Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Protective Effect of Heteroxenia fuscescens Extract against Sodium Arsenite-induced Infertility in Male Rats

Author(s): Amel Omar, Basma Soliman, Ahmed Dakrory, Montaser Al-Hammady and Ayman Mohamed*

Volume 20, Issue 2, 2024

Published on: 04 September, 2023

Article ID: e150823219703 Pages: 11

DOI: 10.2174/1573407219666230815105059

Price: $65

Abstract

Background: Arsenic is a potent environmental toxin with dangerous effects on human and animal populations. Heteroxenia fuscescens (H. fuscescens) extract exhibits potential health effects. The purpose of this study was to assess the protective effect of H. fuscescensextract against sodium arsenite-induced infertility and toxicity in rats.

Methods: Forty male rats were separated into four groups as follows: control group (2% DMSO, orally), sodium arsenite (10 mg/kg, orally), sodium arsenite + H. fuscescens extract (60 mg/kg in 2% DMSO), and H. fuscescens extract (60 mg/kg in 2% DMSO).

Results: GC/MS analysis of H. fuscescens indicates the presence of 10 compounds at retention times of 6.00, 12.53, 19.04, 24.60, 28.56, 35.66, 38.99, 45.29, 48.02, and 52.14. fuscescens extract improves levels of sperm count (53.33 ± 1.52), motility (43.00 ± 1.10), FSH ( 2.17 ± 0.04), LH (2.43 ± 0.06), testosterone (1.87 ± 0.02), and testis weight (0.49 ± 0.01). The antioxidant activity of H. fuscescens extract was reported by a significant decrease in MDA (1.02 ± 0.01) and NO (520.39 ± 14.99) levels, while it significantly increased levels of GSH (1.77 ± 0.07), and CAT (71.38 ± 3.45). Histopathological alterations of the testes, liver, and kidney observed with sodium arsenite have been improved in the treatment group.

Conclusion: Heteroxenia fuscescens is beneficial in restoring male sex hormone levels, maintaining a healthy sperm profile, and reducing oxidative stress, all of which lead to an improvement in male rat fertility.

Graphical Abstract

[1]
Mumtaz, F.; Albeltagy, R.S.; Diab, M.S.M.; Abdel Moneim, A.E.; El-Habit, O.H. Exposure to arsenite and cadmium induces organotoxicity and miRNAs deregulation in male rats. Environ. Sci. Pollut. Res. Int., 2020, 27(14), 17184-17193.
[http://dx.doi.org/10.1007/s11356-020-08306-1] [PMID: 32152865]
[2]
Al-Brakati, A.Y.; Kassab, R.B.; Lokman, M.S.; Elmahallawy, E.K.; Amin, H.K.; Abdel Moneim, A.E. Role of thymoquinone and ebselen in the prevention of sodium arsenite–induced nephrotoxicity in female rats. Hum. Exp. Toxicol., 2019, 38(4), 482-493.
[http://dx.doi.org/10.1177/0960327118818246] [PMID: 30558456]
[3]
Guvvala, P.R.; Ravindra, J.P.; Selvaraju, S.; Arangasamy, A.; Venkata, K.M. Ellagic and ferulic acids protect arsenic-induced male reproductive toxicity via regulating Nfe2l2, Ppargc1a and StAR expressions in testis. Toxicology, 2018, 23(18), 18200-18210.
[PMID: 30503583]
[4]
Concessao, P.L.; Bairy, K.L.; Raghavendra, A.P. Ameliorating effect of Mucuna pruriens seed extract on sodium arsenite-induced testicular toxicity and hepato-renal histopathology in rats. Vet. World, 2023, 16(1), 82-93.
[http://dx.doi.org/10.14202/vetworld.2023.82-93] [PMID: 36855363]
[5]
Jana, K.; Jana, S.; Samanta, P.K. Effects of chronic exposure to sodium arsenite on hypothalamo-pituitary-testicular activities in adult rats: Possible an estrogenic mode of action. Reprod. Biol. Endocrinol., 2006, 4(1), 9.
[http://dx.doi.org/10.1186/1477-7827-4-9] [PMID: 16483355]
[7]
Waalkes, MP; Keefer, LK Diwan, BAJT Induction of proliferative lesions of the uterus, testes, and liver in Swiss mice given repeated injections of sodium arsenate: Possible estrogenic mode of action. Toxicol. Appl. Pharmacol., 2000, 166(1), 24-35.
[8]
Kitchin, K.T.; Conolly, R. Arsenic-induced carcinogenesis--oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment. Chem. Res. Toxicol., 2010, 23(2), 327-335.
[http://dx.doi.org/10.1021/tx900343d] [PMID: 20035570]
[9]
Stroud, J.L.; Norton, G.J.; Islam, M.R.; Dasgupta, T.; White, R.P.; Price, A.H.; Meharg, A.A.; McGrath, S.P.; Zhao, F.J. The dynamics of arsenic in four paddy fields in the Bengal delta. Environ. Pollut., 2011, 159(4), 947-953.
[http://dx.doi.org/10.1016/j.envpol.2010.12.016] [PMID: 21236535]
[10]
Bundschuh, J.; Nath, B.; Bhattacharya, P.; Liu, C.W.; Armienta, M.A.; Moreno, Ló; pez, M.V.; Lopez, D.L.; Jean, J.S.; Cornejo, L.; Lauer Macedo, L.F.; Filho, A.T. َArsenic in the human food chain: The latin american perspective. Sci. Total Environ., 2012, 429, 92-106.
[http://dx.doi.org/10.1016/j.scitotenv.2011.09.069] [PMID: 22115614]
[11]
Mamdouh, S; Mohamed, AS; Mohamed, HA; Fahmy, WS The effect of zinc concentration on physiological, immunological, and histological changes in crayfish (Procambarus clarkii) as bio-indicator for environment quality criteria. Biol. Trace Elem. Res., 2022, 200(1), 375-384.
[12]
Mamdouh, S; Mohamed, AS; Mohamed, HA Zn contamination stimulate agonistic behavior and oxidative stress of crayfishes (Procambarus clarkii). J. Trace. Elem. Med. Biol., 2022, 69, 126895.
[http://dx.doi.org/10.1016/j.jtemb.2021.126895] [PMID: 34785418]
[13]
Zeba, U.N.; Ali, M.; Biswas, S.K.; Kamrun, N.; Bashar, T.; Arslan, M.I. Study of seminal MDA level as an oxidative stress. J. Sci. Foundation., 2011, 9, 85-93.
[14]
Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol., 2015, 13(1), 37.
[http://dx.doi.org/10.1186/s12958-015-0032-1] [PMID: 25928197]
[15]
Krzastek, S.C.; Farhi, J.; Gray, M.; Smith, R.P. Impact of environmental toxin exposure on male fertility potential. Transl. Androl. Urol., 2020, 9(6), 2797-2813.
[http://dx.doi.org/10.21037/tau-20-685] [PMID: 33457251]
[16]
Moskovic, D.J.; Katz, D.J.; Akhavan, A.; Park, K.; Mulhall, J.P. Clomiphene citrate is safe and effective for long-term management of hypogonadism. BJU Int., 2012, 110(10), 1524-1528.
[http://dx.doi.org/10.1111/j.1464-410X.2012.10968.x] [PMID: 22458540]
[17]
Nangia, A.K.; Crosnoe, L.; Bar-Chama, N.; Khera, M.; Lipshultz, L. The treatment of hypogonadism in men of reproductive age. Fertil. Steril., 2013, 99(3), 678-679.
[http://dx.doi.org/10.1016/j.fertnstert.2012.11.025] [PMID: 23219011]
[18]
Shinjo, E.; Shiraishi, K.; Matsuyama, H. The effect of human chorionic gonadotropin-based hormonal therapy on intratesticular testosterone levels and spermatogonial DNA synthesis in men with non-obstructive azoospermia. Andrology, 2013, 1(6), 929-935.
[http://dx.doi.org/10.1111/j.2047-2927.2013.00141.x] [PMID: 24123916]
[19]
Kumar, N.; Singh, A.K. Reactive oxygen species in seminal plasma as a cause of male infertility. J. Gynecol. Obstet. Hum. Reprod., 2018, 47(10), 565-572.
[http://dx.doi.org/10.1016/j.jogoh.2018.06.008] [PMID: 30016715]
[20]
Ng, C.M.; Blackman, M.R.; Wang, C.; Swerdloff, R.S. The role of carnitine in the male reproductive system. Ann. N. Y. Acad. Sci., 2004, 1033(1), 177-188.
[http://dx.doi.org/10.1196/annals.1320.017]
[21]
Sadek, SA; Hassanein, SS; Mohamed, AS; Soliman, AM Echinochrome pigment extracted from sea urchin suppress the bacterial activity, inflammation, nociception, and oxidative stress resulted in the inhibition of renal injury in septic rats. J. Food Biochem., 2022, 46(3), e13729.
[http://dx.doi.org/10.1111/jfbc.13729] [PMID: 33871886]
[22]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[23]
Abdelfattah, M.A.; Mohamed, A.S.; Ibrahim, S.A.; Fahmy, S.R. Allolobophora caliginosa coelomic fluid and extract alleviate glucocorticoid-induced osteoporosis in mice by suppressing oxidative stress and regulating osteoblastic/osteoclastic-related markers. Sci. Rep., 2023, 13(1), 2090.
[http://dx.doi.org/10.1038/s41598-023-29070-5] [PMID: 36746995]
[24]
Salaheldin, A.T.; Shehata, M.R.; Sakr, H.I.; Atia, T.; Mohamed, A.S. Therapeutic Potency of Ovothiol A on Ethanol-Induced Gastric Ulcers in Wistar Rats. Mar. Drugs, 2022, 21(1), 25.
[http://dx.doi.org/10.3390/md21010025] [PMID: 36662198]
[25]
Lotfy, BMM; Mousa, MR; El-Shehry, MSFE-S; Ahmed, SHA-F; Ali, SB; Al Shawoush, AM Therapeutic potency of gallium verum extract on ethanol-induced gastric ulcer in rats. Biointerface Res. App. Chem., 12(5), 6010. 2022
[26]
Madany, NMK.; Shehata, MR Ovothiol-a isolated from sea urchin eggs suppress oxidative stress, inflammation, and dyslipidemia resulted in restoration of liver activity in cholestatic rats. Biointerface Res. Appl. Chem., 2022, 12(6), 8152-8162.
[27]
Benayahu, Y.; Loya, Y. Long-term recruitment of soft-corals (Octocorallia: Alcyonacea) on artificial substrata at Eilat (Red Sea). Mar. Ecol. Prog. Ser., 1987, 38, 161-167.
[http://dx.doi.org/10.3354/meps038161]
[28]
Ismail, H.; Hanafy, M.H.; Madkour, F.F.; Ahmed, M.I. Distribution of Soft corals in the egyptian coasts of the Red Sea and Gulf of Aqaba. Int. J. Eng. Sci. Adv. Comput. Bio-technol., 2017, 7, 14944-14950.
[29]
Abdel-Razik, A.F.; Nassar, M.I.; Elshamy, A.I.; Kubacy, T.M.; Hegazy, M.E.F.; Ibrahim, N.; Lamer, A-C.L.; Farrag, A-R.H. A new cytotoxic ceramide from Heteroxenia ghardaqensis and protective effect of chloroform extract against cadmium toxicity in rats. Arab. J. Chem., 2016, 9(5), 649-655.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.055]
[30]
Mohammed, R.; Seleim, M.A.; Mohamed, T.A.; Abdel-Fatah, A.; Abou-Youssef, A.M.; Thabet, M. Bioactive secondary metabolites from the Red Sea soft coral Heteroxenia fuscescens. Int. J. Appl. Res. Nat. Prod., 2012, 4, 15-27.
[31]
Kelutur, F.; Saptarini, N.; Mustarichie, R. Bioactive compounds profile of gorgonian corals and their pharmacological activities: A review. RASĀYAN J. Chem., 2021, 14(3), 1773-1789.
[32]
Abdelkarem, FM; Desoky, E-EK; Nafady, AM; Allam, AE; Mahdy, A; Ashour, A; Mohamed, GA; Miyamoto, T Shimizu, K Two new polyhydroxylated steroids from Egyptian soft coral Heteroxenia fuscescens (Fam.; Xeniidae). Nat. Prod. Res., 2021, 35(2), 236-243.
[33]
Kasimala, M; Babu, BH; Awet, B; Henok, G; Haile, A; Hisham, O A review on bioactive secondary metabolites of soft corals (Octocorallia) and their distribution in Eritrean coast of red sea. Indian J. Geo-Mar. Sci., 2020, 49(12), 1793-1800.
[34]
Elshamy, A.I.; Abdel-Razik, A.F.; Nassar, M.I.; Mohamed, T.K.; Ibrahim, M.A.; El-Kousy, S.M. A new gorgostane derivative from the Egyptian Red Sea soft coral Heteroxenia ghardaqensis. Nat. Prod. Res., 2013, 27(14), 1250-1254.
[http://dx.doi.org/10.1080/14786419.2012.724417] [PMID: 22967306]
[35]
Morakinyo, A.O.; Achema, P.U.; Adegoke, O.A. Effect of zingiber officinale (ginger) on sodium arseniteinduced reproductive toxicity in male rats. Afr. J. Biomed. Res., 2010, 13, 39-45.
[36]
Razik Farrag, A.; Nassar, M.; El-Khayat, Z.; Hussein, J.; Ahmed Mohammed, N.; Medhat, D.; El-Gendy, A.E-N.; Elshamy, A. Heteroxenia ghardaqensis extract protects against DNA damage in streptozotocin-induced experimental diabetes. Biomed. Pharmacol. J., 2019, 12(1), 71-78.
[http://dx.doi.org/10.13005/bpj/1615]
[37]
Abdelaziz, M.H.; El-Dakdoky, M.H.; Ahmed, T.A.; Mohamed, A.S. Biological impacts of the green synthesized silver nanoparticles on the pregnant albino rats and their fetuses. Birth Defects Res., 2023, 115(4), 441-457.
[http://dx.doi.org/10.1002/bdr2.2131] [PMID: 36448314]
[38]
Mohammed, EN; Soliman, AM Mohamed, AS Modulatory effect of Ovothiol‐A on myocardial infarction induced by epinephrine in rats. J. Food Biochem., 2022, 46(9), e14296.
[39]
Mohamed, A.S.; Rawash, M.A.; El-Zayat, E.M. The concurrent therapeutic potential of adipose-derived mesenchymal stem cells on gen-tamycin-induced hepatorenal toxicity in rats. Curr. Stem Cell Res. Ther., 2022, 17(8), 808-814.
[http://dx.doi.org/10.2174/1574888X16666211011124154] [PMID: 34635044]
[40]
Mohamed, AS; Elkareem, M; Soliman, AM Potential inhibition of ehrlich ascites carcinoma by naja nubiae crude venom in swiss albino mice. Biointerface Res. Appl. Chem., 2022, 12(6), 7741-7751.
[41]
Narayana, K.; Prashanthi, N.; Nayanatara, A.; Kumar, H.H.C.; Abhilash, K.; Bairy, K.L. Effects of methyl parathion (o,o-dimethyl o-4-nitrophenyl phosphorothioate) on rat sperm morphology and sperm count, but not fertility, are associated with decreased ascorbic acid level in the testis. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2005, 588(1), 28-34.
[http://dx.doi.org/10.1016/j.mrgentox.2005.08.012] [PMID: 16226487]
[42]
El-Desoky, G.E.; Bashandy, S.A.; Alhazza, I.M.; Al-Othman, Z.A.; Aboul-Soud, M.A.M.; Yusuf, K. Improvement of mercuric chloride-induced testis injuries and sperm quality deteriorations by Spirulina platensis in rats. PLoS One, 2013, 8(3), e59177.
[http://dx.doi.org/10.1371/journal.pone.0059177] [PMID: 23555627]
[43]
Farag, N.A.; Mohamed, A.S.; El Sayed, H.F.; Din, S.E.; Eman, Y.; Tawfik, A.R.A Echinlts’. Fertility., 2022, 12(3), 80-86.
[44]
Kiernan, J.A.; Horobin, R.W. A special issue devoted to hematoxylin, hematein, and hemalum. Biotech. Histochem., 2010, 85(1), 5-6.
[http://dx.doi.org/10.3109/10520290903048368] [PMID: 19548134]
[45]
Omar, TY; Sadek, ES; Bahaaeldine, MA; Rashed, AR; Al Shawoush, AM; Mohamed, AS Freshwater clam as a potential bioindicator for ZnO-agar nanocomposite toxicity. Curr. Topics Toxicol., 2022, 18, 123-133.
[46]
Magdy, A; Fahmy, SR; Mohamed, AS; Saad, DY; Desokyand, RS; Baiomy, AAA Histopathological and immunohistochemical study of antiosteoporotic efficacy of the earthworm allolobophora caliginosa extract in orchiectomized rats. Int. J. Morphol., 2022, 40(1), 277-286.
[47]
Massoud, E; Daniel, MS; El-Kott, A; Ali, SB; Morsy, K; Mohamed, AS; Fahmy, SR Therapeutic effect of trigonella foenum-graecum l seeds extract on folic acid-induced acute kidney injury. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2022, 92(3), 701-707.
[http://dx.doi.org/10.1007/s40011-022-01368-w]
[48]
Abdelaziz, MH; Abdelfattah, MA; Bahaaeldine, MA; Rashed, AR; Mohamed, AS; Ali, MF Earthworm extract enhanced organ functions in diabetic rats by ameliorating physiological and structural changes. Biointerface Res. Appl. Chem., 2023, 13(5), 1-19.
[49]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[50]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[51]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[52]
Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem., 1982, 126(1), 131-138.
[http://dx.doi.org/10.1016/0003-2697(82)90118-X] [PMID: 7181105]
[53]
Pant, N.; Kumar, R.; Murthy, R.C.; Srivastava, S.P. Male reproductive effect of arsenic in mice. Biometals, 2001, 14(2), 113-117.
[http://dx.doi.org/10.1023/A:1016686113763] [PMID: 11508843]
[54]
Lima, G.D.A.; Sertorio, M.N.; Souza, A.C.F.; Menezes, T.P.; Mouro, V.G.S.; Gonçalves, N.M.; Oliveira, J.M.; Henry, M.; Machado-Neves, M. Fertility in male rats: Disentangling adverse effects of arsenic compounds. Reprod. Toxicol., 2018, 78, 130-140.
[http://dx.doi.org/10.1016/j.reprotox.2018.04.015] [PMID: 29702248]
[55]
Bashandy, S.A.E.; El Awdan, S.A.; Ebaid, H.; Alhazza, I.M. Antioxidant potential of spirulina platensis mitigates oxidative stress and reprotoxicity induced by sodium arsenite in male rats. Oxid. Med. Cell. Longev., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/7174351] [PMID: 26881036]
[56]
Zubair, M.; Ahmad, M.; Qureshi, Z.I. Review on arsenic-induced toxicity in male reproductive system and its amelioration. Andrologia, 2017, 49(9), e12791.
[http://dx.doi.org/10.1111/and.12791] [PMID: 28133775]
[57]
Dohle, G.R.; Smit, M.; Weber, R.F.A. Androgens and male fertility. World J. Urol., 2003, 21(5), 341-345.
[http://dx.doi.org/10.1007/s00345-003-0365-9] [PMID: 14566423]
[58]
Sarkar, M.; Chaudhuri, G.R.; Chattopadhyay, A.; Biswas, N.M. Effect of sodium arsenite on spermatogenesis, plasma gonadotrophins and testosterone in rats. Asian J. Androl., 2003, 5(1), 27-31.
[PMID: 12646999]
[59]
Wares, M.; Awal, M.; Das, S.; Hannan, M.; Anas, M.; Latif, M.; Masud, N. Chronic natural arsenic exposure affecting histoarchitecture of gonads in Black Bengal goats (Capra aegagrushircus). J. Adv. Vet. Anim. Res., 2015, 2(2), 128-133.
[http://dx.doi.org/10.5455/javar.2015.b61]
[60]
Vernet, P.; Aitken, R.J.; Drevet, J.R. Antioxidant strategies in the epididymis. Mol. Cell. Endocrinol., 2004, 216(1-2), 31-39.
[http://dx.doi.org/10.1016/j.mce.2003.10.069] [PMID: 15109742]
[61]
Rajesh Kumar, T.; Doreswamy, K.; Shrilatha, B.; Muralidhara, M. Oxidative stress associated DNA damage in testis of mice: Induction of abnormal sperms and effects on fertility. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2002, 513(1-2), 103-111.
[http://dx.doi.org/10.1016/S1383-5718(01)00300-X] [PMID: 11719095]
[62]
Anahara, R.; Toyama, Y.; Maekawa, M.; Kai, M.; Ishino, F.; Toshimori, K.; Mori, C. Flutamide depresses expression of cortactin in the ectoplasmic specialization between the Sertoli cells and spermatids in the mouse testis. Food Chem. Toxicol., 2006, 44(7), 1050-1056.
[http://dx.doi.org/10.1016/j.fct.2005.12.010] [PMID: 16481087]
[63]
Jungwirth, A.; Diemer, T.; Dohle, G.R.; Giwercman, A.; Kopa, Z.; Krausz, C. Guidelines on male infertility; European Association of Urol-ogy, 2015.
[64]
Shukla, J.P.; Pandey, K. Impaired spermatogenesis in arsenic treated freshwater fish, Colisa fasciatus (Bl. and Sch.). Toxicol. Lett., 1984, 21(2), 191-195.
[http://dx.doi.org/10.1016/0378-4274(84)90205-4] [PMID: 6719501]
[65]
Chowdhury, A.K. Dependence of testicular germ cells on hormones: A quantitative study in hypophysectomized testosterone-treated rats. J. Endocrinol., 1979, 82(3), 331-340. NP.
[http://dx.doi.org/10.1677/joe.0.0820331] [PMID: 512545]
[66]
Russell, L.D.; Alger, L.; Nequin, L.G. Hormonal control of pubertal spermatogenesis. Endocrinology, 1987, 120(4), 1615-1632.
[http://dx.doi.org/10.1210/endo-120-4-1615] [PMID: 3104013]
[67]
Sharpe, R.M.; Maddocks, S.; Millar, M.; Kerr, J.B.; Saunders, P.T.; McKinnell, C. Testosterone and spermatogenesis. Identification of stage-specific, androgen-regulated proteins secreted by adult rat seminiferous tubules. J. Androl., 1992, 13(2), 172-184.
[PMID: 1317835]
[68]
Kim, Y.J.; Kim, J.M. Arsenic toxicity in male reproduction and development. Dev. Reprod., 2015, 19(4), 167-180.
[http://dx.doi.org/10.12717/DR.2015.19.4.167] [PMID: 26973968]
[69]
Sanghamitra, S.; Hazra, J.; Upadhyay, S.N.; Singh, R.K.; Amal, R.C. Arsenic induced toxicity on testicular tissue of mice. Indian J. Physiol. Pharmacol., 2008, 52(1), 84-90.
[PMID: 18831356]
[70]
Ramandi, M.F.; Piranfar, V.; Nadoushan, M.J.; Sarshoori, J.R.; Misialek, M.J.; Heiat, M.; Moghaddam, M.M. Dose-response effects of the CM11 as a short cationic antimicrobial peptide on histopathological and biochemical changes in mice. Curr. Chem. Biol., 2017, 11(2), 150-157.
[http://dx.doi.org/10.2174/2212796811666170314131111]
[71]
Abdel-Raheem, A; Hamed, HI Fahim, E-S Oxidative stress markers as early predictors of diabetes complications in Type 2 diabetic pa-tients. Indian J. Physiol. Pharmacol., 2022, 66.
[72]
Bodhank, S.L.; Adil, M.; Visnagri, A.; Kumar, V.S.; Kandhar, A.D.; Ghosh, P. Protective effect of naringin on sodium arsenite induced testicular toxicity via modulation of biochemical perturbations in experimental rats. Pharmacologia., 2014, 5(6), 222-234.
[http://dx.doi.org/10.5567/pharmacologia.2014.222.234]
[73]
Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev., 2014, 94(2), 329-354.
[http://dx.doi.org/10.1152/physrev.00040.2012] [PMID: 24692350]
[74]
Baiomy, AA; Bahaaeldine, MA; Mohamed, AS The therapeutic role of chitosan-saponin-bentonite nanocomposite on acute kidney injury induced by chromium in male wistar rats. Biointerface Res. Appl. Chem., 2023, 13(6), 1-23.
[75]
Gurr, J.; Yih, L.H.; Samikkannu, T.; Bau, D.T.; Lin, S.Y.; Jan, K.Y. Nitric oxide production by arsenite. Mutat. Res., 2003, 533(1-2), 173-182.
[http://dx.doi.org/10.1016/j.mrfmmm.2003.08.024] [PMID: 14643419]
[76]
Ali, SA; Abdelmoaty, HS; Ramadan, HH Salman, YB Extraction and Chemical identification of certain antifungal compounds from the pigmented fungus Epicoccum nigrum against phytopathogenic fungus Fusarium solani; Res. Square, 2023.
[http://dx.doi.org/10.21203/rs.3.rs-2454076/v1]
[77]
Lammers, A; Zweers, H; Sandfeld, T; Bilde, T; Garbeva, P; Schramm, A Antimicrobial compounds in the volatilome of social spider communities. Front. Microbiol., 2021, 12, 700693.
[http://dx.doi.org/10.3389/fmicb.2021.700693] [PMID: 34504476]
[78]
Aparna, V; Dileep, KV; Mandal, PK; Karthe, P; Sadasivan, C Antiinflammatory property of n‐hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des., 2012, 80(3), 434-439.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01418.x] [PMID: 22642495]
[79]
Manivannan, P.; Muralitharan, G.; Balaji, N.P. Prediction aided in vitro analysis of octadecanoic acid from Cyanobacterium Lyngbya sp. as a proapoptotic factor in eliciting anti-inflammatory properties. Bioinformation, 2017, 13(9), 301-306.
[http://dx.doi.org/10.6026/97320630013301] [PMID: 29081609]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy