Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

A Critical Review Based on Preclinical Studies of Medicinal Plants for the Management of Alzheimer’s Disease

Author(s): Swati Wadhawan, Vishal Kumar Biswkarma*, Anurag Chaudhary and Priya Masand

Volume 20, Issue 4, 2024

Published on: 08 September, 2023

Article ID: e070823219472 Pages: 17

DOI: 10.2174/1573407219666230807150426

Price: $65

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative and progressive disorder that results in damage to memory and alters thinking and behavior, which represent critical problems the world’s aging population is faced with. Clinical symptoms of AD include cognitive decline, loss of memory, emotional and behavioral changes, loss of motor coordination, and mental impairments. Yet, neither a universally accepted diagnosis with respect to its pathogenesis nor an ideal therapy is available for the management of AD. The existing drugs cause many complications and adverse effects. Herbal drugs, supported by an abundance of traditional knowledge, may fulfill the need as they can target the pathogenesis of AD at various destinations, both at the cellular and molecular levels. In recent years, herbal drugs and formulations have been evaluated in preclinical setups, especially involving rat and mouse models of AD, which have shown their memoryenhancing, neuroprotective, and antioxidant activities. Several herbal drugs and phytochemicals have been evaluated for their effectiveness as antioxidative agents to prevent the occurrence of oxidative stress and ROS formation during AD pathogenesis and exhibit antiapoptotic properties by downregulating caspase-3, DNA fragmentation, NF-κB, interleukin-1 β (IL1β), and TNF levels. In this paper, we have primarily reviewed herbal remedies that have been recently evaluated as alternative treatments for AD in a preclinical setup, and discussed the role of herbal medicines in the management of AD and advances in their knowledge.

Graphical Abstract

[1]
Small, D.H.; Cappai, R. Alois Alzheimer and Alzheimer’s disease: A centennial perspective. J. Neurochem., 2006, 99(3), 708-710.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04212.x] [PMID: 17076655]
[2]
Hickman, R.A.; Faustin, A.; Wisniewski, T. Alzheimer disease and its growing epidemic: Risk factors, biomarkers, and the urgent need for therapeutics. Neurol. Clin., 2016, 34(4), 941-953.
[http://dx.doi.org/10.1016/j.ncl.2016.06.009] [PMID: 27720002]
[3]
Yabluchanskiy, A.; Ungvari, Z.; Csiszar, A.; Tarantini, S. Advances and challenges in geroscience research: An update. Physiol. Int., 2018, 105(4), 298-308.
[http://dx.doi.org/10.1556/2060.105.2018.4.32] [PMID: 30587027]
[4]
World Health Organization (WHO) Dementia., 2020. Available From:[https://www.who.int
[5]
Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; Costafreda, S.G.; Dias, A.; Fox, N.; Gitlin, L.N.; Howard, R.; Kales, H.C.; Kivimäki, M.; Larson, E.B.; Ogunniyi, A.; Orgeta, V.; Ritchie, K.; Rockwood, K.; Sampson, E.L.; Samus, Q.; Schneider, L.S.; Selbæk, G.; Teri, L.; Mukadam, N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet, 2020, 396(10248), 413-446.
[http://dx.doi.org/10.1016/S0140-6736(20)30367-6] [PMID: 32738937]
[6]
Geun Kim, H.; Sook Oh, M. Herbal medicines for the prevention and treatment of Alzheimer’s disease. Curr. Pharm. Des., 2012, 18(1), 57-75.
[http://dx.doi.org/10.2174/138161212798919002] [PMID: 22316321]
[7]
Osorio, C.; Kanukuntla, T.; Diaz, E.; Jafri, N.; Cummings, M.; Sfera, A. The post-amyloid era in Alzheimer’s disease: Trust your gut feeling. Front. Aging Neurosci., 2019, 11, 143.
[http://dx.doi.org/10.3389/fnagi.2019.00143] [PMID: 31297054]
[8]
Chen, X.Q.; Mobley, W.C. Alzheimer disease pathogenesis: Insights from molecular and cellular biology studies of oligomeric Aβ and tau species. Front. Neurosci., 2019, 13, 659.
[http://dx.doi.org/10.3389/fnins.2019.00659] [PMID: 31293377]
[9]
DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[10]
Rahman, M.A.; Rahman, M.D.H.; Biswas, P.; Hossain, M.S.; Islam, R.; Hannan, M.A.; Uddin, M.J.; Rhim, H. Potential therapeutic role of phytochemicals to mitigate mitochondrial dysfunctions in Alzheimer’s disease. Antioxidants, 2020, 10(1), 23.
[http://dx.doi.org/10.3390/antiox10010023] [PMID: 33379372]
[11]
Kim, M.; Kim, S.H.; Yang, W. Mechanisms of action of phytochemicals from medicinal herbs in the treatment of Alzheimer’s disease. Planta Med., 2014, 80(15), 1249-1258.
[http://dx.doi.org/10.1055/s-0034-1383038] [PMID: 25210998]
[12]
Shelar, M.; Nanaware, S.; Arulmozhi, S.; Lohidasan, S.; Mahadik, K. Validation of ethnopharmacology of Ayurvedic sarasvata ghrita and comparative evaluation of its neuroprotective effect with modern alcoholic and lipid based extracts in β-amyloid induced memory impairment. J. Ethnopharmacol., 2018, 219, 182-194.
[http://dx.doi.org/10.1016/j.jep.2018.02.032] [PMID: 29501676]
[13]
Dou, K.X.; Tan, M.S.; Tan, C.C.; Cao, X.P.; Hou, X.H.; Guo, Q.H.; Tan, L.; Mok, V.; Yu, J.T. Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer’s disease: A network meta-analysis of 41 randomized controlled trials. Alzheimers Res. Ther., 2018, 10(1), 126.
[http://dx.doi.org/10.1186/s13195-018-0457-9] [PMID: 30591071]
[14]
Palmieri, B.; Vadalà, M. Oral THC: CBD cannabis extract in main symptoms of Alzheimer disease: Agitation and weight loss. Clin. Ter., 2023, 174(1), 53-60.
[PMID: 36655645]
[15]
Mehla, J.; Gupta, P.; Pahuja, M.; Diwan, D.; Diksha, D. Indian medicinal herbs and formulations for Alzheimer’s Disease, from traditional knowledge to scientific assessment. Brain Sci., 2020, 10(12), 964.
[http://dx.doi.org/10.3390/brainsci10120964] [PMID: 33321899]
[16]
Dahanukar, S.A.; Thatte, U.M. Current status of ayurveda in phytomedicine. Phytomedicine, 1997, 4(4), 359-368.
[http://dx.doi.org/10.1016/S0944-7113(97)80048-7] [PMID: 23195589]
[17]
Rao, R.V.; Descamps, O.; John, V.; Bredesen, D.E. Ayurvedic medicinal plants for Alzheimer’s disease: A review. Alzheimers Res. Ther., 2012, 4(3), 22.
[http://dx.doi.org/10.1186/alzrt125] [PMID: 22747839]
[18]
Wu, T.Y.; Chen, C.P.; Jinn, T.R. Traditional Chinese medicines and Alzheimer’s disease. Taiwan. J. Obstet. Gynecol., 2011, 50(2), 131-135.
[http://dx.doi.org/10.1016/j.tjog.2011.04.004] [PMID: 21791295]
[19]
Auddy, B.; Ferreira, M.; Blasina, F.; Lafon, L.; Arredondo, F.; Dajas, F.; Tripathi, P.C.; Seal, T.; Mukherjee, B. Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J. Ethnopharmacol., 2003, 84(2-3), 131-138.
[http://dx.doi.org/10.1016/S0378-8741(02)00322-7] [PMID: 12648805]
[20]
Howes, M.J.R.; Perry, N.S.L.; Houghton, P.J. Plants with traditional uses and activities, relevant to the management of Alzheimer’s disease and other cognitive disorders. Phytother. Res., 2003, 17(1), 1-18.
[http://dx.doi.org/10.1002/ptr.1280] [PMID: 12557240]
[21]
Calfio, C; Gonzalez, A; Singh, S.K.; Rojo, L.E.; Maccioni, R.B. The emerging role of nutraceuticals and phytochemicals in the prevention and treatment of Alzheimer’s disease. J Alzheimers Dis., 2020, 77(1), 33-51.
[http://dx.doi.org/10.3233/JAD-200443]
[22]
Perry, G.; Cash, A.D.; Smith, M.A. Alzheimer disease and oxidative stress. J. Biomed. Biotechnol., 2002, 2(3), 120-123.
[http://dx.doi.org/10.1155/S1110724302203010] [PMID: 12488575]
[23]
Akhondzadeh, S.; Abbasi, S.H. Herbal medicine in the treatment of Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2006, 21(2), 113-118.
[http://dx.doi.org/10.1177/153331750602100211] [PMID: 16634467]
[24]
Uabundit, N.; Wattanathorn, J.; Mucimapura, S.; Ingkaninan, K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J. Ethnopharmacol., 2010, 127(1), 26-31.
[http://dx.doi.org/10.1016/j.jep.2009.09.056] [PMID: 19808086]
[25]
Lim, S.; Choi, J.G.; Moon, M.; Kim, H.G.; Lee, W.; Bak, H.; Sung, H.; Park, C.H.; Kim, S.Y.; Oh, M.S. An optimized combination of ginger and peony root effectively inhibits amyloid-β accumulation and amyloid-β-mediated pathology in AβPP/PS1 double-transgenic mice. J. Alzheimers Dis., 2016, 50(1), 189-200.
[http://dx.doi.org/10.3233/JAD-150839] [PMID: 26639976]
[26]
Nillert, N.; Pannangrong, W.; Welbat, J.; Chaijaroonkhanarak, W.; Sripanidkulchai, K.; Sripanidkulchai, B. Neuroprotective effects of aged garlic extract on cognitive dysfunction and neuroinflammation induced by β-amyloid in rats. Nutrients, 2017, 9(1), 24.
[http://dx.doi.org/10.3390/nu9010024] [PMID: 28054940]
[27]
Gomaa, A.A.; Makboul, R.M.; El-Mokhtar, M.A.; Abdel-Rahman, E.A.; Ahmed, I.A.; Nicola, M.A. Terpenoid-rich Elettaria cardamomum extract prevents Alzheimer-like alterations induced in diabetic rats via inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines. Cytokine, 2019, 113, 405-416.
[http://dx.doi.org/10.1016/j.cyto.2018.10.017] [PMID: 30539783]
[28]
Liu, X.; Hao, W.; Qin, Y.; Decker, Y.; Wang, X.; Burkart, M.; Schötz, K.; Menger, M.D.; Fassbender, K.; Liu, Y. Long-term treatment with Ginkgo biloba extract EGb 761 improves symptoms and pathology in a transgenic mouse model of Alzheimer’s disease. Brain Behav. Immun., 2015, 46, 121-131.
[http://dx.doi.org/10.1016/j.bbi.2015.01.011] [PMID: 25637484]
[29]
Mahaman, Y.A.R.; Huang, F.; Wu, M.; Wang, Y.; Wei, Z.; Bao, J.; Salissou, M.T.M.; Ke, D.; Wang, Q.; Liu, R.; Wang, J.Z.; Zhang, B.; Chen, D.; Wang, X. Moringa oleifera alleviates homocysteine-induced Alzheimer’s Disease-like pathology and cognitive impairments. J. Alzheimers Dis., 2018, 63(3), 1141-1159.
[http://dx.doi.org/10.3233/JAD-180091] [PMID: 29710724]
[30]
Kulkarni, K.; Kasture, S.B.; Mengi, S.A. Efficacy study of prunus amygdalus (almond) nuts in scopolamine-induced amnesia in rats. Indian J. Pharmacol., 2010, 42(3), 168-173.
[http://dx.doi.org/10.4103/0253-7613.66841] [PMID: 20871769]
[31]
Golechha, M.; Bhatia, J.; Arya, D.S. Studies on effects of Emblica officinalis (Amla) on oxidative stress and cholinergic function in scopolamine induced amnesia in mice. J. Environ. Biol., 2012, 33(1), 95-100.
[PMID: 23033650]
[32]
Ahmed, A.H.; Subaiea, G.M.; Eid, A.; Li, L.; Seeram, N.P.; Zawia, N.H. Pomegranate extract modulates processing of amyloid-β precursor protein in an aged Alzheimer’s disease animal model. Curr. Alzheimer Res., 2014, 11(9), 834-843.
[PMID: 25274111]
[33]
Rapaka, D.; Bitra, V.R.; Vishala, T.C.; Akula, A. Vitis vinifera acts as anti-Alzheimer’s agent by modulating biochemical parameters implicated in cognition and memory. J. Ayurveda Integr. Med., 2019, 10(4), 241-247.
[http://dx.doi.org/10.1016/j.jaim.2017.06.013] [PMID: 30337026]
[34]
Gray, N.E.; Harris, C.J.; Quinn, J.F.; Soumyanath, A. Centella asiatica modulates antioxidant and mitochondrial pathways and improves cognitive function in mice. J. Ethnopharmacol., 2016, 180, 78-86.
[http://dx.doi.org/10.1016/j.jep.2016.01.013] [PMID: 26785167]
[35]
Datta, S.; Patil, S. Evaluation of traditional herb extract salvia officinalis in treatment of Alzheimers Disease. Pharmacogn. J., 2020, 12(1), 131-143.
[http://dx.doi.org/10.5530/pj.2020.12.20]
[36]
Ahmed, F.; Manjunath, S.; Narendra Sharath Chandra, J.N. Acetylcholine and memory-enhancing activity of Ficus racemosa bark. Pharmacognosy Res., 2011, 3(4), 246-249.
[http://dx.doi.org/10.4103/0974-8490.89744] [PMID: 22224047]
[37]
Saxena, G.; Singh, S.P.; Pal, R.; Singh, S.; Pratap, R.; Nath, C. Gugulipid, an extract of Commiphora whighitii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice. Pharmacol. Biochem. Behav., 2007, 86(4), 797-805.
[http://dx.doi.org/10.1016/j.pbb.2007.03.010] [PMID: 17477963]
[38]
Esfandiary, E.; Karimipour, M.; Mardani, M.; Alaei, H.; Ghannadian, M.; Kazemi, M.; Mohammadnejad, D.; Hosseini, N.; Esmaeili, A. Novel effects of Rosa damascena extract on memory and neurogenesis in a rat model of Alzheimer’s disease. J. Neurosci. Res., 2014, 92(4), 517-530.
[http://dx.doi.org/10.1002/jnr.23319] [PMID: 24395280]
[39]
Rahman, H.; Muralidharan, P.; Anand, M. Inhibition of AChE and antioxidant activities are probable mechanism of Nardostacys jatamansi DC in sleep deprived Alzheimer’s mice model. Int. J. Pharm. Tech. Res., 2011, 3, 1807-1816.
[40]
Soheili, M.; Tavirani, M.R.; Salami, M. Lavandula angustifolia extract improves deteriorated synaptic plasticity in an animal model of Alzheimer’s disease. Iran. J. Basic Med. Sci., 2015, 18(11), 1147-1152.
[PMID: 26949505]
[41]
Ozarowski, M.; Mikolajczak, P.L.; Piasecka, A.; Kachlicki, P.; Kujawski, R.; Bogacz, A.; Bartkowiak-Wieczorek, J.; Szulc, M.; Kaminska, E.; Kujawska, M.; Jodynis-Liebert, J.; Gryszczynska, A.; Opala, B.; Lowicki, Z.; Seremak-Mrozikiewicz, A.; Czerny, B. Influence of the Melissa officinalis leaf extract on long-term memory in scopolamine animal model with assessment of mechanism of action. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-17.
[http://dx.doi.org/10.1155/2016/9729818] [PMID: 27239217]
[42]
Guo, S.S.; Gao, X.F.; Gu, Y.R.; Wan, Z.X.; Lu, A.M.; Qin, Z.H.; Luo, L. Preservation of cognitive function by Lepidium meyenii (maca) is associated with improvement of mitochondrial activity and upregulation of autophagy-related proteins in middle-aged mouse cortex. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/4394261] [PMID: 27648102]
[43]
Lee, Y.J.; Choi, D.Y.; Han, S.B.; Kim, Y.H.; Kim, K.H.; Hwang, B.Y.; Kang, J.K.; Lee, B.J.; Oh, K.W.; Hong, J.T. Inhibitory effect of ethanol extract of Magnolia officinalis on memory impairment and amyloidogenesis in a transgenic mouse model of Alzheimer’s disease via regulating β-secretase activity. Phytother. Res., 2012, 26(12), 1884-1892.
[http://dx.doi.org/10.1002/ptr.4643] [PMID: 22431473]
[44]
Vasudevan, M.; Parle, M.; Sengottuvelu, S.; Shanmugapriya, T. Nootropic Potential of Murraya koenigii leaves in Rats. Orient. Pharm. Exp. Med., 2008, 8(4), 365-373.
[http://dx.doi.org/10.3742/OPEM.2008.8.4.365]
[45]
Chakravarthi, K.; Avadhani, R. Beneficial effect of aqueous root extract of Glycyrrhiza glabra on learning and memory using different behavioral models: An experimental study. J. Nat. Sci. Biol. Med., 2013, 4(2), 420-425.
[http://dx.doi.org/10.4103/0976-9668.117025] [PMID: 24082744]
[46]
Parle, M.; Dhingra, D.; Kulkarni, S.K. Improvement of mouse memory by Myristica fragrans seeds. J. Med. Food, 2004, 7(2), 157-161.
[http://dx.doi.org/10.1089/1096620041224193] [PMID: 15298762]
[47]
Kaur, H.; Singh, D.; Singh, B.; Goel, R.K. Anti-amnesic effect of Ficus religiosa in scopolamine-induced anterograde and retrograde amnesia. Pharm. Biol., 2010, 48(2), 234-240.
[http://dx.doi.org/10.3109/13880200903271306] [PMID: 20645848]
[48]
Dashti-R, M.H.; Zeinali, F.; Anvari, M.; Hosseini, S.M. Saffron (Crocus sativus L.) extract prevents and improves D-galactose and NaNO2 induced memory impairment in mice. EXCLI J., 2012, 11, 328-337.
[PMID: 27418908]
[49]
Bihaqi, S.; Tiwari, M.; Singh, A.P. in vivo investigation of the neuroprotective property of Convolvulus pluricaulis in scopolamine-induced cognitive impairments in Wistar rats. Indian J. Pharmacol., 2011, 43(5), 520-525.
[http://dx.doi.org/10.4103/0253-7613.84958] [PMID: 22021993]
[50]
Jyothi, C.H. Evaluation of effect of alcoholic extract of Tinospora cordifolia on learning and memory in alprazolam induced amnesia in albino mice. Int. J. Basic Clin. Pharmacol., 2016, 5, 2159-2163.
[51]
Zhang, L.; Fang, Y.; Xu, Y.; Lian, Y.; Xie, N.; Wu, T.; Zhang, H.; Sun, L.; Zhang, R.; Wang, Z. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One, 2015, 10(6), e0131525.
[http://dx.doi.org/10.1371/journal.pone.0131525] [PMID: 26114940]
[52]
Kulkarni, P.D.; Ghaisas, M.M.; Chivate, N.D.; Sankpal, P.S. Memory enhancing activity of Cissampelos pariera in mice. Int. J. Pharm. Pharm. Sci., 2011, 3(2), 206-211.
[53]
Birla, H.; Keswani, C.; Rai, S.N.; Singh, S.S.; Zahra, W.; Dilnashin, H.; Rathore, A.S.; Singh, S.P. Neuroprotective effects of Withania somnifera in BPA induced-cognitive dysfunction and oxidative stress in mice. Behav. Brain Funct., 2019, 15(1), 9.
[http://dx.doi.org/10.1186/s12993-019-0160-4] [PMID: 31064381]
[54]
Figueiró, M.; Ilha, J.; Linck, V.M.; Herrmann, A.P.; Nardin, P.; Menezes, C.B.; Achaval, M.; Gonçalves, C.A.; Porciúncula, L.O.; Nunes, D.S.; Elisabetsky, E. The Amazonian herbal Marapuama attenuates cognitive impairment and neuroglial degeneration in a mouse Alzheimer model. Phytomedicine, 2011, 18(4), 327-333.
[http://dx.doi.org/10.1016/j.phymed.2010.07.013] [PMID: 20739160]
[55]
Tian, X.; Guo, S.; He, K.; Roller, M.; Yang, M.; Liu, Q.; Zhang, L.; Ho, C.T.; Bai, N. Qualitative and quantitative analysis of chemical constituents of Ptychopetalum olacoides Benth. Nat. Prod. Res., 2018, 32(3), 354-357.
[http://dx.doi.org/10.1080/14786419.2017.1354187] [PMID: 28750557]
[56]
Kaigongi, M.; Musila, F. Ethnobotanical study of medicinal plants used by Tharaka people of Kenya. Int J Ethnobiol Ethnomed., 2015, 1(1), 1-8.
[57]
Afolayan, M.; Srivedavyasasri, R.; Asekun, O.T.; Familoni, O.B.; Orishadipe, A.; Zulfiqar, F.; Ibrahim, M.A.; Ross, S.A. Phytochemical study of Piliostigma thonningii, a medicinal plant grown in Nigeria. Med. Chem. Res., 2018, 27(10), 2325-2330.
[http://dx.doi.org/10.1007/s00044-018-2238-1] [PMID: 30319238]
[58]
Moriasi, G.A.; Ireri, A.M.; Ngugi, M.P. In vivo cognitive-enhancing, ex vivo malondialdehyde-lowering activities and phytochemical profiles of aqueous and methanolic stem bark extracts of Piliostigma thonningii (schum.). Int. J. Alzheimers Dis., 2020, 2020, 1-15.
[http://dx.doi.org/10.1155/2020/1367075] [PMID: 32308992]
[59]
García-Morales, G.; Huerta-Reyes, M.; González-Cortazar, M.; Zamilpa, A.; Jiménez-Ferrer, E.; Silva-García, R.; Román-Ramos, R.; Aguilar-Rojas, A. Anti-inflammatory, antioxidant and anti-acetylcholinesterase activities of Bouvardia ternifolia: Potential implications in Alzheimer’s disease. Arch. Pharm. Res., 2015, 38(7), 1369-1379.
[http://dx.doi.org/10.1007/s12272-015-0587-6] [PMID: 25740217]
[60]
Herrera-Ruiz, M.; Lucila, M.; Zamilpa, A.; González-Cortazar, M. Inhibition of acetylcholinesterase activity by hidroalcoholic extract and their fractions of Bouvardia ternifolia (Cav.) Shcltdl (Rubiaceae). Bol. Latinoam. Caribe Plantas Med. Aromat., 2012, 11(6), 526-541.
[61]
Ryuk, J.A.; Ko, B.S.; Lee, H.W.; Kim, D.S.; Kang, S.; Lee, Y.H.; Park, S. Tetragonia tetragonioides (Pall.) Kuntze protects estrogen-deficient rats against disturbances of energy and glucose metabolism and decreases proinflammatory cytokines. Exp. Biol. Med., 2017, 242(6), 593-605.
[http://dx.doi.org/10.1177/1535370216683835] [PMID: 28241734]
[62]
Kim, D.S.; Ko, B.S.; Ryuk, J.A.; Park, S. Tetragonia tetragonioides protected against memory dysfunction by elevating hippocampal amyloid-β deposition through potentiating insulin signaling and altering gut microbiome composition. Int. J. Mol. Sci., 2020, 21(8), 2900.
[http://dx.doi.org/10.3390/ijms21082900] [PMID: 32326255]
[63]
Kim, J.H.; Hahm, D.H.; Lee, H.J.; Pyun, K.H.; Shim, I. Acori graminei rhizoma ameliorated ibotenic acid-induced amnesia in rats. Evid. Based Complement. Alternat. Med., 2009, 6(4), 457-464.
[http://dx.doi.org/10.1093/ecam/nem158] [PMID: 18955253]
[64]
Yan, L; Liu, Z.; Xu, L; Qian, Y. Identification of volatile active components in Acori Tatarinowii Rhizome essential oil from different regions in China by C6 glioma cells. Complement Med Ther., 2020, 20(1), 255.
[http://dx.doi.org/10.1186/s12906-020-03020-4]
[65]
Mao, J.; Huang, S.; Liu, S.; Feng, X.L.; Yu, M.; Liu, J.; Sun, Y.E.; Chen, G.; Yu, Y.; Zhao, J.; Pei, G. A herbal medicine for Alzheimer’s disease and its active constituents promote neural progenitor proliferation. Aging Cell, 2015, 14(5), 784-796.
[http://dx.doi.org/10.1111/acel.12356] [PMID: 26010330]
[66]
Roman, I.; Stănilă, A.; Stănilă, S. Bioactive compounds and antioxidant activity of Rosa canina L.biotypes from spontaneous flora of Transylvania. Chem. Cent. J., 2013, 7(1), 73.
[http://dx.doi.org/10.1186/1752-153X-7-73] [PMID: 23618509]
[67]
Coté, H.; Boucher, M.A.; Pichette, A.; Legault, J. Anti-inflammatory, antioxidant, antibiotic, and cytotoxic activities of Tanacetum vulgare L. essential oil and its constituents. Medicines, 2017, 4(2), 34.
[http://dx.doi.org/10.3390/medicines4020034] [PMID: 28930249]
[68]
Joshi, B.C.; Mukhija, M.; Kalia, A.N. Pharmacognostical review of Urtica dioica L. Int J Green Pharm, 2014, 8(4)
[69]
Ji, T.F.; Liu, C.H.; Wang, A.G.; Yang, J.B.; Su, Y.L.; Yuan, L.; Feng, X.Z. [Studies on the chemical constituents of Urtica dioica L. grown in Tibet Autonomous Region]. Zhong Yao Cai, 2007, 30(6), 662-664.
[PMID: 17918434]
[70]
Daneshmand, P.; Saliminejad, K.; Dehghan Shasaltaneh, M.; Kamali, K.; Riazi, G.H.; Nazari, R.; Azimzadeh, P.; Khorram Khorshid, H.R. Neuroprotective effects of herbal extract (Rosa canina, Tanacetum vulgare and Urtica dioica) on rat model of sporadic Alzheimer’s disease. Avicenna J. Med. Biotechnol., 2016, 8(3), 120-125.
[PMID: 27563424]
[71]
Ru, W.; Wang, D.; Xu, Y.; He, X.; Sun, Y.E.; Qian, L.; Zhou, X.; Qin, Y. Chemical constituents and bioactivities of <i>Panax ginseng</i> (C. A. Mey.). Drug Discov. Ther., 2015, 9(1), 23-32.
[http://dx.doi.org/10.5582/ddt.2015.01004] [PMID: 25788049]
[72]
Choi, J.G.; Kim, N.; Huh, E.; Lee, H.; Oh, M.H.; Park, J.D.; Pyo, M.K.; Oh, M.S. White ginseng protects mouse hippocampal cells against amyloid-beta oligomer toxicity. Phytother. Res., 2017, 31(3), 497-506.
[http://dx.doi.org/10.1002/ptr.5776] [PMID: 28112442]
[73]
Wei, W.L.; Zeng, R.; Gu, C.M.; Qu, Y.; Huang, L.F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J. Ethnopharmacol., 2016, 190, 116-141.
[http://dx.doi.org/10.1016/j.jep.2016.05.023] [PMID: 27211015]
[74]
Duan, M.H.; Wang, L.N.; Jiang, Y.H.; Pei, Y.Y.; Guan, D.D.; Qiu, Z.D. Angelica sinensis reduced A β -induced memory impairment in rats. J. Drug Target., 2016, 24(4), 340-347.
[http://dx.doi.org/10.3109/1061186X.2015.1077848] [PMID: 26821843]
[75]
Long, Y.; Li, D.; Yu, S.; Shi, A.; Deng, J.; Wen, J.; Li, X.; Ma, Y.; Zhang, Y.; Liu, S.; Wan, J.; Li, N.; Yang, M.; Han, L. Medicine–food herb: Angelica sinensis, a potential therapeutic hope for Alzheimer’s disease and related complications. Food Funct., 2022, 13(17), 8783-8803.
[http://dx.doi.org/10.1039/D2FO01287A] [PMID: 35983893]
[76]
González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis spp.: Uses, chemical composition and pharmacological activities-A review. J. Ethnopharmacol., 2011, 135(2), 209-225.
[http://dx.doi.org/10.1016/j.jep.2011.03.014] [PMID: 21420484]
[77]
Hofrichter, J.; Krohn, M.; Schumacher, T.; Lange, C.; Feistel, B.; Walbroel, B.; Pahnke, J. Sideritis spp. extracts enhance memory and learning in Alzheimer’s β-amyloidosis mouse models and aged C57Bl/6 mice. J. Alzheimers Dis., 2016, 53(3), 967-980.
[http://dx.doi.org/10.3233/JAD-160301] [PMID: 27258424]
[78]
Wu, J.; Peng, W.; Qin, R.; Zhou, H. Crataegus pinnatifida: Chemical constituents, pharmacology, and potential applications. Molecules, 2014, 19(2), 1685-1712.
[http://dx.doi.org/10.3390/molecules19021685] [PMID: 24487567]
[79]
Lee, J.; Cho, E.; Kwon, H.; Jeon, J.; Jung, C.J.; Moon, M.; Jun, M.; Lee, Y.C.; Kim, D.H.; Jung, J.W. The fruit of Crataegus pinnatifida ameliorates memory deficits in β-amyloid protein-induced Alzheimer’s disease mouse model. J. Ethnopharmacol., 2019, 243, 112107.
[http://dx.doi.org/10.1016/j.jep.2019.112107] [PMID: 31349027]
[80]
Tan, Y.Q.; Chen, H.W.; Li, J.; Wu, Q.J. Efficacy, chemical constituents, and pharmacological actions of Radix Paeoniae rubra and Radix Paeoniae alba. Front. Pharmacol., 2020, 11, 1054.
[http://dx.doi.org/10.3389/fphar.2020.01054] [PMID: 32754038]
[81]
Zhang, WL; Zheng, KYZ.; Zhu, KY.; Zhan, J.Y.X; Bi, CWC.; Chen, JP; Dong, TTX; Choi, RCY; Lau, DTW; Tsim, KWK Chemical and biological assessment of angelica roots from different cultivated regions in a chinese herbal decoction danggui buxue tang. Evid Based Complement Alternat Med., 2013, 2013, 483286.
[82]
Park, S.J.; Jung, J.M.; Lee, H.E.; Lee, Y.W.; Kim, D.H.; Kim, J.M.; Hong, J.G.; Lee, C.H.; Jung, I.H.; Cho, Y.B.; Jang, D.S.; Ryu, J.H. The memory ameliorating effects of INM-176, an ethanolic extract of Angelica gigas, against scopolamine- or Aβ1–42-induced cognitive dysfunction in mice. J. Ethnopharmacol., 2012, 143(2), 611-620.
[http://dx.doi.org/10.1016/j.jep.2012.07.019] [PMID: 22846435]
[83]
Park, E.; Ryu, M.J.; Kim, N.K.; Bae, M.H.; Seo, Y.; Kim, J.; Yeo, S.; Kanwal, M.; Choi, C.W.; Heo, J.Y.; Jeong, S.Y. Synergistic neuroprotective effect of Schisandra chinensis and Ribes fasciculatum on neuronal cell death and scopolamine-induced cognitive impairment in rats. Int. J. Mol. Sci., 2019, 20(18), 4517.
[http://dx.doi.org/10.3390/ijms20184517] [PMID: 31547274]
[84]
Hussein, R.A.; Afifi, A.H.; Soliman, A.A.F.; El Shahid, Z.A.; Zoheir, K.M.A.; Mahmoud, K.M. Neuroprotective activity of Ulmus pumila L. in Alzheimer’s disease in rats; role of neurotrophic factors. Heliyon, 2020, 6(12), e05678.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05678] [PMID: 33367123]
[85]
Retinasamy, T.; Shaikh, M.F.; Kumari, Y.; Zainal Abidin, S.A.; Othman, I. Orthosiphon stamineus Standardized Extract Reverses Streptozotocin-Induced Alzheimer’s Disease-Like Condition in a Rat Model. Biomedicines, 2020, 8(5), 104.
[http://dx.doi.org/10.3390/biomedicines8050104] [PMID: 32365983]
[86]
Abdel-Ghani, A.; Hassan, H.; Elshazly, A. Phytochemical and biological study of Malva parviflora L. grown in Egypt. Zagazig J. Pharm. Sci., 2013, 22(1), 17-25.
[http://dx.doi.org/10.21608/zjps.2013.160697]
[87]
Medrano-Jiménez, E.; Jiménez-Ferrer Carrillo, I.; Pedraza-Escalona, M.; Ramírez-Serrano, C.E.; Álvarez-Arellano, L.; Cortés-Mendoza, J.; Herrera-Ruiz, M.; Jiménez-Ferrer, E.; Zamilpa, A.; Tortoriello, J.; Pedraza-Alva, G.; Pérez-Martínez, L. Malva parviflora extract ameliorates the deleterious effects of a high fat diet on the cognitive deficit in a mouse model of Alzheimer’s disease by restoring microglial function via a PPAR-γ-dependent mechanism. J. Neuroinflammation, 2019, 16(1), 143.
[http://dx.doi.org/10.1186/s12974-019-1515-3] [PMID: 31291963]
[88]
Karthivashan, G.; Park, S.Y.; Kweon, M.H.; Kim, J.; Haque, M.E.; Cho, D.Y.; Kim, I.S.; Cho, E.A.; Ganesan, P.; Choi, D.K. Ameliorative potential of desalted Salicornia europaea L. extract in multifaceted Alzheimer’s-like scopolamine-induced amnesic mice model. Sci. Rep., 2018, 8(1), 7174.
[http://dx.doi.org/10.1038/s41598-018-25381-0] [PMID: 29740000]
[89]
Zhang, Z.J.; Qian, Y.H.; Hu, H.T.; Yang, J.; Yang, G.D. The herbal medicine Dipsacus asper Wall extract reduces the cognitive deficits and overexpression of β-amyloid protein induced by aluminum exposure. Life Sci., 2003, 73(19), 2443-2454.
[http://dx.doi.org/10.1016/S0024-3205(03)00649-0] [PMID: 12954453]
[90]
Tian, X.Y.; Wang, Y.H.; Liu, H.Y.; Yu, S.S.; Fang, W.S. On the chemical constituents of Dipsacus asper. Chem. Pharm. Bull., 2007, 55(12), 1677-1681.
[http://dx.doi.org/10.1248/cpb.55.1677] [PMID: 18057739]
[91]
Chiang, H.M.; Chen, H.C.; Wu, C.S.; Wu, P.Y.; Wen, K.C. Rhodiola plants: Chemistry and biological activity. Yao Wu Shi Pin Fen Xi, 2015, 23(3), 359-369.
[PMID: 28911692]
[92]
Zhang, X.; Wang, X.; Hu, X.; Chu, X.; Li, X.; Han, F. Neuroprotective effects of a Rhodiola crenulata extract on amyloid-β peptides (Aβ1-42) -induced cognitive deficits in rat models of Alzheimer’s disease. Phytomedicine, 2019, 57, 331-338.
[http://dx.doi.org/10.1016/j.phymed.2018.12.042] [PMID: 30807987]
[93]
Mardi, S.; Salemi, Z.; Palizvan, M.R. Antioxidant properties of Trifolium resupinatum and its therapeutic potential for Alzheimer’s disease. Folia Neuropathol., 2023, 61(1), 37-46.
[http://dx.doi.org/10.5114/fn.2023.125599] [PMID: 37114959]
[94]
Impellizzeri, D.; Tomasello, M.; Cordaro, M.; D’Amico, R.; Fusco, R.; Abdelhameed, A.S.; Wenzel, U.; Siracusa, R.; Calabrese, V.; Cuzzocrea, S.; Di Paola, R.; Memophenol, TM Prevents Amyloid-β Deposition and Attenuates Inflammation and Oxidative Stress in the Brain of an Alzheimer’s Disease Rat. Int. J. Mol. Sci., 2023, 24(8), 6938.
[http://dx.doi.org/10.3390/ijms24086938] [PMID: 37108102]
[95]
Ramasamy, A.; Anandakumar, K.; Kathiresan, K. In-vitro antioxidant potential and acetylcholinesterase inhibitory effect of Ficus benghalensis aerial root extract. Afr. Health Sci., 2022, 22(4), 291-299.
[http://dx.doi.org/10.4314/ahs.v22i4.34] [PMID: 37092053]
[96]
Beigom Hejaziyan, L.; Hosseini, S.M.; Taravati, A.; Asadi, M.; Bakhshi, M.; Moshaei Nezhad, P.; Gol, M.; Mououdi, M. Effect of Rosa damascena Extract on Rat Model Alzheimer’s Disease: A Histopathological, Behavioral, Enzyme Activities, and Oxidative Stress Study. Evid. Based Complement. Alternat. Med., 2023, 2023, 1-11.
[http://dx.doi.org/10.1155/2023/4926151] [PMID: 37078068]
[97]
Balgoon, M.J. Garden Cress (Lepidium sativum) Seeds Ameliorated Aluminum-Induced Alzheimer Disease in Rats Through Antioxidant, Anti-Inflammatory, and Antiapoptotic Effects. Neuropsychiatr. Dis. Treat., 2023, 19, 865-878.
[http://dx.doi.org/10.2147/NDT.S401740] [PMID: 37077707]
[98]
Chun, L.W.; Ramachandran, R.K.; Othman, S.F.F.; Has, A.T.C.; George, A.; Mat, N.H.; Suhaimi, F.W.; Nor Hazalin, N.A.M.; Hassan, Z. Persicaria minor ameliorates the cognitive function of chronic cerebral hypoperfusion rats: Metabolomic analysis and potential mechanisms. Behav. Brain Res., 2023, 447, 114423.
[http://dx.doi.org/10.1016/j.bbr.2023.114423] [PMID: 37030545]
[99]
Bianchini Silva, L.S.; Perasoli, F.B.; Carvalho, K.V.; Vieira, K.M.; Paz Lopes, M.T.; Bianco de Souza, G.H.; Henrique dos Santos, O.D.; Freitas, K.M. Melaleuca leucadendron (L.) L. flower extract exhibits antioxidant and photoprotective activities in human keratinocytes exposed to ultraviolet B radiation. Free Radic. Biol. Med., 2020, 159, 54-65.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.07.022] [PMID: 32745772]
[100]
Abdel Karim, A.S.; Ahmed, A.H. ELsayed WM. Compounds with Anti-Alzheimer Activity Isolated for the First Time from Melaleuca leucodendron (L.) L. leaves. Curr. Pharm. Biotechnol., 2023, 2023, 24.
[101]
Nam, M.N.; Kim, J-H.; Lee, A.Y.; Cho, E.J. Neuroprotective effects of Paeonia lactiflora and its active compound paeoniflorin against Aβ 25-35 -induced neurotoxicity in SH-SY5Y cells. J. Appl. Biol. Chem., 2021, 64(2), 105-112.
[http://dx.doi.org/10.3839/jabc.2021.016]
[102]
Chawade, A.; Mani, A.; Kushwah, S.; Maurya, N.S.; Kushwaha, S.; Scotti, L. Herbal Therapeutics for Alzheimer’s Disease: Ancient Indian Medicine System from the Modern Viewpoint. Curr. Neuropharmacol., 2023, 21(4), 764-776.
[http://dx.doi.org/10.2174/1570159X21666230216094353] [PMID: 36797613]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy