Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Research Article

Neuroprotective Effects of Sesamum indicum, Sesamin and Sesamolin Against 6-OHDA-induced Apoptosis in PC12 Cells

Author(s): Elham Ramazani, Faeze Ebrahimpour, Seyed Ahmad Emami, Abolfazl Shakeri, Behjat Javadi, Amirhossein Sahebkar* and Zahra Tayarani-Najaran

Volume 14, Issue 2, 2023

Published on: 31 August, 2023

Page: [126 - 133] Pages: 8

DOI: 10.2174/2772574X14666230804151124

Price: $65

Abstract

Background: Sesamum indicum L. (sesame) is one of the most widely used herbs in the world. Sesame oil contains lignans such as sesamin and sesamolin, which are known to possess anti-inflammatory, antioxidant, and anti-apoptotic properties. Parkinson's disease (PD) is recognized as the most common neurodegenerative disease after Alzheimer's disease; however, the exact molecular mechanism of the progression of neural death is not clear yet. In this study, the effect of sesame seed extracts and their main bioactive components (sesamin and sesamolin) on in vitro model of Parkinson's disease has been compared.

Methods: Cell viability, the number of reactive oxygen species (ROS), and apoptosis were determined using resazurin assay, ROS assay, propidium iodide (PI) staining and flow cytometry, and western blot analysis.

Results: 6-OHDA caused cellular death and apoptosis but pretreatment with sesame seed extracts, sesamin, and sesamolin significantly increased cell viability (p<0.001) and decreased ROS (p<0.001) and apoptosis. ERK1/2 is activated by 6-OHDA in PC12 cells, and the level of survivin decreased. Pretreatment with sesame significantly reversed the entire cell death induced by 6- OHDA. Sesame seed extracts at 5 and 10 μg/ml, sesamin and sesamolin at 5 and 10 μM increased surviving (p<0.01), and reduced P-ERK1/2/ERK1/2 (p<0.05) levels close to the control values.

Conclusions: Overall, compounds in sesame seed extract and sesamin may assist as adjuvant therapeutics in PD. It seems sesame seeds have more potent protection effects against neural death compared with individual components, which might reflect the synergism among different phytochemicals present in the extract.

Graphical Abstract

[1]
Bhat, K.V.; Kumari, R.; Pathak, N.; Rai, A.K. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn. Rev., 2014, 8(16), 147-155.
[http://dx.doi.org/10.4103/0973-7847.134249] [PMID: 25125886]
[2]
Nagendra Prasad, M.N.; Sanjay, K.R.; Prasad, D.S.; Vijay, N.; Kothari, R.; Nanjunda Swamy, S. A review on nutritional and nutraceutical properties of sesame. J. Nutr. Food Sci., 2012, 2(2), 1-6.
[3]
Hassanien, M.M.M.; Abdel-Razek, A.G. Improving the stability of edible oils by blending with roasted sesame seed oil as a source of natural antioxidants. J. Appl. Sci. Res., 2012, 8(8), 4073-4083.
[4]
Lahaie-Collins, V.; Bournival, J.; Plouffe, M.; Carange, J.; Martinoli, M.G. Sesamin modulates tyrosine hydroxylase, superoxide dismutase, catalase, inducible NO synthase and interleukin-6 expression in dopaminergic cells under MPP+-induced oxidative stress. Oxid. Med. Cell. Longev., 2008, 1(1), 54-62.
[http://dx.doi.org/10.4161/oxim.1.1.6958] [PMID: 19794909]
[5]
Surmeier, D.J.; Obeso, J.A.; Halliday, G.M. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci., 2017, 18(2), 101-113.
[http://dx.doi.org/10.1038/nrn.2016.178] [PMID: 28104909]
[6]
Baluchnejadmojarad, T.; Mansouri, M.; Ghalami, J.; Mokhtari, Z.; Roghani, M. Sesamin imparts neuroprotection against intrastriatal 6-hydroxydopamine toxicity by inhibition of astroglial activation, apoptosis, and oxidative stress. Biomed. Pharmacother., 2017, 88(1), 754-761.
[http://dx.doi.org/10.1016/j.biopha.2017.01.123] [PMID: 28157651]
[7]
Park, H.J.; Zhao, T.T.; Lee, K.S.; Lee, S.H.; Shin, K.S.; Park, K.H.; Choi, H.S.; Lee, M.K. Effects of (-)-sesamin on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and dopaminergic neuronal cells of Parkinson’s disease rat models. Neurochem. Int., 2015, 83-84(1), 19-27.
[http://dx.doi.org/10.1016/j.neuint.2015.01.003] [PMID: 25747493]
[8]
Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev., 2012, 6(12), 81-90.
[http://dx.doi.org/10.4103/0973-7847.99898] [PMID: 23055633]
[9]
Bournival, J.; Francoeur, M.A.; Renaud, J.; Martinoli, M.G. Quercetin and sesamin protect neuronal PC12 cells from high-glucose-induced oxidation, nitrosative stress, and apoptosis. Rejuvenation Res., 2012, 15(3), 322-333.
[http://dx.doi.org/10.1089/rej.2011.1242] [PMID: 22524206]
[10]
Ibn-e-Sina, A.A. Al-Qānūnfī al-Tibb (Canon of Medicine). In1; Dare Ehyae al-Torathe al-Arabi: Beirut, 2005.
[11]
Mousavi, S.H.; Motaez, M.; Zamiri-Akhlaghi, A.; Emami, S.A.; Tayarani-Najaran, Z. In-vitro evaluation of cytotoxic and apoptogenic properties of Sophorapachycarpa. Iran. J. Pharm. Res., 2014, 13(2), 665-673.
[PMID: 25237363]
[12]
Naserian, M.; Ramazani, E.; Iranshahi, M.; Tayarani-Najaran, Z. The role of SAPK/JNK pathway in the synergistic effects of metformin and dacarbazine on apoptosis in Raji and Ramos lymphoma cells. Curr. Mol. Pharmacol., 2018, 11(4), 336-342.
[http://dx.doi.org/10.2174/1874467211666180830150546] [PMID: 30173657]
[13]
Ramazani, E.; Tayarani-Najaran, Z.; Fereidoni, M. Celecoxib, indomethacin, and ibuprofen prevent 6-hydroxydopamine-induced PC12 cell death through the inhibition of NFκB and SAPK/JNK pathways. Iran. J. Basic Med. Sci., 2019, 22(5), 477-484.
[PMID: 31217926]
[14]
Ramazani, E. YazdFazeli, M.; Emami, S.A.; Mohtashami, L.; Javadi, B.; Asili, J.; Tayarani-Najaran, Z. Protective effects of cinnamomum verum, cinnamomum cassia and cinnamaldehyde against 6-OHDA-induced apoptosis in PC12 cells. Mol. Biol. Rep., 2020, 47(4), 2437-2445.
[http://dx.doi.org/10.1007/s11033-020-05284-y] [PMID: 32166553]
[15]
Rahiman, N.; Akaberi, M.; Sahebkar, A.; Emami, S.A.; Tayarani-Najaran, Z. Protective effects of saffron and its active components against oxidative stress and apoptosis in endothelial cells. Microvasc. Res., 2018, 118(1), 82-89.
[http://dx.doi.org/10.1016/j.mvr.2018.03.003] [PMID: 29524452]
[16]
Bohush, A.; Niewiadomska, G.; Filipek, A. Role of mitogen activated protein kinase signaling in parkinson’s disease. Int. J. Mol. Sci., 2018, 19(10), 2973-2990.
[http://dx.doi.org/10.3390/ijms19102973] [PMID: 30274251]
[17]
Hou, R.C.W.; Huang, H.M.; Tzen, J.T.C.; Jeng, K.C.G. Protective effects of sesamin and sesamolin on hypoxic neuronal and PC12 cells. J. Neurosci. Res., 2003, 74(1), 123-133.
[http://dx.doi.org/10.1002/jnr.10749] [PMID: 13130514]
[18]
Angeline, S.M.; Sarkar, A.; Anand, K.; Ambasta, R.K.; Kumar, P. Sesamol and naringenin reverse the effect of rotenone-induced PD rat model. Neuroscience, 2013, 254(1), 379-394.
[http://dx.doi.org/10.1016/j.neuroscience.2013.09.029] [PMID: 24070629]
[19]
Khadira, S.A.; Vijayalakshmi, K.; Nagappan, P.; Balima, S. Effect of sesamol in association with folic acid on 6-OHDA induced Parkinsonian animals-Biochemical, neurochemical and histopathological evidence. Asian J. Pharm. Clin. Res., 2015, 10(4), 46-50.
[20]
Chen, W.F.; Wu, L.; Du, Z.R.; Chen, L.; Xu, A.L.; Chen, X.H.; Teng, J.J.; Wong, M.S. Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson’s disease: Involvement of PI3K/Akt and MEK/ERK signaling pathways. Phytomedicine, 2017, 25(1), 93-99.
[http://dx.doi.org/10.1016/j.phymed.2016.12.017] [PMID: 28190476]
[21]
Tangchirakhaphan, S.; Innajak, S.; Nilwarangkoon, S.; Tanjapatkul, N.; Mahabusrakum, W.; Watanapokasin, R. Mechanism of apoptosis induction associated with ERK1/2 upregulation via goniothalamin in melanoma cells. Exp. Ther. Med., 2018, 15(3), 3052-3058.
[http://dx.doi.org/10.3892/etm.2018.5762] [PMID: 29456710]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy