Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Flavonoids from Kalanchoe ×laetivirens Impair Survival and Immunity of Atta sexdens (Hymenoptera: Formicidae)

Author(s): Márcio Silva Melo, Cynthia Lhourrana Santos Silva, Amanda Caroline Teles Tenório, Bruno Silva Melo, Rone da Silva Barbosa, Renato Almeida Sarmento, Juliana Cristina Holzbach, Állefe Barbosa Cruz, Isabele Rodrigues Nascimento and Danival José de Souza*

Volume 14, Issue 3, 2024

Published on: 28 August, 2023

Article ID: e080823219524 Pages: 10

DOI: 10.2174/2210315514666230808142940

Price: $65

Abstract

Background: The active secondary metabolites of various Kalanchoe species are promising for controlling insects and other agricultural pests.

Objective: This study aimed to evaluate the mortality and immune responses of the leafcutter ant Atta sexdens (L.) after treatment with Kalanchoe ×laetivirens (Desc.) aqueous extract. The effects on an aquatic organism used as a bioindicator, Chironomus xanthus (Rempel), were also evaluated.

Methods: Different K. ×laetivirens concentrations were prepared by dilution in honey to assess the toxicity and determine the median lethal concentration (LC50) for A. sexdens workers. The haemocytes of workers treated with a sublethal concentration (0.005 g/mL) were counted.

Results: The plant extracts induced high mortality in A. sexdens workers. All concentrations, except 0.001 g/mL, increased mortality rates. The sublethal concentration negatively affected the immune system of A. sexdens workers 48 and 72 h after ingestion. The flavonoids 4″″-acetylsagittatin A, sagittatin A and the nucleosides uridine and adenosine were identified. The LC50 of the K. ×laetivirens (128.1 mg /L) was determined for the non-target organism, C. xanthus.

Conclusion: These natural compounds can be used in future research to plan alternative control strategies for leafcutter ants in forests and other agroecosystems.

Graphical Abstract

[1]
Barrera, C.A.; Sosa-Calvo, J.; Schultz, T.R.; Rabeling, C.; Bacci Jr, M. Phylogenomic reconstruction reveals new insights into the evolution and biogeography of Atta leaf-cutting ants (Hymenoptera: Formicidae). Syst. Entomol., 2021, 2021
[2]
Della Lucia, T.M.C.; Gandra, L.C.; Guedes, R.N.C. Managing leaf-cutting ants: Peculiarities, trends and challenges. Pest Manag. Sci., 2014, 70(1), 14-23.
[http://dx.doi.org/10.1002/ps.3660] [PMID: 24115496]
[3]
Hölldobler, B.; Wilson, E.O. The Ants; Belknap Press of Harvard University Press, 1990.
[http://dx.doi.org/10.1007/978-3-662-10306-7]
[4]
Della Lucia, T.M.C. Leaf-cutting ants: From bioecology to management; UFV publisher: Viçosa, Brazil, 2011.
[5]
Zanuncio, J.C.; Lemes, P.G.; Antunes, L.R.; Maia, J.L.S.; Mendes, J.E.P.; Tanganelli, K.M.; Salvador, J.F.; Serrão, J.E. The impact of the forest stewardship council (FSC) pesticide policy on the management of leaf-cutting ants and termites in certified forests in Brazil. Ann. For. Sci., 2016, 73(2), 205-214.
[http://dx.doi.org/10.1007/s13595-016-0548-3]
[6]
Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health, 2016, 4, 148.
[http://dx.doi.org/10.3389/fpubh.2016.00148] [PMID: 27486573]
[7]
Turchen, L.M.; Cosme-Júnior, L.; Guedes, R.N.C. Plant-derived insecticides under meta-analyses: Status, biases, and knowledge gaps. Insects, 2020, 11(8), 532.
[http://dx.doi.org/10.3390/insects11080532] [PMID: 32823868]
[8]
dos Santos, J.C.; Zanetti, R.; de Oliveira, D.F.; Gajo, G.C.; Alves, D.S. Insecticides; Trdan, S., Ed.; IntechOpen: Rijeka, 2013.
[9]
Supratman, U.; Fujita, T.; Akiyama, K.; Hayashi, H. New insecticidal bufadienolide, bryophyllin C, from Kalanchoe pinnata. Biosci. Biotechnol. Biochem., 2000, 64(6), 1310-1312.
[http://dx.doi.org/10.1271/bbb.64.1310] [PMID: 10923811]
[10]
Smith, G.F. Strong taxonomy and nomenclature of Kalanchoe ×laetivirens (Crassulaceae subfam. Kalanchooideae), a further invasive nothospecies from Madagascar strong. Phytotaxa, 2020, 460(1), 97-109.
[http://dx.doi.org/10.11646/phytotaxa.460.1.6]
[11]
Ali, S.; Farooqi, M.A.; Sajjad, A.; Ullah, M.I.; Qureshi, A.K.; Siddique, B.; Waheed, W.; Sarfraz, M.; Asghar, A. Compatibility of entomopathogenic fungi and botanical extracts against the wheat aphid, Sitobion avenae (Fab.) (Hemiptera: Aphididae). Egypt. J. Biol. Pest Control, 2018, 28(1), 97.
[http://dx.doi.org/10.1186/s41938-018-0101-9]
[12]
Zibaee, A. Pesticides in the Modern World; Stoytcheva, M., Ed.; InTech: Rijeka, 2011.
[13]
Tišler, T.; Jemec, A.; Mozetič, B.; Trebše, P. Hazard identification of imidacloprid to aquatic environment. Chemosphere, 2009, 76(7), 907-914.
[http://dx.doi.org/10.1016/j.chemosphere.2009.05.002] [PMID: 19505710]
[14]
Brzozowski, L.; Mazourek, M. A sustainable agricultural future relies on the transition to organic agroecological pest management. Sustainability, 2018, 10(6), 2023.
[http://dx.doi.org/10.3390/su10062023]
[15]
DeForest, D.K.; Santore, R.C.; Ryan, A.C.; Church, B.G.; Chowdhury, M.J.; Brix, K.V. Development of biotic ligand model-based freshwater aquatic life criteria for lead following US Environmental Protection Agency guidelines. Environ. Toxicol. Chem., 2017, 36(11), 2965-2973.
[http://dx.doi.org/10.1002/etc.3861] [PMID: 28636272]
[16]
Aagaard, A.; Brock, T.; Capri, E.; Duquesne, S. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA J., 2013, 11, 3290.
[17]
Péry, A.R.R.; Mons, R.; Flammarion, P.; Lagadic, L.; Garric, J. A modeling approach to link food availability, growth, emergence, and reproduction for the midge Chironomus riparius. Environ. Toxicol. Chem., 2002, 21(11), 2507-2513.
[http://dx.doi.org/10.1002/etc.5620211133] [PMID: 12389933]
[18]
Taenzler, V.; Bruns, E.; Dorgerloh, M.; Pfeifle, V.; Weltje, L. Chironomids: Suitable test organisms for risk assessment investigations on the potential endocrine disrupting properties of pesticides. Ecotoxicology, 2007, 16(1), 221-230.
[http://dx.doi.org/10.1007/s10646-006-0117-x] [PMID: 17268839]
[19]
Silvestre Pereira Dornelas, A.; A Sarmento, R.; C Rezende Silva, L.; Souza Saraiva, A.; J de Souza, D.; D Bordalo, M.; MVM Soares, A.; LT Pestana, J. Toxicity of microbial insecticides toward the non‐target freshwater insect Chironomus xanthus. Pest Manag. Sci., 2020, 76(3), 1164-1172.
[http://dx.doi.org/10.1002/ps.5629] [PMID: 31595634]
[20]
Rossi-Bergmann, B.; Costa, S.S.; Borges, M.B.S.; da Silva, S.A.; Noleto, G.R.; Souza, M.L.M.; Moraes, V.L.G. Immunosuppressive effect of the aqueous extract ofKalanchoe pinnata in mice. Phytother. Res., 1994, 8(7), 399-402.
[http://dx.doi.org/10.1002/ptr.2650080704]
[21]
Leonard, C.; Söderhäll, K.; Ratcliffe, N.A. Studies on prophenoloxidase and protease activity of Blaberus craniifer haemocytes. Insect Biochem., 1985, 15(6), 803-810.
[http://dx.doi.org/10.1016/0020-1790(85)90109-X]
[22]
OECD. OECD Guid. Test Chem; OECD Publishing: Paris, 2011, p. 17.
[23]
Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc., 1958, 53(282), 457-481.
[http://dx.doi.org/10.1080/01621459.1958.10501452]
[24]
Peto, R.; Peto, J. Asymptotically efficient rank invariant test procedures. J. R. Stat. Soc., 1972, 135(2), 185-198.
[http://dx.doi.org/10.2307/2344317]
[25]
Costa, S.S.; Jossang, A.; Bodo, B. 4””-acetylsagittatin A, a kaempferol triglycoside from Kalanchoe streptantha. J. Nat. Prod., 1996, 59(3), 327-329.
[http://dx.doi.org/10.1021/np960203u]
[26]
Xu, X.; Yue, Y.; Tang, F.; Guo, X.; Wang, J.; Yao, X.; Sun, J.; Xun, H. Isolation, identification and determination of six nucleosides and two amino acids from bamboo shoots of gramineae Phyllostachys prominens (W Y Xiong). Trop. J. Pharm. Res., 2016, 14(12), 2239-2246.
[http://dx.doi.org/10.4314/tjpr.v14i12.13]
[27]
Berrehal, D.; Khalfallah, A.; Kabouche, A.; Kabouche, Z.; Karioti, A.; Bilia, A.R. Flavonoid glycosides from Randonia africana Coss. (Resedaceae). Biochem. Syst. Ecol., 2010, 38(5), 1007-1009.
[http://dx.doi.org/10.1016/j.bse.2010.09.019]
[28]
Oshima, Y.; Okamoto, M.; Hikino, H. Sagittatins A and B, flavonoid glycosides of Epimedium sagittatum herbs. Planta Med., 1989, 55(3), 309-311.
[http://dx.doi.org/10.1055/s-2006-962015] [PMID: 17262426]
[29]
Wang, H.; Leach, D.; Thomas, M.C.; Blanksby, S.J. Bisresorcinols and arbutin derivatives from Grevillea banksii R. Br. Nat. Prod. Commun., 2008, 3(1)
[http://dx.doi.org/10.1177/1934578X0800300]
[30]
Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as important molecules of plant interactions with the environment. Molecules, 2014, 19(10), 16240-16265.
[http://dx.doi.org/10.3390/molecules191016240] [PMID: 25310150]
[31]
Lampert, E. Influences of plant traits on immune responses of specialist and generalist herbivores. Insects, 2012, 3(2), 573-592.
[http://dx.doi.org/10.3390/insects3020573] [PMID: 26466545]
[32]
Shi, G.; Kang, Z.; Ren, F.; Zhou, Y.; Guo, P. Effects of quercetin on the growth and expression of immune-pathway-related genes in silkworm (Lepidoptera: Bombycidae). J. Insect Sci., 2020, 20(6), 23.
[http://dx.doi.org/10.1093/jisesa/ieaa124] [PMID: 33159528]
[33]
Hay, W.T.; Behle, R.W.; Berhow, M.A.; Miller, A.C.; Selling, G.W. Biopesticide synergy when combining plant flavonoids and entomopathogenic baculovirus. Sci. Rep., 2020, 10(1), 6806.
[http://dx.doi.org/10.1038/s41598-020-63746-6] [PMID: 32321975]
[34]
Zhang, X.Y.; Shen, J.; Zhou, Y.; Wei, Z.P.; Gao, J.M. Insecticidal constituents from Buddlej aalbiflora Hemsl. Nat. Prod. Res., 2017, 31(12), 1446-1449.
[http://dx.doi.org/10.1080/14786419.2016.1247080] [PMID: 27764958]
[35]
Feyereisen, R. Insect P450 inhibitors and insecticides: Challenges and opportunities. Pest Manag. Sci., 2015, 71(6), 793-800.
[http://dx.doi.org/10.1002/ps.3895] [PMID: 25404103]
[36]
Da Lage, J.L. The amylases of insects. Int. J. Insect Sci., 2018, 10.
[http://dx.doi.org/10.1177/1179543318804783] [PMID: 30305796]
[37]
Ibrahim, S.; Al-Ahdal, A.; Khedr, A.; Mohamed, G. Antioxidant α-amylase inhibitors flavonoids from Iris germanica rhizomes. Rev. Bras. Farmacogn., 2017, 27(2), 170-174.
[http://dx.doi.org/10.1016/j.bjp.2016.10.001]
[38]
Hoffmann-Campo, C.B.; Ramos Neto, J.A.; Oliveira, M.C.N.; Oliveira, L.J. Detrimental effect of rutin on Anticarsia gemmatalis. Pesqui. Agropecu. Bras., 2006, 41(10), 1453-1459.
[http://dx.doi.org/10.1590/S0100-204X2006001000001]
[39]
Cantarelli, E.B.; Costa, E.C.; Oliveira, L.S.; Perrando, E.R. Efeito de diferentes doses do formicida “citromax” no controle de Acromyrmex lundi (Hymenoptera: Formicidae). Cienc. Florest., 2005, 15(3), 249-253.
[http://dx.doi.org/10.5902/198050981862]
[40]
Ramos, V.M.; Cunha, F.; Kuhn, K.C.; Leite, R.G.F.; Roma, W.F. Alternative control of the leaf-cutting ant Atta bisphaerica Forel (Hymenoptera: Formicidae) via homeopathic baits. Sociobiology, 2013, 60(2), 145-149.
[http://dx.doi.org/10.13102/sociobiology.v60i2.145-149]
[41]
Nagamoto, N.; Forti, L.; Andrade, A.; Boaretto, M.; Wilcken, C. Method for the evaluation of insecticidal activity over time in Atta sexdens rubropilosa workers (Hymenoptera: Formicidae). Sociobiology, 2004, 44, 413-431.
[42]
Nagamoto, N.S.; Forti, L.C.; Raetano, C.G. Evaluation of the adequacy of diflubenzuron and dechlorane in toxic baits for leaf-cutting ants (Hymenoptera: Formicidae) based on formicidal activity. J. Pest Sci., 2004, 2007(80), 9-13.
[43]
Amaral, K.D.; Gandra, L.C.; de Oliveira, M.A.; de Souza, D.J.; Della Lucia, T.M.C. Effect of azadirachtin on mortality and immune response of leaf-cutting ants. Ecotoxicology, 2019, 28(10), 1190-1197.
[http://dx.doi.org/10.1007/s10646-019-02124-z] [PMID: 31696443]
[44]
Adamo, S.A. The effects of the stress response on immune function in invertebrates: An evolutionary perspective on an ancient connection. Horm. Behav., 2012, 62(3), 324-330.
[http://dx.doi.org/10.1016/j.yhbeh.2012.02.012] [PMID: 22381405]
[45]
de Souza, D.J.; Lenoir, A.; Kasuya, M.C.M.; Ribeiro, M.M.R.; Devers, S.; Couceiro, J.C.; Della Lucia, T.M.C. Ectosymbionts and immunity in the leaf-cutting ant Acromyrmex subterraneus subterraneus. Brain Behav. Immun., 2013, 28, 182-187.
[http://dx.doi.org/10.1016/j.bbi.2012.11.014] [PMID: 23207105]
[46]
Rantala, M.J.; Roff, D.A. An analysis of trade-offs in immune function, body size and development time in the Mediterranean Field Cricket, Gryllus bimaculatus. Funct. Ecol., 2005, 19(2), 323-330.
[http://dx.doi.org/10.1111/j.1365-2435.2005.00979.x]
[47]
Dubovskiy, I.M.; Grizanova, E.V.; Ershova, N.S.; Rantala, M.J.; Glupov, V.V. The effects of dietary nickel on the detoxification enzymes, innate immunity and resistance to the fungus Beauveria bassiana in the larvae of the greater wax moth Galleria mellonella. Chemosphere, 2011, 85(1), 92-96.
[http://dx.doi.org/10.1016/j.chemosphere.2011.05.039] [PMID: 21676429]
[48]
Traniello, J.F.A.; Rosengaus, R.B.; Savoie, K. The development of immunity in a social insect: Evidence for the group facilitation of disease resistance. Proc Natl Acad Sci, 2002, 99(10), 6838-6842.
[http://dx.doi.org/10.1073/pnas.102176599]
[49]
Kohlmeier, P.; Holländer, K.; Meunier, J. Survival after pathogen exposure in group-living insects: Don’t forget the stress of social isolation! J. Evol. Biol., 2016, 29(9), 1867-1872.
[http://dx.doi.org/10.1111/jeb.12916] [PMID: 27272199]
[50]
Fernandes, A.P.; Curi, G.; Francça, F.G.R.; Báo, S.N. Nuclear changes and acrosome formation during spermiogenesis in Euchistus heros (Hemiptera: Pentatomidae). Tissue Cell, 2001, 33(3), 286-293.
[http://dx.doi.org/10.1054/tice.2001.0174] [PMID: 11469543]
[51]
Jiang, X.; Hansen, H.C.B.; Strobel, B.W.; Cedergreen, N. What is the aquatic toxicity of saponin-rich plant extracts used as biopesticides? Environ. Pollut., 2018, 236, 416-424.
[http://dx.doi.org/10.1016/j.envpol.2018.01.058] [PMID: 29414366]
[52]
Mondal, N.; Mondal, A.; Hajra, A.; Shaikh, W.A.; Chakraborty, S. Synthesis of silver nanoparticle with Colocasia esculenta (L.) stem and its larvicidal activity against Culex quinquefasciatus and Chironomus sp. Asian Pac. J. Trop. Biomed., 2019, 9(12), 510-517.
[http://dx.doi.org/10.4103/2221-1691.271724]
[53]
Paula, A.R.; Carolino, A.T.; Paula, C.O.; Samuels, R.I. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasit. Vectors, 2011, 4(1), 8.
[http://dx.doi.org/10.1186/1756-3305-4-8] [PMID: 21266078]
[54]
Vitikainen, E.; Sundström, L. Inbreeding and caste-specific variation in immune defence in the ant Formica exsecta. Behav. Ecol. Sociobiol., 2011, 65(5), 899-907.
[http://dx.doi.org/10.1007/s00265-010-1090-1]
[55]
Gouvêa, S.M.; Carvalho, G.A.; Picanço, M.C.; Morais, E.G.F. Lethal and behavioral effects of Amazonian plant extracts on leaf-cutting ant (Hymenoptera: Formicidae) workers. Sociobiology, 2011, 57, 93-105.
[56]
Seabrooks, L.; Hu, L. Insects: An underrepresented resource for the discovery of biologically active natural products. Acta Pharm. Sin. B, 2017, 7(4), 409-426.
[http://dx.doi.org/10.1016/j.apsb.2017.05.001] [PMID: 28752026]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy