Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Systematic Review Article

Influence of Solute Carrier Family 22 Member 1 (SLC22A1) Gene Polymorphism on Metformin Pharmacokinetics and HbA1c Levels: A Systematic Review

Author(s): A.D. Pradana*, E. Kristin, D.A.A. Nugrahaningsih, A.K. Nugroho and R.T. Pinzon

Volume 20, Issue 4, 2024

Published on: 05 October, 2023

Article ID: e070823219470 Pages: 13

DOI: 10.2174/1573399820666230807145202

Price: $65

Abstract

Background: Solute Carrier Family 22 Member 1 (SLC22A1, also known as OCT1) protein has a vital role in the metabolism of metformin, a first-line anti-diabetes medication. Genetic poly-morphism in SLC22A1 influences individual response to metformin.

Objective: This review aims to compile the current knowledge about the effects of SLC22A1 genetic polymorphism on metformin pharmacokinetics and HbA1c levels.

Methods: We followed the PRISMA 2020 standards to conduct a systematic review. We searched the publications for all appropriate evidence on the effects of SLC22A1 genetic polymorphism on metformin pharmacokinetics and HbA1c from January 2002 to December 2022.

Results: Initial database searches identified 7,171 relevant studies. We reviewed 155 titles and abstracts after deleting duplicates. After applying inclusion and exclusion criteria, 23 studies remained.

Conclusion: Three studies found that rs12208357, rs34059508, and G465R had a considerable impact (p < 0.05) on metformin pharmacokinetics, resulting in increased metformin plasma (Cmax), a higher active amount of drug in the blood (AUC), and lower volume of distribution (Vd) (p<0.05). SLC22A1 polymorphisms with effects on HbA1c include rs628031 (four of seven studies), rs622342 (four of six studies), rs594709 (one study), rs2297374, and rs1867351 (one of two studies), rs34130495 (one study), and rs11212617 (one study) (p < 0.05).

[1]
Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycaemia in type 2 diabetes, 2015: A patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the study of diabetes. Diabetologia 2015; 58(3): 429-42.
[http://dx.doi.org/10.1007/s00125-014-3460-0] [PMID: 25583541]
[2]
Nathan DM, Buse JB, Davidson MB, et al. Medical management of hyperglycaemia in type 2 diabetes mellitus: A consensus algorithm for the initiation and adjustment of therapy. Diabetologia 2009; 52(1): 17-30.
[http://dx.doi.org/10.1007/s00125-008-1157-y] [PMID: 18941734]
[3]
Rodbard HW, Jellinger PS, Davidson JA, et al. Statement by an American association of clinical endocrinologists/American college of endocrinology consensus panel on type 2 diabetes mellitus: An algorithm for glycemic control. Endocr Pract 2009; 15(6): 540-59.
[http://dx.doi.org/10.4158/EP.15.6.540] [PMID: 19858063]
[4]
Flory J, Lipska K. Metformin in 2019. JAMA 2019; 321(19): 1926-7.
[http://dx.doi.org/10.1001/jama.2019.3805] [PMID: 31009043]
[5]
Hostalek U, Gwilt M, Hildemann S. Therapeutic use of metformin in prediabetes and diabetes prevention. Drugs 2015; 75(10): 1071-94.
[http://dx.doi.org/10.1007/s40265-015-0416-8] [PMID: 26059289]
[6]
Johnson NP. Metformin use in women with polycystic ovary syndrome. Ann Transl Med 2014; 2(6): 56.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2014.04.15] [PMID: 25333031]
[7]
Podhorecka M, Ibanez B, Dmoszyńska A. Metformin – its potential anti-cancer and anti-aging effects. Postepy Hig Med Dosw 2017; 71(1): 0.
[http://dx.doi.org/10.5604/01.3001.0010.3801] [PMID: 28258677]
[8]
Pernicova I, Korbonits M. Metformin-Mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 2014; 10: 143-56.
[http://dx.doi.org/10.1038/nrendo.2013.256]
[9]
Madiraju AK, Erion DM, Rahimi Y, Zhang X, Macdonald J, Jurczak M, et al. Metformin suppresses. Nature 2014; 510(7506): 542-6.
[http://dx.doi.org/10.1038/nature13270] [PMID: 24847880]
[10]
LaMoia TE, Shulman GI. Cellular and molecular mechanisms of metformin actioN. Endocr Rev 2021; 42(1): 77-96.
[http://dx.doi.org/10.1210/endrev/bnaa023] [PMID: 32897388]
[11]
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia 2017; 60(9): 1577-85.
[http://dx.doi.org/10.1007/s00125-017-4342-z] [PMID: 28776086]
[12]
Viollet B, Guigas B, Garcia NS, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: An overview. Clin Sci 2012; 122(6): 253-70.
[http://dx.doi.org/10.1042/CS20110386] [PMID: 22117616]
[13]
Sanchez-Rangel E, Inzucchi SE. Metformin: Clinical use in type 2 diabetes. Diabetologia 2017; 60(9): 1586-93.
[http://dx.doi.org/10.1007/s00125-017-4336-x] [PMID: 28770321]
[14]
Goswami S, Yee SW, Stocker S, et al. Genetic variants in transcription factors are associated with the pharmacokinetics and pharmacody-namics of metformin. Clin Pharmacol Ther 2014; 96(3): 370-9.
[http://dx.doi.org/10.1038/clpt.2014.109] [PMID: 24853734]
[15]
Kawoosa F, Shah ZA, Masoodi SR, et al. Role of human organic cation transporter-1 (OCT-1/SLC22A1) in modulating the response to metformin in patients with type 2 diabetes. BMC Endocr Disord 2022; 22(1): 140.
[http://dx.doi.org/10.1186/s12902-022-01033-3]
[16]
Florez JC. Does metformin work for everyone? A genome-wide association study for metformin response. Curr Diab Rep 2011; 11(6): 467-9.
[http://dx.doi.org/10.1007/s11892-011-0220-0] [PMID: 21845381]
[17]
Cook MN, Girman CJ, Stein PP, Alexander CM. Initial monotherapy with either metformin or sulphonylureas often fails to achieve or maintain current glycaemic goals in patients with type 2 diabetes in UK primary care. Diabet Med 2007; 24(4): 350-8.
[http://dx.doi.org/10.1111/j.1464-5491.2007.02078.x] [PMID: 17335466]
[18]
Rashid M, Shahzad M, Mahmood S, Khan K. Variability in the therapeutic response of Metformin treatment in patients with type 2 diabe-tes mellitus. Pak J Med Sci 2019; 35(1): 71-6.
[http://dx.doi.org/10.12669/pjms.35.1.100]
[19]
Chen L, Takizawa M, Chen E, et al. Genetic polymorphisms in organic cation transporter 1 (OCT1) in Chinese and Japanese populations exhibit altered function. J Pharmacol Exp Ther 2010; 335(1): 42-50.
[http://dx.doi.org/10.1124/jpet.110.170159] [PMID: 20639304]
[20]
Shu Y, Brown C, Castro RA, et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther 2008; 83(2): 273-80.
[http://dx.doi.org/10.1038/sj.clpt.6100275] [PMID: 17609683]
[21]
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021; 372: n71.
[http://dx.doi.org/10.1136/bmj.n71] [PMID: 33782057]
[22]
Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control Clin Trials 1996; 17(1): 1-12.
[http://dx.doi.org/10.1016/0197-2456(95)00134-4] [PMID: 8721797]
[23]
Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R. Checklist for Cohort Studies. 2017. Available from: https://joannabriggs.org/ebp/critical_appraisal_tools
[24]
Campbell M, McKenzie JE, Sowden A, et al. Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ 2020; 368: l6890.
[http://dx.doi.org/10.1136/bmj.l6890] [PMID: 31948937]
[25]
Hakooz N, Jarrar YB, Zihlif M, Imraish A, Hamed S, Arafat T. Effects of the genetic variants of organic cation transporters 1 and 3 on the pharmacokinetics of metformin in Jordanians. Drug Metab Pers Ther 2017; 32(3): 157-62.
[http://dx.doi.org/10.1515/dmpt-2017-0019] [PMID: 28862982]
[26]
Dwi Ananda Ningrum V, Ikawati Z, Sadewa AH, Ikhsan MR, Saepudin SAHS, Saepudin S. Steady-state pharmacokinetics of metformin in obese patients with type 2 diabetes mellitus : A preliminary study steady-state pharmacokinetics of metformin in obese patients with type 2 diabetes mellitus : A preliminary study. Asian J Pharm Clin Res 2016; 10(1): 294.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i1.15252]
[27]
Christensen MMH, Brasch-Andersen C, Green H, et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics 2011; 21(12): 837-50.
[http://dx.doi.org/10.1097/FPC.0b013e32834c0010] [PMID: 21989078]
[28]
Christensen MMH, Højlund K, Hother-Nielsen O, et al. Steady-state pharmacokinetics of metformin is independent of the OCT1 genotype in healthy volunteers. Eur J Clin Pharmacol 2015; 71(6): 691-7.
[http://dx.doi.org/10.1007/s00228-015-1853-8] [PMID: 25939711]
[29]
Phani NM, Vohra M, Kakar A, et al. Implication of critical pharmacokinetic gene variants on therapeutic response to metformin in type 2 diabetes. Pharmacogenomics 2018; 19(11): 905-11.
[http://dx.doi.org/10.2217/pgs-2018-0041] [PMID: 29914345]
[30]
Santoro AB, Botton MR, Struchiner CJ, Suarez-Kurtz G. Influence of pharmacogenetic polymorphisms and demographic variables on metformin pharmacokinetics in an admixed Brazilian cohort. Br J Clin Pharmacol 2018; 84(5): 987-96.
[http://dx.doi.org/10.1111/bcp.13522] [PMID: 29352482]
[31]
Koshy M, Muthiah R, Nadu T. Association of OCT1 gene polymorphism with glycemic status and serum metformin levels in type ii dia-betes mellitus patients. Int J Pharm Sci Res 2013; 4(5): 1940-5.
[32]
Zhou Y, Ye W, Wang Y, et al. Genetic variants of OCT1 influence glycemic response to metformin in Han Chinese patients with type-2 diabetes mellitus in Shanghai. Int J Clin Exp Pathol 2015; 8(8): 9533-42.
[PMID: 26464716]
[33]
Altall R, Qusti S, Filimbon N, Alhozali N, Dallol A, Chaudhary A, et al. SLC22A1 and ATM genes polymorphisms are associated with the risk of type 2 diabetes mellitus in Western Saudi Arabia: A Case-Control Study. Appl Clin Genet 2019; 12: 213-9.
[http://dx.doi.org/10.2147/TACG.S229952]
[34]
Resendiz-Abarca C, Flores-alfaro E. Altered glycemic control associated with polymorphisms in the SLC22A1 (OCT1) gene in a mexican population with type 2 diabetes mellitus treated with metformin. J Clin Pharmacol 2019; 1: 425.
[http://dx.doi.org/10.1002/jcph.1425] [PMID: 31012983]
[35]
Shokri F, Ghaedi H, Fard SG, Movafagh A, Abediankenari S, Mahrooz A, et al. Impact of ATM and SLC22A1 polymorphisms on thera-peutic response to metformin in Iranian diabetic patients. Int J Mol Cell Med 2016; 5(1): 1-7.
[36]
Becker ML, Visser LE, Schaik RHN. Van, Hofman A, Stricker BHC. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J 2009; 9(4): 242-7.
[http://dx.doi.org/10.1038/tpj.2009.15]
[37]
Shikata E, Yamamoto ÆR, Takane ÆH. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. J Hum Genet 2007; 52(2): 117-22.
[http://dx.doi.org/10.1007/s10038-006-0087-0]
[38]
Al-Eitan L, Almomani BA, Nassar AM, Elsaqa BZ, Saedeh N. Metformin pharmacogenetics: Effects of SLC22A1, SLC22A2, and SLC22A3 polymorphisms on glycemic control and HbA1c levels. J Pers Med 2019; 9(1): 17.
[http://dx.doi.org/10.3390/jpm9010017]
[39]
Abrahams-October Z, Xhakaza L, Pearce B, et al. Genetic association of solute carrier transporter gene variants with metformin response. Balkan J Med Genet 2021; 24(1): 47-56.
[http://dx.doi.org/10.2478/bjmg-2021-0004] [PMID: 34447659]
[40]
Umamaheswaran G, Praveen RG, Damodaran SE, Das AK, Adithan C. Influence of SLC22A1 rs622342 genetic polymorphism on met-formin response in South Indian type 2 diabetes mellitus patients. Clin Exp Med 2015; 15(4): 511-7.
[http://dx.doi.org/10.1007/s10238-014-0322-5] [PMID: 25492374]
[41]
Naja K, Salami A, El Shamieh S, Fakhoury R. rs622342 in SLC22A1, CYP2C9*2 and CYP2C9*3 and glycemic response in individuals with type 2 diabetes mellitus receiving metformin/sulfonylurea combination therapy: 6-month follow-up study. J Pers Med 2020; 10(2): 53.
[http://dx.doi.org/10.3390/jpm10020053] [PMID: 32575674]
[42]
Xiao D, Guo Y, Li X, Yin J, Zheng W, Qiu X, et al. The impacts of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms on metformin therapeutic efficacy in chinese type 2 diabetes patients. Int J Endocrinol 2016; 2016: 4350712.
[http://dx.doi.org/10.1155/2016/4350712]
[43]
Yoon H, Cho H, Yoo H, Kim S. Lee. Influences of organic cation transporter polymorphisms on the population pharmacokinetics of metformin in healthy subjects 2013; 15(2)
[http://dx.doi.org/10.1208/s12248-013-9460-z] [PMID: 23417334]
[44]
Tzvetkov MV, Vormfelde SV, Balen D, et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther 2009; 86(3): 299-306.
[http://dx.doi.org/10.1038/clpt.2009.92] [PMID: 19536068]
[45]
Zhou K, Donnelly LA, Kimber CH, et al. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: A GoDARTS study. Diabetes 2009; 58(6): 1434-9.
[http://dx.doi.org/10.2337/db08-0896] [PMID: 19336679]
[46]
Kimura N, Masuda S, Tanihara Y, et al. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet 2005; 20(5): 379-86.
[http://dx.doi.org/10.2133/dmpk.20.379] [PMID: 16272756]
[47]
Shargel L, Yu A. Applied Biopharmaceutic and Pharmacokinetics. New York: Mc Graw Hill Education 2016.
[48]
Lee SH, Kwon K. Pharmacokinetic-pharmacodynamic modeling for the relationship between glucose-lowering effect and plasma concentration of metformin in volunteers. Arch Pharm Res 2004; 27(7): 806-10.
[http://dx.doi.org/10.1007/BF02980152]
[49]
Semiz S, Dujic T, Causevic A. Pharmacogenetics and personalized treatment of type 2 diabetes. Biochem Med 2013; 23: 154-71.
[http://dx.doi.org/10.11613/BM.2013.020]
[50]
Seitz T, Stalmann R, Dalila N, et al. Global genetic analyses reveal strong inter-ethnic variability in the loss of activity of the organic cation transporter OCT1. Genome Med 2015; 7(1): 56.
[http://dx.doi.org/10.1186/s13073-015-0172-0] [PMID: 26157489]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy