Generic placeholder image

Current Signal Transduction Therapy

Editor-in-Chief

ISSN (Print): 1574-3624
ISSN (Online): 2212-389X

Research Article

Mutation S249C of FGFR3b Promotes Bladder Cancer through Downstream Signaling Proteins FRS2 and FRS3: A Computational Approach

Author(s): Aisha Ali, Alwisha Lateef, Zuha Waheed, Mishal Waseem, Tahreem Zaheer, Miriam K Gomez, Roman Blaheta and Saira Justin*

Volume 18, Issue 2, 2023

Published on: 29 August, 2023

Article ID: e100823219610 Pages: 11

DOI: 10.2174/1574362418666230810094626

Price: $65

conference banner
Abstract

Background: Bladder cancer is the 9th most prevalent malignancy worldwide. Fibroblast Growth Factor Receptor 3b (FGFR3b), involved in cell proliferation, differentiation, and migration, is a mutations hotspot for bladder cancer with the most prevalent aberration being S249C.

Objective: Impact of S249C of FGFR3b on bladder tumorigenesis via immediate downstream adapter proteins, Fibroblast Growth Factor Receptor Substrate (FRS2 and FRS3) is analyzed computationally.

Methods: Wildtype FGFR3b monomer was modeled using I-TASSER and Phyre2. Whereas, S249C mutation was introduced via DynaMut. Wildtype FGFR3b homodimer and mutant heterodimer were structured and docked with downstream proteins using HADDOCK. PDBSum was used to study the amino acid residues involved in intermolecular and intramolecular interactions.

Results: Parameters of molecular flexibility and interatomic interactions predicted S249C heterodimer mutation of FGFR3b to be stable. Furthermore, docking with FRS2 protein revealed greater stability and higher binding affinity for S249C heterodimer mutant compared to wildtype homodimer. However, FRS3 docking showed a negligible decline in binding affinity for the S249C mutation but based on Van der Waal’s energy and insights into the interacting residues, it was revealed that these interactions might be stronger and for longer duration in comparison to the wildtype homodimer.

Conclusion: S249C heterodimer mutation of FGFR3b is predicted to be stable with a tumorigenic potential where FRS2 and FRS3 might be among the key players of altered downstream signaling. Further investigations are required for a detailed picture.

Graphical Abstract

[1]
Cancer Treatment Centers of AmericaTop Bladder Cancer Causes & Factors That Put You at Risk Available from: https://www.cancercenter.com/cancer-types/bladder-cancer/risk-fac [Accessed on: August 3, 2022]
[2]
Bladder Cancer: UCF. Available from: https://www.urologyhealth.org/urology-a-z/n/non-muscle-invasive-bladder-cancer [Accessed on: July 21, 2021].
[3]
Reactome | Signaling by FGFR3. Available from: https://reactome.org/content/detail/R-HSA-5654741 Accessed on:August 4, 2022].
[4]
d’Avis PY, Robertson SC, Meyer AN, Bardwell WM, Webster MK, Donoghue DJ. Constitutive activation of fibroblast growth factor receptor 3 by mutations responsible for the lethal skeletal dysplasia thanatophoric dysplasia type I. Cell Growth Differ 1998; 9(1): 71-8.
[5]
Di Martino E, Tomlinson DC, Knowles MA. A decade of FGF receptor research in bladder cancer: Past, present, and future challenges. Adv Urol 2012; 2012: 1-10.
[http://dx.doi.org/10.1155/2012/429213] [PMID: 22899908]
[6]
Xie X, Lin J, Zhong Y, Fu M, Tang A. FGFR3S249C mutation promotes chemoresistance by activating Akt signaling in bladder cancer cells. Exp Ther Med 2019; 18(2): 1226-34.
[http://dx.doi.org/10.3892/etm.2019.7672] [PMID: 31316618]
[7]
Cappellen D, De Oliveira C, Ricol D, et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet 1999; 23(1): 18-20.
[http://dx.doi.org/10.1038/12615] [PMID: 10471491]
[8]
Gust KM, McConkey DJ, Awrey S, et al. Fibroblast growth factor receptor 3 is a rational therapeutic target in bladder cancer. Mol Cancer Ther 2013; 12(7): 1245-54.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1150] [PMID: 23657946]
[9]
Fabregat A, Sidiropoulos K, Viteri G, et al. Reactome pathway analysis: A high-performance in-memory approach. BMC Bioinformatics 2017; 18(1): 142.
[http://dx.doi.org/10.1186/s12859-017-1559-2] [PMID: 28249561]
[10]
Shi W, Ostrov DA, Gerchman SE, et al. Pnp oxidase from saccharomyces cerevisiae New York SGX Research Center for Structural Genomics. NYSGXRC 1999.
[11]
O’Donovan C, Martin MJ, Gattiker A, Gasteiger E, Bairoch A, Apweiler R. High-quality protein knowledge resource: SWISS-PROT and TrEMBL. Brief Bioinform 2002; 3(3): 275-84.
[http://dx.doi.org/10.1093/bib/3.3.275] [PMID: 12230036]
[12]
Yang J, Zhang Y. Protein structure and function prediction using ITASSER. Curr Protoc Bioinformatics 2015; 52: 5.8.1-5.8.15...
[13]
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015; 10(6): 845-58.
[http://dx.doi.org/10.1038/nprot.2015.053] [PMID: 25950237]
[14]
Heo L, Park H, Seok C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res 2013; 41(W1)W384-8
[http://dx.doi.org/10.1093/nar/gkt458] [PMID: 23737448]
[15]
Lovell SC, Davis IW, Arendall WB III, et al. Structure validation by Cα geometry: ϕψ and Cβ deviation. Proteins 2003; 50(3): 437-50.
[http://dx.doi.org/10.1002/prot.10286] [PMID: 12557186]
[16]
Rodrigues CHM, Pires DEV, Ascher DB. DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res 2018; 46(W1)W350-5
[http://dx.doi.org/10.1093/nar/gky300] [PMID: 29718330]
[17]
de Vries SJ, Bonvin AMJJ. CPORT: A consensus interface predictor and its performance in prediction-driven docking with HADDOCK. PLoS One 2011; 6(3)e17695
[http://dx.doi.org/10.1371/journal.pone.0017695] [PMID: 21464987]
[18]
van Zundert GCP, Rodrigues JPGLM, Trellet M, et al. The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. J Mol Biol 2016; 428(4): 720-5.
[http://dx.doi.org/10.1016/j.jmb.2015.09.014] [PMID: 26410586]
[19]
Laskowski RA. Jabłońska J, Pravda L, Vařeková RS, Thornton JM. PDBsum: Structural summaries of PDB entries. Protein Sci 2018; 27: 129-34.
[20]
Bladder Carcinoma - My Cancer Genome Available from: https://www.mycancergenome.org/content/disease/bladder-carcino ma/ (Accessed on: 5/15/2021).
[21]
Koyama T, Rhrissorrakrai K, Parida L. Analysis on GENIE reveals novel recurrent variants that affect molecular diagnosis of sizable number of cancer patients. BMC Cancer 2019; 19(1): 114.
[http://dx.doi.org/10.1186/s12885-019-5313-1] [PMID: 30709382]
[22]
Tomlinson DC, Baldo O, Harnden P, Knowles MA. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol 2007; 213(1): 91-8.
[http://dx.doi.org/10.1002/path.2207] [PMID: 17668422]
[23]
Foth M, Ismail NFB, Kung JSC, et al. FGFR3 mutation increases bladder tumourigenesis by suppressing acute inflammation. J Pathol 2018; 246(3): 331-43.
[http://dx.doi.org/10.1002/path.5143] [PMID: 30043421]
[24]
Bernard-Pierrot I, Brams A, Dunois-Lardé C, et al. Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis 2006; 27(4): 740-7.
[http://dx.doi.org/10.1093/carcin/bgi290] [PMID: 16338952]
[25]
Kannan K, Givol D. FGF receptor mutations: Dimerization syndromes, cell growth suppression, and animal models. IUBMB Life 2000; 49(3): 197-205.
[http://dx.doi.org/10.1080/713803609] [PMID: 10868910]
[26]
Naski MC, Wang Q, Xu J, Ornitz DM. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet 1996; 13(2): 233-7.
[http://dx.doi.org/10.1038/ng0696-233] [PMID: 8640234]
[27]
You W, Huang YM, Kizhake S, Natarajan A, Chang CA. Characterization of promiscuous binding of phosphor ligands to breast-cancer-gene 1 (BRCA1) C-Terminal (BRCT): Molecular dynamics, free energy, entropy and inhibitor design. PLOS Comput Biol 2016; 12(8)e1005057
[http://dx.doi.org/10.1371/journal.pcbi.1005057] [PMID: 27560145]
[28]
Dodurga Y, Tataroglu C, Kesen Z, Satiroglu-Tufan NL. Incidence of fibroblast growth factor receptor 3 gene (FGFR3) A248C, S249C, G372C, and T375C mutations in bladder cancer. Genet Mol Res 2011; 10(1): 86-95.
[http://dx.doi.org/10.4238/vol10-1gmr923] [PMID: 21264819]
[29]
Ahmad I, Iwata T, Leung HY. Mechanisms of FGFR-mediated carcinogenesis. Biochim Biophys Acta Mol Cell Res 2012; 1823(4): 850-60.
[http://dx.doi.org/10.1016/j.bbamcr.2012.01.004] [PMID: 22273505]
[30]
Hadari YR, Gotoh N, Kouhara H, Lax I, Schlessinger J. Critical role for the docking-protein FRS2α in FGF receptor-mediated signal transduction pathways. Proc Natl Acad Sci USA 2001; 98(15): 8578-83.
[http://dx.doi.org/10.1073/pnas.161259898] [PMID: 11447289]
[31]
Gotoh N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci 2008; 99(7): 1319-25.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00840.x] [PMID: 18452557]
[32]
Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 2014; 4: 64.
[http://dx.doi.org/10.3389/fonc.2014.00064] [PMID: 24782981]
[33]
Chen Y, Law P, Loh H. Inhibition of PI3K/Akt signaling: An emerging paradigm for targeted cancer therapy. Curr Med Chem Anticancer Agents 2005; 5(6): 575-89.
[http://dx.doi.org/10.2174/156801105774574649] [PMID: 16305480]
[34]
Lien EC, Dibble CC, Toker A. PI3K signaling in cancer: Beyond AKT. Curr Opin Cell Biol 2017; 45: 62-71.
[http://dx.doi.org/10.1016/j.ceb.2017.02.007] [PMID: 28343126]
[35]
Wu Y, Chen Z, Ullrich A. EGFR and FGFR signaling through FRS2 is subject to negative feedback control by ERK1/2. Biol Chem 2003; 384(8): 1215-26.
[http://dx.doi.org/10.1515/BC.2003.134] [PMID: 12974390]
[36]
Pace CN, Fu H, Lee Fryar K, et al. Contribution of hydrogen bonds to protein stability. Protein Sci 2014; 23(5): 652-61.
[37]
Laederich MB, Degnin CR, Lunstrum GP, Holden P, Horton WA. Fibroblast growth factor receptor 3 (FGFR3) is a strong heat shock protein 90 (Hsp90) client: Implications for therapeutic manipulation. J Biol Chem 2011; 286(22): 19597-604.
[http://dx.doi.org/10.1074/jbc.M110.206151] [PMID: 21487019]
[38]
Sarabipour S, Hristova K. Mechanism of FGF receptor dimerization and activation. Nat Commun 2016; 7(1): 10262.
[http://dx.doi.org/10.1038/ncomms10262] [PMID: 26725515]
[39]
Zhang K, Chu K, Wu X, et al. Amplification of FRS2 and activation of FGFR/FRS2 signaling pathway in high-grade liposarcoma. Cancer Res 2013; 73(4): 1298-307.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2086] [PMID: 23393200]
[40]
Kiselyov A, Bunimovich-Mendrazitsky S, Startsev V. Key signaling pathways in the muscle-invasive bladder carcinoma: Clinical markers for disease modeling and optimized treatment. Int J Cancer 2016; 138(11): 2562-9.
[http://dx.doi.org/10.1002/ijc.29918] [PMID: 26547270]
[41]
Sharma AK, Mansukh A, Varma A, Gadewal N, Gupta S. Molecular Modeling of Differentially Phosphorylated Serine 10 and Acetylated lysine 9/14 of Histone H3 Regulates their Interactions with 14-3-3ζ, MSK1, and MKP1. Bioinform Biol Insights 2013; 7: 12449.
[http://dx.doi.org/10.4137/BBI.S12449] [PMID: 24027420]
[42]
Al Hussain TO, Akhtar M. Molecular basis of urinary bladder cancer. Adv Anat Pathol 2013; 20(1): 53-60.
[http://dx.doi.org/10.1097/PAP.0b013e31827bd0ec] [PMID: 23232572]
[43]
Rodriguez-Vida A, Saggese M, Hughes S, et al. Complexity of FGFR signalling in metastatic urothelial cancer. J Hematol Oncol 2015; 8(1): 119.
[http://dx.doi.org/10.1186/s13045-015-0221-6] [PMID: 26497743]
[44]
Luo LY, Kim E, Cheung HW, et al. The tyrosine kinase adaptor protein FRS2 is oncogenic and amplified in high-grade serous ovarian cancer. Mol Cancer Res 2015; 13(3): 502-9.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0407] [PMID: 25368431]
[45]
Musafia B, Buchner V, Arad D. Complex salt bridges in proteins: Statistical analysis of structure and function. J Mol Biol 1995; 254(4): 761-70.
[http://dx.doi.org/10.1006/jmbi.1995.0653] [PMID: 7500348]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy