10.1016/j.crci.2012.07.003]
[103]
Nasseri, M.A.; Alavi, S.A.; Zakeri Nasab, B. PEG–SO3H as a mild, efficient and green catalytic system for the synthesis of pyrazole deriva-tives in aqueous medium. J Iranian Chem Soc, 2013, 10, 213-219.
[104]
Annes, S.B.; Perumal, K.; Anandhakumar, K.; Shankar, B.; Ramesh, S. Transition-metal-free dehydrogenation of benzyl alcohol for C–C and C–N bond formation for the synthesis of pyrazolo [3,4-b]pyridine and pyrazoline derivatives. J. Org. Chem., 2023, 88(9), 6039-6057.
[http://dx.doi.org/10.1021/acs.joc.3c00382] [PMID: 37125502]
[105]
Annes, S.B.; Saritha, R.; Chandru, K.; Mandali, P.K.; Ramesh, S. Metal- and solvent-free cascade reaction for the synthesis of amino pyrazole thioether derivatives. J. Org. Chem., 2021, 86(23), 16473-16484.
[http://dx.doi.org/10.1021/acs.joc.1c01846] [PMID: 34747592]
[106]
Zhang, Y.; Xu, S.; Zhu, Y.; Xu, Q.; Gao, H.; Liang, Z.; Yao, X. One‐pot synthesis of 4‐thiocyanato‐1H‐pyrazoles through electrochemical multicomponent thiocyanation under metaland oxidant‐free conditions. Eur. J. Org. Chem., 2023.
[107]
Mali, G.; Shaikh, B.A.; Garg, S.; Kumar, A.; Bhattacharyya, S.; Erande, R.D.; Chate, A.V. Design, synthesis, and biological evaluation of densely substituted dihydropyrano [2, 3-c] pyrazoles via a taurine-catalyzed green multicomponent approach. ACS Omega, 2021, 6(45), 30734-30742.
[http://dx.doi.org/10.1021/acsomega.1c04773] [PMID: 34805701]
[108]
Upadhyay, A.; Singh, R.K.P. An efficient one pot four-component synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives via electrochemical approach. Asian J. Chem., 2021, 33(7), 1685-1691.
[http://dx.doi.org/10.14233/ajchem.2021.23196]
[109]
Addoum, B.; El Khalfi, B.; Sakoui, S.; Derdak, R.; Elmakssoudi, A.; Soukri, A. Synthesis and molecular docking studies of some pyrano [2, 3-c] pyrazole as an inhibitor of SARS-Coronavirus 3CL protease. Lett. Appl. NanoBioscience., 2022, 11, 3780.
[110]
Patki, A.S.; Patil, K.N.; Kusuma, S.; Muley, D.B.; Jadhav, A.H. One-pot synthesis of multicomponent pyrazole-4-carbonitrile derivatives under solvent-free condition by using engineered polyvinyl alcohol catalyst. Res. Chem. Intermed., 2021, 47(7), 2751-2773.
[http://dx.doi.org/10.1007/s11164-021-04450-6]
[111]
Singh, N.; Pandey, J. DABCO catalyzed, green and efficient, one-pot multicomponent synthesis of 5-aminopyrazole-4-carbonitrile. Curr. Res. Green Sustain. Chem., 2021, 4, 100134.
[http://dx.doi.org/10.1016/j.crgsc.2021.100134]
[112]
Rani, A.; Jain, S.; Sharma, S.K. Nano‐catalyst: A second generation tool for green chemistry; Green Chem. Environ. Remed, 2011.
[http://dx.doi.org/10.1002/9781118287705.ch12]
[113]
Bhaskaruni, S.V.H.S.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on multi-component green synthesis of N-containing hetero-cycles using mixed oxides as heterogeneous catalysts. Arab. J. Chem., 2020, 13(1), 1142-1178.
[http://dx.doi.org/10.1016/j.arabjc.2017.09.016]
[114]
Nemati, R.; Elhamifar, D.; Zarnegaryan, A.; Shaker, M. Core‐shell structured magnetite silica‐supported hexatungstate: A novel and powerful nanocatalyst for the synthesis of biologically active pyrazole derivatives. Appl. Organomet. Chem., 2021, 35(11), e6409.
[http://dx.doi.org/10.1002/aoc.6409]
[115]
Ghorbani, S.; Habibi, D.; Heydari, S. A phenylazophenylenediamine-based La-complex as a superb nanocatalyst for the synthesis of diverse pyrano[2,3-c]pyrazoles. J. Mol. Struct., 2022, 1260, 132713.
[http://dx.doi.org/10.1016/j.molstruc.2022.132713]
[116]
Tabassum, S. An insight into the superior performance of ZnO@ PEG nanocatalyst for the synthesis of 1,4-dihydropyrano[2,3-c]pyrazoles under ultrasound. Mater. Today Proc., 2021, 45, 3898-3903.
[http://dx.doi.org/10.1016/j.matpr.2020.06.283]
[117]
Sameri, F.; Mobinikhaledi, A. Bodaghifard, MA Preparation of core/shell CaO@SiO2-SO3H as a novel and recyclable nanocatalyst for one-pot synthesize of dihydropyrano[2,3-c]pyrazoles and tetrahydrobenzo[b]pyrans. Silicon, 2022, 14, 1395-1406.
[118]
Rezaei, I.; Mamaghani, M. An efficient green synthesis of polyfunctional pyrazole-triazole hybrids and bis-triazoles via chromium incorporated fluorapatite encapsulated iron oxide nanocatalyst. Curr. Chem. Lett., 2021, 10(4), 445-458.
[http://dx.doi.org/10.5267/j.ccl.2021.4.006]
[119]
Mousavi, F.; Elhamifar, D.; Kargar, S. Copper/IL-containing magnetic nanoporous MCM-41: A powerful and highly stable nanocatalyst. Surf. Interfaces, 2021, 25, 101225.
[http://dx.doi.org/10.1016/j.surfin.2021.101225]
[120]
Mofatehnia, P.; Mohammadi Ziarani, G.; Elhamifar, D.; Badiei, A. A new yolk-shell hollow mesoporous nanocomposite, Fe3O4@SiO2 @MCM41-IL/WO42-, as a catalyst in the synthesis of novel pyrazole coumarin compounds. J. Phys. Chem. Solids, 2021, 155, 110097.
[http://dx.doi.org/10.1016/j.jpcs.2021.110097]
[121]
Ghasemzadeh, M.A.; Mirhosseini-Eshkevari, B.; Dadashi, J. IRMOF-3 Functionalized GO/CuFe2O4: A new and recyclable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazoles under Ultrasound Irradiations. J. Mol. Struct., 2022, 1261, 132843.
[http://dx.doi.org/10.1016/j.molstruc.2022.132843]
[122]
Dadaei, M.; Naeimi, H. Nano cobalt ferrite encapsulated‐silica particles bearing melamine as an easily recyclable catalyst for the synthesis of dihydropyrano[2,3‐ c]pyrazoles under green conditions. Appl. Organomet. Chem., 2021, 35(10), e6365.
[http://dx.doi.org/10.1002/aoc.6365]
[123]
Solgi, M.; Khazaei, A.; Akbarpour, T. Synthesis of magnetic nanoparticles Fe3O4@CQD@Si(OEt)(CH2)3@melamine@TC@Ni(NO3) with application in the synthesis of 2-amino-3-cyanopyridine and pyrano[2,3-c]pyrazole derivatives. Res. Chem. Intermed., 2022, 48(6), 2443-2468.
[http://dx.doi.org/10.1007/s11164-022-04702-z]
[124]
Khalil, K.D.; Riyadh, S.M.; Jaremko, M.; Farghaly, T.A.; Hagar, M. Synthesis of chitosan-La2O3 nanocomposite and its utility as a powerful catalyst in the synthesis of pyridines and pyrazoles. Molecules, 2021, 26(12), 3689.
[http://dx.doi.org/10.3390/molecules26123689] [PMID: 34204215]
[125]
Marandi, A.; Nasiri, E.; Koukabi, N.; Seidi, F. The Fe3O4@apple seed starch core-shell structure decorated In(III): A green biocatalyst for the one-pot multicomponent synthesis of pyrazole-fused isocoumarins derivatives under solvent-free conditions. Int. J. Biol. Macromol., 2021, 190, 61-71.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.085] [PMID: 34411618]
[126]
Ahmadzadeh, M.; Sadeghi, M.; Safari, J. Copper(II) anchored on amine-functionalized MMT: A highly efficient catalytic system for the one-pot synthesis of bispyrano[2,3-c]pyrazole derivatives. J. Chem., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/1784142]
[127]
Dehghani Tafti, A.; Mirjalili, B.B.F.; Bamoniri, A.; Salehi, N. Rapid four-component synthesis of dihydropyrano[2,3-c]pyrazoles using nano-eggshell/Ti(IV) as a highly compatible natural based catalyst. BMC Chem., 2021, 15(1), 6.
[http://dx.doi.org/10.1186/s13065-021-00734-5] [PMID: 33430936]
[128]
Jain, S.; Kumar, S.; Lamba, B.Y.; Patra, J.; Mahindroo, N. Nanocatalysts: Applications in synthesis of chalcones – a review. Synth. Commun., 2021, 51(1), 1-12.
[http://dx.doi.org/10.1080/00397911.2020.1817941]
[129]
Safaei, S.; Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Nano-silica supported acidic ionic liquid as an efficient catalyst for the multi-component synthesis of indazolophthalazine-triones and bis-indazolophthalazine-triones. Catal. Sci. Technol., 2013, 3(10), 2717-2722.
[http://dx.doi.org/10.1039/c3cy00344b]
[130]
Moodley, V.; Maddila, S.; Jonnalagadda, S.B.; van Zyl, W.E. Retraction: Synthesis of triazolidine-3-one derivatives through the nanocellulose/hydroxyapatite-catalyzed reaction of aldehydes and semicarbazide. New J. Chem., 2020, 44(43), 18954.
[http://dx.doi.org/10.1039/D0NJ90154G]
[131]
Faroughi Niya, H.; Hazeri, N.; Maghsoodlou, M.T. Synthesis and characterization of Fe3O4@THAM‐SO3H as a highly reusable nanocatalyst and its application for the synthesis of dihydropyrano[2,3‐c]pyrazole derivatives. Appl. Organomet. Chem., 2020, 34(4), e5472.
[http://dx.doi.org/10.1002/aoc.5472]
[132]
Hassani, H.; Toosi, F.S.; Feizi, N. Oxidative coupling of dimethylformamide with β-dicarbonyl compounds using γ-Fe2O3@CuO nanoparticles. Russ. J. Org. Chem., 2020, 56(9), 1654-1659.
[http://dx.doi.org/10.1134/S1070428020090249]
[133]
Hajizadeh, Z.; Maleki, A. Poly(ethylene imine)-modified magnetic halloysite nanotubes: A novel, efficient and recyclable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Mol. Catal., 2018, 460, 87-93.
[http://dx.doi.org/10.1016/j.mcat.2018.09.018]
[134]
Pradhan, K.; Paul, S.; Das, A.R. Magnetically retrievable nano crystalline CuFe2O4 catalyzed multi-component reaction: A facile and efficient synthesis of functionalized dihydropyrano[2,3-c]pyrazole, pyrano[3,2-c]coumarin and 4H-chromene derivatives in aqueous media. Catal. Sci. Technol., 2014, 4(3), 822-831.
[http://dx.doi.org/10.1039/c3cy00901g]
[135]
Saha, A.; Payra, S.; Banerjee, S. One-pot multicomponent synthesis of highly functionalized bio-active pyrano[2,3-c]pyrazole and ben-zylpyrazolyl coumarin derivatives using ZrO2 nanoparticles as a reusable catalyst. Green Chem., 2015, 17(5), 2859-2866.
[http://dx.doi.org/10.1039/C4GC02420F]
[136]
Borhade, A.V.; Uphade, B.K. ZnS nanoparticles as an efficient and reusable catalyst for synthesis of 4 H-pyrano [2, 3-c] pyrazoles. J. Indian Chem. Soc., 2015, 12, 1107-1113.
[137]
Abdollahi-Alibeik, M.; Moaddeli, A.; Masoomi, K. BF 3 bonded nano Fe3O4(BF3/MNPs): An efficient magnetically recyclable catalyst for the synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives. RSC Advances, 2015, 5(91), 74932-74939.
[http://dx.doi.org/10.1039/C5RA11343A]
[138]
Azarifar, D.; Abbasi, Y. Sulfonic acid–functionalized magnetic] Fe3-xTixO4 nanoparticles: New recyclable heterogeneous catalyst for one-pot synthesis of tetrahydrobenzo[b]pyrans and dihydropyrano[2,3-c]pyrazole derivatives. Synth. Commun., 2016, 46(9), 745-758.
[http://dx.doi.org/10.1080/00397911.2016.1171360]
[139]
Kaminwar, N.S.; Tekale, S.U.; Chidrawar, A.B.; Kótai, L.; Pawar, R.P. Eco-friendly synthesis of 1, 4-dihydropyrano-[2, 3-c] pyrazoles using copper nanoparticles grafted on carbon microsphere as a heterogeneous catalyst. Lett. Appl. NanoBioSci., 2020, 9, 1521-1528.
[140]
Zakeri, M.; Abouzari-lotf, E.; Miyake, M.; Mehdipour-Ataei, S.; Shameli, K. Phosphoric acid functionalized graphene oxide: A highly dispersible carbon-based nanocatalyst for the green synthesis of bio-active pyrazoles. Arab. J. Chem., 2019, 12(2), 188-197.
[http://dx.doi.org/10.1016/j.arabjc.2017.11.006]
[141]
Saberikhah, E.; Mamaghani, M.; Mahmoodi, N.O. γ‐FE2O3@HAP-@PBABMD @Cu magnetic nanoparticles: Efficient, green, and recyclable novel nanocatalyst for the synthesis of densely functionalized pyrrole‐pyrido[2,3‐ d]pyrimidine hybrids. J. Chin. Chem. Soc., 2021, 68(5), 902-916.
[http://dx.doi.org/10.1002/jccs.202000310]
[142]
Ablajan, K.; Wang, L.J.; Maimaiti, Z.; Lu, Y.T. CeCl3-promoted one-pot synthesis of multisubstituted bispyrano[2,3-c]pyrazole derivatives. Monatsh. Chem., 2014, 145(3), 491-496.
[http://dx.doi.org/10.1007/s00706-013-1104-6]
[143]
Litvinov, Y.M.; Shestopalov, A.A.; Rodinovskaya, L.A.; Shestopalov, A.M. New Convenient Four-Component Synthesis of 6-Amino-2,4-dihydropyrano[2,3- c]pyrazol-5-carbonitriles and One-Pot Synthesis of 6′-Aminospiro[(3 H)-indol-3,4′-pyrano[2,3- c]pyrazol]-(1 H)-2-on-5′-carbonitriles. J. Comb. Chem., 2009, 11(5), 914-919.
[http://dx.doi.org/10.1021/cc900076j] [PMID: 19711896]
[144]
Fang, Z.; Liu, J.; Qiao, Y. Bromodimethylsulfonium bromide catalyzed synthesis of pyrazole-fused isocoumarins. Youji Huaxue, 2018, 38(8), 1985.
[http://dx.doi.org/10.6023/cjoc201803019]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy