Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Therapeutic Potential of Ascorbic Acid in the Management of Alzheimer's Disease: An Update

Author(s): Bhupesh Chander Semwal*, Bhoopendra Singh, Yogesh Murti and Sonia Singh

Volume 25, Issue 2, 2024

Published on: 18 August, 2023

Page: [196 - 212] Pages: 17

DOI: 10.2174/1389201024666230804102617

Price: $65

Abstract

Background: Ascorbic acid is a potent natural antioxidant that protects against oxidative stress and performs various bodily functions. It is commonly found in fruits and vegetables.

Objective: The manuscript has been written to provide valuable insights into ascorbic acid in managing Alzheimer's disease.

Methods: The data has been gathered from web sources, including PubMed, Science Direct, Publons, Web of Science, and Scopus from 2000-2022 using AA, ascorbic acid, Alzheimer’s diseases, memory, dementia, and antioxidant keywords.

Results: In the present manuscript, we have summarized the impact of ascorbic acid and its possible mechanism in Alzheimer's disease by, outlining the information currently available on the behavioral and biochemical effects of ascorbic acid in animal models of Alzheimer's disease as well as its usage as a therapeutic agent to slow down the progression of Alzheimer disease in human beings. Oxidative stress plays a significant role in the advancement of AD. AA is a wellknown antioxidant that primarily reduces oxidative stress and produces protein aggregates, which may help decrease cognitive deficits in Alzheimer's disease. The current paper analyses of ascorbic acid revealed that deficiency of ascorbic acid adversely affects the central nervous system and leads to cognitive defects. However, the results of clinical studies are conflicting, but some of the studies suggested that supplementation of ascorbic acid improved cognitive deficits and decreased disease progression.

Conclusion: Based on clinical and preclinical studies, it is observed that ascorbic acid supplementation improves cognitive deficits and protects the neurons from oxidative stress injury.

Graphical Abstract

[1]
Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T.T.; Al Hamad, H.; Alahdab, F.; Alanezi, F.M.; Alipour, V.; Almustanyir, S.; Amu, H.; Ansari, I.; Arabloo, J.; Ashraf, T.; Astell-Burt, T.; Ayano, G.; Ayuso-Mateos, J.L.; Baig, A.A.; Barnett, A.; Barrow, A.; Baune, B.T.; Béjot, Y.; Bezabhe, W.M.M.; Bezabih, Y.M.; Bhagavathula, A.S.; Bhaskar, S.; Bhattacharyya, K.; Bijani, A.; Biswas, A.; Bolla, S.R.; Boloor, A.; Brayne, C.; Brenner, H.; Burkart, K.; Burns, R.A.; Cámera, L.A.; Cao, C.; Carvalho, F.; Castro-de-Araujo, L.F.S.; Catalá-López, F.; Cerin, E.; Chavan, P.P.; Cherbuin, N.; Chu, D-T.; Costa, V.M.; Couto, R.A.S.; Dadras, O.; Dai, X.; Dandona, L.; Dandona, R.; De la Cruz-Góngora, V.; Dhamnetiya, D.; Dias da Silva, D.; Diaz, D.; Douiri, A.; Edvardsson, D.; Ekholuenetale, M.; El Sayed, I.; El-Jaafary, S.I.; Eskandari, K.; Eskandarieh, S.; Esmaeilnejad, S.; Fares, J.; Faro, A.; Farooque, U.; Feigin, V.L.; Feng, X.; Fereshtehnejad, S-M.; Fernandes, E.; Ferrara, P.; Filip, I.; Fillit, H.; Fischer, F.; Gaidhane, S.; Galluzzo, L.; Ghashghaee, A.; Ghith, N.; Gialluisi, A.; Gilani, S.A.; Glavan, I-R.; Gnedovskaya, E.V.; Golechha, M.; Gupta, R.; Gupta, V.B.; Gupta, V.K.; Haider, M.R.; Hall, B.J.; Hamidi, S.; Hanif, A.; Hankey, G.J.; Haque, S.; Hartono, R.K.; Hasaballah, A.I.; Hasan, M.T.; Hassan, A.; Hay, S.I.; Hayat, K.; Hegazy, M.I.; Heidari, G.; Heidari-Soureshjani, R.; Herteliu, C.; Househ, M.; Hussain, R.; Hwang, B-F.; Iacoviello, L.; Iavicoli, I.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Irvani, S.S.N.; Iso, H.; Iwagami, M.; Jabbarinejad, R.; Jacob, L.; Jain, V.; Jayapal, S.K.; Jayawardena, R.; Jha, R.P.; Jonas, J.B.; Joseph, N.; Kalani, R.; Kandel, A.; Kandel, H.; Karch, A.; Kasa, A.S.; Kassie, G.M.; Keshavarz, P.; Khan, M.A.B.; Khatib, M.N.; Khoja, T.A.M.; Khubchandani, J.; Kim, M.S.; Kim, Y.J.; Kisa, A.; Kisa, S.; Kivimäki, M.; Koroshetz, W.J.; Koyanagi, A.; Kumar, G.A.; Kumar, M.; Lak, H.M.; Leonardi, M.; Li, B.; Lim, S.S.; Liu, X.; Liu, Y.; Logroscino, G.; Lorkowski, S.; Lucchetti, G.; Lutzky Saute, R.; Magnani, F.G.; Malik, A.A.; Massano, J.; Mehndiratta, M.M.; Menezes, R.G.; Meretoja, A.; Mohajer, B.; Mohamed Ibrahim, N.; Mohammad, Y.; Mohammed, A.; Mokdad, A.H.; Mondello, S.; Moni, M.A.A.; Moniruzzaman, M.; Mossie, T.B.; Nagel, G.; Naveed, M.; Nayak, V.C.; Neupane Kandel, S.; Nguyen, T.H.; Oancea, B.; Otstavnov, N.; Otstavnov, S.S.; Owolabi, M.O.; Panda-Jonas, S.; Pashazadeh Kan, F.; Pasovic, M.; Patel, U.K.; Pathak, M.; Peres, M.F.P.; Perianayagam, A.; Peterson, C.B.; Phillips, M.R.; Pinheiro, M.; Piradov, M.A.; Pond, C.D.; Potashman, M.H.; Pottoo, F.H.; Prada, S.I.; Radfar, A.; Raggi, A.; Rahim, F.; Rahman, M.; Ram, P.; Ranasinghe, P.; Rawaf, D.L.; Rawaf, S.; Rezaei, N.; Rezapour, A.; Robinson, S.R.; Romoli, M.; Roshandel, G.; Sahathevan, R.; Sahebkar, A.; Sahraian, M.A.; Sathian, B.; Sattin, D.; Sawhney, M.; Saylan, M.; Schiavolin, S.; Seylani, A.; Sha, F.; Shaikh, M.A.; Shaji, K.S.; Shannawaz, M.; Shetty, J.K.; Shigematsu, M.; Shin, J.I.; Shiri, R.; Silva, D.A.S.; Silva, J.P.; Silva, R.; Singh, J.A.; Skryabin, V.Y.; Skryabina, A.A.; Smith, A.E.; Soshnikov, S.; Spurlock, E.E.; Stein, D.J.; Sun, J.; Tabarés-Seisdedos, R.; Thakur, B.; Timalsina, B.; Tovani-Palone, M.R.; Tran, B.X.; Tsegaye, G.W.; Valadan Tahbaz, S.; Valdez, P.R.; Venketasubramanian, N.; Vlassov, V.; Vu, G.T.; Vu, L.G.; Wang, Y-P.; Wimo, A.; Winkler, A.S.; Yadav, L.; Yahyazadeh Jabbari, S.H.; Yamagishi, K.; Yang, L.; Yano, Y.; Yonemoto, N.; Yu, C.; Yunusa, I.; Zadey, S.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, Z-J.; Murray, C.J.L.; Vos, T. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health, 2022, 7(2), e105-e125.
[http://dx.doi.org/10.1016/S2468-2667(21)00249-8] [PMID: 34998485]
[2]
Varshney, V.; Garabadu, D. Ang(1–7) exerts Nrf2-mediated neuroprotection against amyloid beta-induced cognitive deficits in rodents. Mol. Biol. Rep., 2021, 48(5), 4319-4331.
[http://dx.doi.org/10.1007/s11033-021-06447-1] [PMID: 34075536]
[3]
World Health Organization. Global status report on the public health response to dementia. 2021. Available From: https://www.who.int/publications/i/item/9789240033245
[4]
Bloom, D.E. 7 billion and counting. Science, 2011, 333(6042), 562-569.
[http://dx.doi.org/10.1126/science.1209290] [PMID: 21798935]
[5]
Kaitelidou, D.; Kalogeropoulou, M.; Mougias, A.; Galanis, P.; Kontodimopoulos, N.; Pasaloglou, S.; Siskou, O. Socio-economic impact of Alzheimer’s disease in Greece: Pilot Study. Value Health, 2013, 16(7), A545.
[http://dx.doi.org/10.1016/j.jval.2013.08.1394]
[6]
Thomas, P.; Lalloué, F.; Preux, P.M.; Hazif-Thomas, C.; Pariel, S.; Inscale, R.; Belmin, J.; Clément, J.P. Dementia patients caregivers quality of life: The PIXEL study. Int. J. Geriatr. Psychiatry, 2006, 21(1), 50-56.
[http://dx.doi.org/10.1002/gps.1422] [PMID: 16323256]
[7]
Romero-Mas, M.; Ramon-Aribau, A.; Souza, D.L.B.; Cox, A.M.; Gómez-Zúñiga, B. Improving the quality of life of family caregivers of people with Alzheimer’s disease through virtual communities of practice: A quasi-experimental study. Int. J. Alzheimers Dis., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/8817491] [PMID: 33884204]
[8]
Sheppard, O.; Coleman, M. Alzheimer’s disease: Etiology, neuropathology and pathogenesis. Exon Publications., 2020, 19, 1-21.
[PMID: 33400468]
[9]
Liu, S.; Liu, Y.; Hao, W.; Wolf, L.; Kiliaan, A.J.; Penke, B.; Rübe, C.E.; Walter, J.; Heneka, M.T.; Hartmann, T.; Menger, M.D.; Fassbender, K. TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J. Immunol., 2012, 188(3), 1098-1107.
[http://dx.doi.org/10.4049/jimmunol.1101121] [PMID: 22198949]
[10]
Kametani, F.; Hasegawa, M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front. Neurosci., 2018, 12, 25.
[http://dx.doi.org/10.3389/fnins.2018.00025] [PMID: 29440986]
[11]
Harrison, F.E.; May, J.M. Vitamin C function in the brain: Vital role of the ascorbate transporter SVCT2. Free Radic. Biol. Med., 2009, 46(6), 719-730.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.12.018] [PMID: 19162177]
[12]
Figueroa-Méndez, R.; Rivas-Arancibia, S. Vitamin C in health and disease: Its role in the metabolism of cells and redox state in the brain. Front. Physiol., 2015, 6, 397.
[http://dx.doi.org/10.3389/fphys.2015.00397] [PMID: 26779027]
[13]
Padayatty, S.J.; Levine, M.; Vitamin, C. The known and the unknown and Goldilocks. Oral Dis., 2016, 22(6), 463-493.
[http://dx.doi.org/10.1111/odi.12446] [PMID: 26808119]
[14]
Travica, N.; Ried, K.; Sali, A.; Scholey, A.; Hudson, I.; Pipingas, A. Vitamin C status and cognitive function: A systematic review. Nutrients, 2017, 9(9), 960.
[http://dx.doi.org/10.3390/nu9090960] [PMID: 28867798]
[15]
Harrison, F.; Bowman, G.; Polidori, M. Ascorbic acid and the brain: Rationale for the use against cognitive decline. Nutrients, 2014, 6(4), 1752-1781.
[http://dx.doi.org/10.3390/nu6041752] [PMID: 24763117]
[16]
Walcher, T.; Haenle, M.M.; Kron, M.; Hay, B.; Mason, R.A.; Walcher, D.; Steinbach, G.; Kern, P.; Piechotowski, I.; Adler, G.; Boehm, B.O.; Koenig, W.; Kratzer, W. Vitamin C supplement use may protect against gallstones: An observational study on a randomly selected population. BMC Gastroenterol., 2009, 9(1), 74.
[http://dx.doi.org/10.1186/1471-230X-9-74] [PMID: 19814821]
[17]
Gupta, P.; Tiwari, S.; Haria, J. Relationship between depression and vitamin C status: A study on rural patients from western Uttar Pradesh in India. Int. J. Sci. Res., 2014, 1(4), 37-39.
[18]
Hansen, S.; Tveden-Nyborg, P.; Lykkesfeldt, J. Does vitamin C deficiency affect cognitive development and function? Nutrients, 2014, 6(9), 3818-3846.
[http://dx.doi.org/10.3390/nu6093818] [PMID: 25244370]
[19]
Nazari, H.; Heydarpoor, S.; Mohamadi Mofrad, A.; Nazari, Y.; Nazari, A. Effect of vitamin c on serum concentration of brain-derived neurotrophic factor among healthy inactive young men. Neurosci J Shefaye Khatam, 2016, 4(2), 27-32.
[http://dx.doi.org/10.18869/acadpub.shefa.4.2.27]
[20]
Nishikimi, M.; Yagi, K. Biochemistry and molecular biology of ascorbic acid biosynthesis. Subcellular Biochemistry; Springer: Cham, 1996.
[http://dx.doi.org/10.1007/978-1-4613-0325-1_2]
[21]
Devaki, S.J.; Raveendran, R.L. Vitamin C: Sources, functions, sensing and analysis. Vitamin C; Vitamin, C; Ed.; Intech Open: London, 2017.
[http://dx.doi.org/10.5772/intechopen.70162]
[22]
Siqueira, I.R.; Elsner, V.R.; Leite, M.C.; Vanzella, C.; Moysés, F.S.; Spindler, C.; Godinho, G.; Battú, C.; Wofchuk, S.; Souza, D.O.; Gonçalves, C.A.; Netto, C.A. Ascorbate uptake is decreased in the hippocampus of ageing rats. Neurochem. Int., 2011, 58(4), 527-532.
[http://dx.doi.org/10.1016/j.neuint.2011.01.011] [PMID: 21238526]
[23]
Rice, M.E. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci., 2000, 23(5), 209-216.
[http://dx.doi.org/10.1016/S0166-2236(99)01543-X] [PMID: 10782126]
[24]
Ashor, A.W.; Siervo, M.; Mathers, J.C. Vitamin C, antioxidant status, and cardiovascular aging. Molecular basis of nutrition and aging; Academic Press: Massachusetts, 2016, pp. 609-619.
[http://dx.doi.org/10.1016/B978-0-12-801816-3.00043-1]
[25]
Ma, N.; Jie, H.; Liu, Y.; Dana, B.; Siegfried, C.J.; Beebe, D.C.; Shui, Y.B. Ascorbic acid related transporters SVCT2 and GLUT1 in human and mouse eyes. Invest. Ophthalmol. Vis. Sci., 2015, 56(7), 4671.
[26]
May, J.M. Vitamin C transport and its role in the central nervous system. Subcell. Biochem., 2012, 56, 85-103.
[http://dx.doi.org/10.1007/978-94-007-2199-9_6] [PMID: 22116696]
[27]
Bowman, G.L.; Dodge, H.; Frei, B.; Calabrese, C.; Oken, B.S.; Kaye, J.A.; Quinn, J.F. Ascorbic acid and rates of cognitive decline in Alzheimer’s disease. J. Alzheimers Dis., 2009, 16(1), 93-98.
[http://dx.doi.org/10.3233/JAD-2009-0923] [PMID: 19158425]
[28]
Frei, B. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage. Am. J. Clin. Nutr., 1991, 54(6)(Suppl.), 1113S-1118S.
[http://dx.doi.org/10.1093/ajcn/54.6.1113s] [PMID: 1962556]
[29]
Huang, W.J.; Zhang, X.; Chen, W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep., 2016, 4(5), 519-522.
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[30]
Mosoni, L.; Breuillé, D.; Buffière, C.; Obled, C.; Mirand, P.P. Age-related changes in glutathione availability and skeletal muscle carbonyl content in healthy rats. Exp. Gerontol., 2004, 39(2), 203-210.
[http://dx.doi.org/10.1016/j.exger.2003.10.014] [PMID: 15036413]
[31]
Qiu, S.; Li, L.; Weeber, E.J.; May, J.M. Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity. J. Neurosci. Res., 2007, 85(5), 1046-1056.
[http://dx.doi.org/10.1002/jnr.21204] [PMID: 17304569]
[32]
Lykkesfeldt, J.; Tveden-Nyborg, P. The pharmacokinetics of vitamin C. Nutrients, 2019, 11(10), 2412.
[http://dx.doi.org/10.3390/nu11102412] [PMID: 31601028]
[33]
Lindblad, M.; Tveden-Nyborg, P.; Lykkesfeldt, J. Regulation of vitamin C homeostasis during deficiency. Nutrients, 2013, 5(8), 2860-2879.
[http://dx.doi.org/10.3390/nu5082860] [PMID: 23892714]
[34]
Levine, M.; Conry-Cantilena, C.; Wang, Y.; Welch, R.W.; Washko, P.W.; Dhariwal, K.R.; Park, J.B.; Lazarev, A.; Graumlich, J.F.; King, J.; Cantilena, L.R. Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc. Natl. Acad. Sci. USA, 1996, 93(8), 3704-3709.
[http://dx.doi.org/10.1073/pnas.93.8.3704] [PMID: 8623000]
[35]
Levine, M.; Wang, Y.; Padayatty, S.J.; Morrow, J. A new recommended dietary allowance of vitamin C for healthy young women. Proc. Natl. Acad. Sci. USA, 2001, 98(17), 9842-9846.
[http://dx.doi.org/10.1073/pnas.171318198] [PMID: 11504949]
[36]
Rajat, S.; Thanawala, S.; Abiraamasundari, R. Pharmacokinetics of a novel sustained-release vitamin C oral tablet: a single dose, randomized, double-blind, placebo-controlled trial. J. Pharmacol. Pharmacother., 2022, 13(2), 167-174.
[http://dx.doi.org/10.1177/0976500X221111669]
[37]
Nielsen, T.K.; Højgaard, M.; Andersen, J.T.; Poulsen, H.E.; Lykkesfeldt, J.; Mikines, K.J. Elimination of ascorbic acid after high-dose infusion in prostate cancer patients: A pharmacokinetic evaluation. Basic Clin. Pharmacol. Toxicol., 2015, 116(4), 343-348.
[http://dx.doi.org/10.1111/bcpt.12323] [PMID: 25220574]
[38]
Carr, A.C.; Lykkesfeldt, J. Discrepancies in global vitamin C recommendations: A review of RDA criteria and underlying health perspectives. Crit. Rev. Food Sci. Nutr., 2021, 61(5), 742-755.
[http://dx.doi.org/10.1080/10408398.2020.1744513] [PMID: 32223303]
[39]
Padayatty, S.J.; Sun, A.Y.; Chen, Q.; Espey, M.G.; Drisko, J.; Levine, M.; Vitamin, C. Intravenous use by complementary and alternative medicine practitioners and adverse effects. PLoS One, 2010, 5(7), e11414.
[http://dx.doi.org/10.1371/journal.pone.0011414] [PMID: 20628650]
[40]
Knight, J.; Madduma-Liyanage, K.; Mobley, J.A.; Assimos, D.G.; Holmes, R.P. Ascorbic acid intake and oxalate synthesis. Urolithiasis, 2016, 44(4), 289-297.
[http://dx.doi.org/10.1007/s00240-016-0868-7] [PMID: 27002809]
[41]
Traxer, O.; Huet, B.; Poindexter, J.; Pak, C.C.; Pearle, M.S. Effect of ascorbic acid consumption on urinary stone risk factors. J. Urol., 2003, 170(2), 397-401.
[http://dx.doi.org/10.1097/01.ju.0000076001.21606.53] [PMID: 12853784]
[42]
Taylor, E.N.; Stampfer, M.J.; Curhan, G.C. Dietary factors and the risk of incident kidney stones in men: New insights after 14 years of follow-up. J. Am. Soc. Nephrol., 2004, 15(12), 3225-3232.
[http://dx.doi.org/10.1097/01.ASN.0000146012.44570.20] [PMID: 15579526]
[43]
Quinn, J.; Gerber, B.; Fouche, R.; Kenyon, K.; Blom, Z. Effect of high-dose vitamin C infusion in a glucose-6-phosphate dehydrogenase-deficient patient. Case Rep. Med., 2017, 2017, 5202606.
[44]
Pizzino, G.; Irrera, N.; Cucinotta, M.; Palio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 2017, 8416763.
[http://dx.doi.org/10.1155/2017/8416763]
[45]
Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; Prakash Mishra, A.; Nigam, M.; El Rayess, Y.; Beyrouthy, M.E.; Polito, L.; Iriti, M.; Martins, N.; Martorell, M.; Docea, A.O.; Setzer, W.N.; Calina, D.; Cho, W.C.; Sharifi-Rad, J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol., 2020, 11, 694.
[http://dx.doi.org/10.3389/fphys.2020.00694] [PMID: 32714204]
[46]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[47]
Akbar, M.; Essa, M.M.; Daradkeh, G.; Abdelmegeed, M.A.; Choi, Y.; Mahmood, L.; Song, B.J. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res., 2016, 1637, 34-55.
[http://dx.doi.org/10.1016/j.brainres.2016.02.016] [PMID: 26883165]
[48]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol., 2018, 14, 450-464.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[49]
Zhang, Y.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimer’s disease. Mol. Brain, 2011, 4(1), 3.
[http://dx.doi.org/10.1186/1756-6606-4-3] [PMID: 21214928]
[50]
Haass, C.; Kaether, C.; Thinakaran, G.; Sisodia, S. Trafficking and proteolytic processing of APP. Cold Spring Harb. Perspect. Med., 2012, 2(5), a006270.
[http://dx.doi.org/10.1101/cshperspect.a006270] [PMID: 22553493]
[51]
Phillips, J.C. Why Aβ42 is much more toxic than Aβ40. ACS Chem. Neurosci., 2019, 10(6), 2843-2847.
[http://dx.doi.org/10.1021/acschemneuro.9b00068] [PMID: 31042351]
[52]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[53]
Salim, S. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther., 2017, 360(1), 201-205.
[http://dx.doi.org/10.1124/jpet.116.237503] [PMID: 27754930]
[54]
Kregel, K.C.; Zhang, H.J. An integrated view of oxidative stress in aging: Basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292(1), R18-R36.
[http://dx.doi.org/10.1152/ajpregu.00327.2006] [PMID: 16917020]
[55]
Metcalfe, M.J.; Figueiredo-Pereira, M.E. Relationship between tau pathology and neuroinflammation in Alzheimer’s disease. Mt. Sinai J. Med., 2010, 77(1), 50-58.
[http://dx.doi.org/10.1002/msj.20163] [PMID: 20101714]
[56]
Karapetyan, G.; Fereshetyan, K.; Harutyunyan, H.; Yenkoyan, K. The synergy of β amyloid 1-42 and oxidative stress in the development of Alzheimer’s disease-like neurodegeneration of hippocampal cells. Sci. Rep., 2022, 12(1), 17883.
[http://dx.doi.org/10.1038/s41598-022-22761-5] [PMID: 36284177]
[57]
Cole, S.L.; Vassar, R. The Alzheimer’s disease β-secretase enzyme, BACE1. Mol. Neurodegener., 2007, 2(1), 22.
[http://dx.doi.org/10.1186/1750-1326-2-22] [PMID: 18005427]
[58]
Jo, D.G.; Arumugam, T.V.; Woo, H.N.; Park, J.S.; Tang, S.C.; Mughal, M.; Hyun, D.H.; Park, J.H.; Choi, Y.H.; Gwon, A.R.; Camandola, S.; Cheng, A.; Cai, H.; Song, W.; Markesbery, W.R.; Mattson, M.P. Evidence that γ-secretase mediates oxidative stress-induced β-secretase expression in Alzheimer’s disease. Neurobiol. Aging, 2010, 31(6), 917-925.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.07.003] [PMID: 18687504]
[59]
Scherz-Shouval, R.; Elazar, Z. Regulation of autophagy by ROS: Physiology and pathology. Trends Biochem. Sci., 2011, 36(1), 30-38.
[http://dx.doi.org/10.1016/j.tibs.2010.07.007] [PMID: 20728362]
[60]
Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med., 2018, 54(4), 287-293.
[http://dx.doi.org/10.1016/j.ajme.2017.09.001]
[61]
Dong, Y.; Wang, S.; Zhang, T.; Zhao, X.; Liu, X.; Cao, L.; Chi, Z. Ascorbic acid ameliorates seizures and brain damage in rats through inhibiting autophagy. Brain Res., 2013, 1535, 115-123.
[http://dx.doi.org/10.1016/j.brainres.2013.08.039] [PMID: 23994218]
[62]
Naseer, M.I.; Ullah, N.; Ullah, I.; Koh, P.O.; Lee, H.Y.; Park, M.S.; Kim, M.O. Vitamin C protects against ethanol and PTZ-induced apoptotic neurodegeneration in prenatal rat hippocampal neurons. Synapse, 2011, 65(7), 562-571.
[http://dx.doi.org/10.1002/syn.20875] [PMID: 20963815]
[63]
Robea, M.A.; Jijie, R.; Nicoara, M.; Plavan, G.; Ciobica, A.S.; Solcan, C.; Audira, G.; Hsiao, C.D.; Strungaru, S.A. Vitamin C attenuates oxidative stress and behavioral abnormalities triggered by fipronil and pyriproxyfen insecticide chronic exposure on zebrafish juvenile. Antioxidants, 2020, 9(10), 944.
[http://dx.doi.org/10.3390/antiox9100944] [PMID: 33019596]
[64]
Hsueh, Y.J.; Meir, Y.J.J.; Yeh, L.K.; Wang, T.K.; Huang, C.C.; Lu, T.T.; Cheng, C.M.; Wu, W.C.; Chen, H.C. Topical ascorbic acid ameliorates oxidative stress-induced corneal endothelial damage via suppression of apoptosis and autophagic flux blockage. Cells, 2020, 9(4), 943.
[http://dx.doi.org/10.3390/cells9040943] [PMID: 32290365]
[65]
Chang, B.J.; Jang, B.J.; Son, T.G.; Cho, I.H.; Quan, F.S.; Choe, N.H.; Nahm, S.S.; Lee, J.H. Ascorbic acid ameliorates oxidative damage induced by maternal low-level lead exposure in the hippocampus of rat pups during gestation and lactation. Food Chem. Toxicol., 2012, 50(2), 104-108.
[http://dx.doi.org/10.1016/j.fct.2011.09.043] [PMID: 22056337]
[66]
Parle, M.; Dhingra, D. Ascorbic Acid: A promising memory-enhancer in mice. J. Pharmacol. Sci., 2003, 93(2), 129-135.
[http://dx.doi.org/10.1254/jphs.93.129] [PMID: 14578579]
[67]
Rosales-Corral, S.; Tan, D.X.; Reiter, R.J.; Valdivia-Velázquez, M.; Martínez-Barboza, G.; Pablo Acosta-Martínez, J.; Ortiz, G.G. Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid- β peptide in rat brain: A comparative, in vivo study versus vitamin C and E. J. Pineal Res., 2003, 35(2), 80-84.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00057.x] [PMID: 12887649]
[68]
Ballaz, S.; Morales, I.; Rodríguez, M.; Obeso, J.A. Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons. J. Neurosci. Res., 2013, 91(12), 1609-1617.
[http://dx.doi.org/10.1002/jnr.23276] [PMID: 23996657]
[69]
Lee, K.H.; Kim, U.J.; Cha, M.; Lee, B.H. Chronic treatment of ascorbic acid leads to age-dependent neuroprotection against oxidative injury in hippocampal slice cultures. Int. J. Mol. Sci., 2021, 22(4), 1608.
[http://dx.doi.org/10.3390/ijms22041608] [PMID: 33562628]
[70]
Iqbal, K.; Grundke-Iqbal, I. Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement., 2010, 6(5), 420-424.
[http://dx.doi.org/10.1016/j.jalz.2010.04.006] [PMID: 20813343]
[71]
Feng, Y.; Wang, X. Antioxidant therapies for Alzheimer’s disease. Oxid. Med. Cell. Longev., 2012, 2012, 472932.
[http://dx.doi.org/10.1155/2012/472932]
[72]
Ahmad, A.; Shah, S.A.; Badshah, H.; Kim, M.J.; Ali, T.; Yoon, G.H.; Kim, T.H.; Abid, N.B.; Rehman, S.U.; Khan, S.; Kim, M.O. Neuroprotection by vitamin C against ethanol-induced neuroinflammation associated neurodegeneration in the developing rat brain. CNS Neurol. Disord. Drug Targets, 2016, 15(3), 360-370.
[http://dx.doi.org/10.2174/1871527315666151110130139] [PMID: 26831257]
[73]
Moretti, M.; Fraga, D.B.; Rodrigues, A.L.S. Preventive and therapeutic potential of ascorbic acid in neurodegenerative diseases. CNS Neurosci. Ther., 2017, 23(12), 921-929.
[http://dx.doi.org/10.1111/cns.12767] [PMID: 28980404]
[74]
Alhusaini, A.M.; Fadda, L.M.; Alsharafi, H.; Alshamary, A.F.; Hasan, I.H. L-ascorbic acid and curcumin prevents brain damage induced via lead acetate in rats: Possible mechanisms. Dev. Neurosci., 2022, 44(2), 59-66.
[http://dx.doi.org/10.1159/000521619] [PMID: 34942627]
[75]
Covarrubias-Pinto, A.; Acuña, A.; Beltrán, F.; Torres-Díaz, L.; Castro, M. Old things new view: Ascorbic acid protects the brain in neurodegenerative disorders. Int. J. Mol. Sci., 2015, 16(12), 28194-28217.
[http://dx.doi.org/10.3390/ijms161226095] [PMID: 26633354]
[76]
Jha, M.K.; Jeon, S.; Suk, K. Glia as a link between neuroinflammation and neuropathic pain. Immune Netw., 2012, 12(2), 41-47.
[http://dx.doi.org/10.4110/in.2012.12.2.41] [PMID: 22740789]
[77]
Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42.
[http://dx.doi.org/10.1186/s40035-020-00221-2] [PMID: 33239064]
[78]
Olajide, O.J.; Yawson, E.O.; Gbadamosi, I.T.; Arogundade, T.T.; Lambe, E.; Obasi, K.; Lawal, I.T.; Ibrahim, A.; Ogunrinola, K.Y. Ascorbic acid ameliorates behavioural deficits and neuropathological alterations in rat model of Alzheimer’s disease. Environ. Toxicol. Pharmacol., 2017, 50, 200-211.
[http://dx.doi.org/10.1016/j.etap.2017.02.010] [PMID: 28192749]
[79]
Wang, S.F.; Liu, X.; Ding, M.Y.; Ma, S.; Zhao, J.; Wang, Y.; Li, S. 2-O-β-d-glucopyranosyl- -ascorbic acid, a novel vitamin C derivative from Lycium barbarum, prevents oxidative stress. Redox Biol., 2019, 24, 101173.
[http://dx.doi.org/10.1016/j.redox.2019.101173] [PMID: 30903981]
[80]
Dhingra, D.; Parle, M.; Kulkarni, S.K. Comparative brain cholinesterase-inhibiting activity of Glycyrrhiza glabra, Myristica fragrans, ascorbic acid, and metrifonate in mice. J. Med. Food, 2006, 9(2), 281-283.
[http://dx.doi.org/10.1089/jmf.2006.9.281] [PMID: 16822217]
[81]
Kara, Y.; Doguc, D.K.; Kulac, E.; Gultekin, F. Acetylsalicylic acid and ascorbic acid combination improves cognition; via antioxidant effect or increased expression of NMDARs and nAChRs? Environ. Toxicol. Pharmacol., 2014, 37(3), 916-927.
[http://dx.doi.org/10.1016/j.etap.2014.02.019] [PMID: 24699240]
[82]
Huang, J.; May, J.M. Ascorbic acid protects SH-SY5Y neuroblastoma cells from apoptosis and death induced by β-amyloid. Brain Res., 2006, 1097(1), 52-58.
[http://dx.doi.org/10.1016/j.brainres.2006.04.047] [PMID: 16725131]
[83]
Harrison, F.E.; May, J.M.; McDonald, M.P. Vitamin C deficiency increases basal exploratory activity but decreases scopolamine-induced activity in APP/PSEN1 transgenic mice. Pharmacol. Biochem. Behav., 2010, 94(4), 543-552.
[http://dx.doi.org/10.1016/j.pbb.2009.11.009] [PMID: 19941887]
[84]
Murakami, K.; Murata, N.; Ozawa, Y.; Kinoshita, N.; Irie, K.; Shirasawa, T.; Shimizu, T. Vitamin C restores behavioral deficits and amyloid-β oligomerization without affecting plaque formation in a mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2011, 26(1), 7-18.
[http://dx.doi.org/10.3233/JAD-2011-101971] [PMID: 21558647]
[85]
Kook, S-Y.; Lee, K-M.; Kim, Y.; Cha, M-Y.; Kang, S.; Baik, S.H.; Lee, H.; Park, R.; Mook-Jung, I. High-dose of vitamin C supplementation reduces amyloid plaque burden and ameliorates pathological changes in the brain of 5XFAD mice. Cell Death Dis., 2014, 5(2), e1083.
[http://dx.doi.org/10.1038/cddis.2014.26] [PMID: 24577081]
[86]
Tveden-Nyborg, P.; Johansen, L.K.; Raida, Z.; Villumsen, C.K.; Larsen, J.O.; Lykkesfeldt, J. Vitamin C deficiency in early postnatal life impairs spatial memory and reduces the number of hippocampal neurons in guinea pigs. Am. J. Clin. Nutr., 2009, 90(3), 540-546.
[http://dx.doi.org/10.3945/ajcn.2009.27954] [PMID: 19640959]
[87]
Hansen, S.; Jørgensen, J.; Nyengaard, J.; Lykkesfeldt, J.; Tveden-Nyborg, P. Early life vitamin C deficiency does not alter morphology of hippocampal CA1 pyramidal neurons or markers of synaptic plasticity in a guinea pig model. Nutrients, 2018, 10(6), 749.
[http://dx.doi.org/10.3390/nu10060749] [PMID: 29890692]
[88]
Sangeetha, A.; Mohan, S.K.; Kumaresan, M. Chronic administration of vitamin C increases cognitive function in chronic stress-induced rats. Natl. J. Physiol. Pharm. Pharmacol., 2017, 7(11), 1190-1194.
[89]
Basambombo, L.L.; Carmichael, P.H.; Côté, S.; Laurin, D. Use of vitamin E and C supplements for the prevention of cognitive decline. Ann. Pharmacother., 2017, 51(2), 118-124.
[http://dx.doi.org/10.1177/1060028016673072] [PMID: 27708183]
[90]
Scheff, S.; Price, D.A. Synaptic pathology in Alzheimer’s disease: A review of ultrastructural studies. Neurobiol. Aging, 2003, 24(8), 1029-1046.
[http://dx.doi.org/10.1016/j.neurobiolaging.2003.08.002] [PMID: 14643375]
[91]
Skaper, S.D.; Facci, L.; Zusso, M.; Giusti, P. Synaptic Plasticity, Dementia and Alzheimer Disease. CNS Neurol. Disord. Drug Targets, 2017, 16(3), 220-233.
[http://dx.doi.org/10.2174/1871527316666170113120853] [PMID: 28088900]
[92]
Sattari, S.; Vaezi, G.; Shahidi, S.; Hojati, V.; Komaki, A. Protective effects of oral vitamin c on memory and learning impairment and attenuation of synaptic plasticity induced by intracerebroventricular injection of beta-amyloid peptide in male rats. Res. Sq., 2021, 1, 587881.
[http://dx.doi.org/10.21203/rs.3.rs-587881/v1]
[93]
Heruye, S.H.; Warren, T.J.; Kostansek, J.A., IV; Draves, S.B.; Matthews, S.A.; West, P.J.; Simeone, K.A.; Simeone, T.A. Ascorbic acid reduces neurotransmission, synaptic plasticity, and spontaneous hippocampal rhythms in in vitro slices. Nutrients, 2022, 14(3), 613.
[http://dx.doi.org/10.3390/nu14030613] [PMID: 35276972]
[94]
Craig, A.; Guest, R.; Tran, Y.; Middleton, J. Cognitive impairment and mood states after spinal cord injury. J. Neurotrauma, 2017, 34(6), 1156-1163.
[http://dx.doi.org/10.1089/neu.2016.4632] [PMID: 27717295]
[95]
Chen, C; Yang, Q; Ma, X Synergistic effect of ascorbic acid and taurine in the treatment of a spinal cord injury-induced model in rats. 3 Biotech, 2020, 10, 1-8.
[96]
Adebiyi, O.; Adigun, K.; David-Odewumi, P.; Akindele, U.; Olayemi, F. Gallic and ascorbic acids supplementation alleviate cognitive deficits and neuropathological damage exerted by cadmium chloride in Wistar rats. Sci. Rep., 2022, 12(1), 14426.
[http://dx.doi.org/10.1038/s41598-022-18432-0] [PMID: 36002551]
[97]
Singh, N.K.; Garabadu, D. Quercetin exhibits α7nAChR/Nrf2/HO-1-mediated neuroprotection against STZ-induced mitochondrial toxicity and cognitive impairments in experimental rodents. Neurotox. Res., 2021, 39(6), 1859-1879.
[http://dx.doi.org/10.1007/s12640-021-00410-5] [PMID: 34554409]
[98]
Yamamoto, M.; Kensler, T.W.; Motohashi, H. The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev., 2018, 98(3), 1169-1203.
[http://dx.doi.org/10.1152/physrev.00023.2017] [PMID: 29717933]
[99]
He, F.; Ru, X.; Wen, T. NRF2, a transcription factor for stress response and beyond. Int. J. Mol. Sci., 2020, 21(13), 4777.
[http://dx.doi.org/10.3390/ijms21134777] [PMID: 32640524]
[100]
Jaganjac, M.; Milkovic, L.; Sunjic, S.B.; Zarkovic, N. The NRF2, thioredoxin, and glutathione system in tumorigenesis and anticancer therapies. Antioxidants, 2020, 9(11), 1151.
[http://dx.doi.org/10.3390/antiox9111151] [PMID: 33228209]
[101]
Gan, L.; Johnson, J.A. Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(8), 1208-1218.
[http://dx.doi.org/10.1016/j.bbadis.2013.12.011] [PMID: 24382478]
[102]
Zhang, L.; Ma, Q.; Zhou, Y. Strawberry leaf extract treatment alleviates cognitive impairment by activating Nrf2/HO-1 signaling in rats with streptozotocin-induced diabetes. Front. Aging Neurosci., 2020, 12, 201.
[http://dx.doi.org/10.3389/fnagi.2020.00201] [PMID: 32792939]
[103]
Wu, L.; Xu, W.; Li, H.; Dong, B.; Geng, H.; Jin, J.; Han, D.; Liu, H.; Zhu, X.; Yang, Y.; Xie, S. Vitamin C attenuates oxidative stress, inflammation, and apoptosis induced by acute hypoxia through the Nrf2/Keap1 signaling pathway in gibel carp (Carassiusgibelio). Antioxidants, 2022, 11(5), 935.
[http://dx.doi.org/10.3390/antiox11050935] [PMID: 35624798]
[104]
Majchrzak, D.; Mitter, S.; Elmadfa, I. The effect of ascorbic acid on total antioxidant activity of black and green teas. Food Chem., 2004, 88(3), 447-451.
[http://dx.doi.org/10.1016/j.foodchem.2004.01.058]
[105]
Intra, J.; Kuo, S.M. Physiological levels of tea catechins increase cellular lipid antioxidant activity of vitamin C and vitamin E in human intestinal Caco-2 cells. Chem. Biol. Interact., 2007, 169(2), 91-99.
[http://dx.doi.org/10.1016/j.cbi.2007.05.007] [PMID: 17603031]
[106]
Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med., 2011, 51(5), 1000-1013.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.017] [PMID: 21664268]
[107]
Zhao, Y.; Pan, Y.; Tang, M.; Lin, W. Blocking p38 signaling reduces the activation of pro-inflammatory cytokines and the phosphorylation of p38 in the habenula and reverses depressive-like behaviors induced by neuroinflammation. Front. Pharmacol., 2018, 9, 511.
[http://dx.doi.org/10.3389/fphar.2018.00511] [PMID: 29867510]
[108]
Zhang, X.Y.; Xu, Z.P.; Wang, W.; Cao, J.B.; Fu, Q.; Zhao, W.X.; Li, Y.; Huo, X.L.; Zhang, L.M.; Li, Y.F.; Mi, W.D. Vitamin C alleviates LPS-induced cognitive impairment in mice by suppressing neuroinflammation and oxidative stress. Int. Immunopharmacol., 2018, 65, 438-447.
[http://dx.doi.org/10.1016/j.intimp.2018.10.020] [PMID: 30388518]
[109]
Moretti, M.; Budni, J.; Freitas, A.E.; Neis, V.B.; Ribeiro, C.M.; de Oliveira Balen, G.; Rieger, D.K.; Leal, R.B.; Rodrigues, A.L.S. TNF-α-induced depressive-like phenotype and p38MAPK activation are abolished by ascorbic acid treatment. Eur. Neuropsychopharmacol., 2015, 25(6), 902-912.
[http://dx.doi.org/10.1016/j.euroneuro.2015.03.006] [PMID: 25836357]
[110]
Radi, A.M.; Mohammed, E.T.; Abushouk, A.I.; Aleya, L.; Abdel-Daim, M.M. The effects of abamectin on oxidative stress and gene expression in rat liver and brain tissues: Modulation by sesame oil and ascorbic acid. Sci. Total Environ., 2020, 701, 134882.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134882] [PMID: 31739238]
[111]
Xiao, Y.; Su, C.; Zhang, G.; Liang, L.; Jin, T.; Bradley, J.; Ornato, J.P.; Tang, W.; Vitamin, C. Vitamin C improves the outcomes of cardiopulmonary resuscitation and alters shedding of syndecan-1 and p38/MAPK phosphorylation in a rat model. J. Am. Heart Assoc., 2022, 11(7), e023787.
[http://dx.doi.org/10.1161/JAHA.121.023787] [PMID: 35289183]
[112]
Cárcamo, J.M.; Pedraza, A.; Bórquez-Ojeda, O.; Golde, D.W. Vitamin C suppresses TNF alpha-induced NF kappa B activation by inhibiting I kappa B alpha phosphorylation. Biochemistry, 2002, 41(43), 12995-13002.
[http://dx.doi.org/10.1021/bi0263210] [PMID: 12390026]
[113]
Cárcamo, J.M.; Pedraza, A.; Bórquez-Ojeda, O.; Zhang, B.; Sanchez, R.; Golde, D.W. Vitamin C is a kinase inhibitor: Dehydroascorbic acid inhibits IkappaBalpha kinase β. Mol. Cell. Biol., 2004, 24(15), 6645-6652.
[http://dx.doi.org/10.1128/MCB.24.15.6645-6652.2004] [PMID: 15254232]
[114]
Dang, W. The controversial world of sirtuins. Drug Discov. Today. Technol., 2014, 12, e9-e17.
[http://dx.doi.org/10.1016/j.ddtec.2012.08.003] [PMID: 25027380]
[115]
Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxid. Med. Cell. Longev., 2016, 12016, 2986796.
[http://dx.doi.org/10.1155/2016/2986796]
[116]
Wei, W.; Li, L.; Zhang, Y. Geriletu; Yang, J.; Zhang, Y.; Xing, Y. Vitamin C protected human retinal pigmented epithelium from oxidant injury depending on regulating SIRT1. ScientificWorldJournal, 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/750634] [PMID: 25147862]
[117]
Nam, S.; Seo, M.; Seo, J.S.; Rhim, H.; Nahm, S.S.; Cho, I.H.; Chang, B.J.; Kim, H.J.; Choi, S.H.; Nah, S.Y. Ascorbic acid mitigates D-galactose-induced brain aging by increasing hippocampal neurogenesis and improving memory function. Nutrients, 2019, 11(1), 176.
[http://dx.doi.org/10.3390/nu11010176] [PMID: 30650605]
[118]
Martin, A.; Joseph, J.A.; Cuervo, A.M. Stimulatory effect of vitamin C on autophagy in glial cells. J. Neurochem., 2002, 82(3), 538-549.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00978.x] [PMID: 12153478]
[119]
Chen, Y.; Luo, G.; Yuan, J.; Wang, Y.; Yang, X.; Wang, X.; Li, G.; Liu, Z.; Zhong, N. Vitamin C mitigates oxidative stress and tumor necrosis factor-alpha in severe community-acquired pneumonia and LPS-induced macrophages. Mediators Inflamm., 2014, 2014, 426740.
[120]
Huang, Y.N.; Yang, L.Y.; Wang, J.Y.; Lai, C.C.; Chiu, C.T.; Wang, J.Y. L-Ascorbate protects against methamphetamine-induced neurotoxicity of cortical cells via inhibiting oxidative stress, autophagy, and apoptosis. Mol. Neurobiol., 2017, 54(1), 125-136.
[http://dx.doi.org/10.1007/s12035-015-9561-z] [PMID: 26732595]
[121]
Morris, M.C.; Evans, D.A.; Tangney, C.C.; Bienias, J.L.; Wilson, R.S.; Aggarwal, N.T.; Scherr, P.A. Relation of the tocopherol forms to incident Alzheimer disease and to cognitive change. Am. J. Clin. Nutr., 2005, 81(2), 508-514.
[http://dx.doi.org/10.1093/ajcn.81.2.508] [PMID: 15699242]
[122]
Arlt, S.; Müller-Thomsen, T.; Beisiegel, U.; Kontush, A. Effect of one-year vitamin C- and E-supplementation on cerebrospinal fluid oxidation parameters and clinical course in Alzheimer’s disease. Neurochem. Res., 2012, 37(12), 2706-2714.
[http://dx.doi.org/10.1007/s11064-012-0860-8] [PMID: 22878647]
[123]
Galasko, D.R.; Peskind, E.; Clark, C.M.; Quinn, J.F.; Ringman, J.M.; Jicha, G.A.; Cotman, C.; Cottrell, B.; Montine, T.J.; Thomas, R.G.; Aisen, P. Antioxidants for Alzheimer disease: A randomized clinical trial with cerebrospinal fluid biomarker measures. Arch. Neurol., 2012, 69(7), 836-841.
[http://dx.doi.org/10.1001/archneurol.2012.85] [PMID: 22431837]
[124]
Ulstein, I.; Bøhmer, T. Normal vitamin levels and nutritional indices in Alzheimer’s disease patients with mild cognitive impairment or dementia with normal body mass indexes. J. Alzheimers Dis., 2016, 55(2), 717-725.
[http://dx.doi.org/10.3233/JAD-160393] [PMID: 27716664]
[125]
Polidori, M.; Nelles, G. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease - challenges and perspectives. Curr. Pharm. Des., 2014, 20(18), 3083-3092.
[http://dx.doi.org/10.2174/13816128113196660706] [PMID: 24079767]
[126]
Li, Y.; Liu, S.; Man, Y.; Li, N.; Zhou, Y. Effects of vitamins E and C combined with β-carotene on cognitive function in the elderly. Exp. Ther. Med., 2015, 9(4), 1489-1493.
[http://dx.doi.org/10.3892/etm.2015.2274] [PMID: 25780457]
[127]
Travica, N.; Ried, K.; Sali, A.; Hudson, I.; Scholey, A.; Pipingas, A. Plasma vitamin C concentrations and cognitive function: A cross-sectional study. Front. Aging Neurosci., 2019, 11, 72.
[http://dx.doi.org/10.3389/fnagi.2019.00072] [PMID: 31001107]
[128]
Khodaie, M.; Alibeigi, N.; Mirzaei, V.G. The effect of Ascorbic Acid as supplementary treatment with risperidone in controlling the symptoms of schizophrenia: A double-blind, placebo-controlled clinical trial. J Basic Clin Pathophysiol., 2019, 7(1), 7-14.
[129]
Sharma, Y.; Popescu, A.; Horwood, C.; Hakendorf, P.; Thompson, C. Relationship between vitamin C deficiency and cognitive impairment in older hospitalised patients: A cross-sectional study. Antioxidants, 2022, 11(3), 463.
[http://dx.doi.org/10.3390/antiox11030463] [PMID: 35326113]
[130]
Sim, M.; Hong, S.; Jung, S.; Kim, J.S.; Goo, Y.T.; Chun, W.Y.; Shin, D.M. Vitamin C supplementation promotes mental vitality in healthy young adults: Results from a cross-sectional analysis and a randomized, double-blind, placebo-controlled trial. Eur. J. Nutr., 2022, 61(1), 447-459.
[http://dx.doi.org/10.1007/s00394-021-02656-3] [PMID: 34476568]
[131]
Lanyau-Domínguez, Y.; Macías-Matos, C.; Jesús, J.; María, G.; Suárez-Medina, R.; Eugenia, M.; Noriega-Fernández, L.; Guerra-Hernández, M.; Calvo-Rodríguez, M.; Sánchez-Gil, Y.; García-Klibanski, M.; Herrera-Javier, D.; Arocha-Oriol, C.; Díaz-Domínguez, M. Levels of vitamins and homocysteine in older adults with Alzheimer disease or mild cognitive impairment in Cuba. MEDICC Rev., 2020, 22(4), 40-47.
[http://dx.doi.org/10.37757/MR2020.V22.N4.14] [PMID: 33295319]
[132]
Uabundit, N.; Wattanathorn, J.; Mucimapura, S.; Ingkaninan, K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J. Ethnopharmacol., 2010, 127(1), 26-31.
[http://dx.doi.org/10.1016/j.jep.2009.09.056] [PMID: 19808086]
[133]
Akter, F.; Haque, M.; Islam, J.; Rahaman, A.; Bhowmick, S.; Hossain, S. Chronic administration of Curcuma longa extract improves spatial memory-related learning ability in aged rats by inhibiting brain cortico-hippocampal oxidative stress and TNFα. Adv. Alzheimer Dis., 2015, 4(3), 78-89.
[http://dx.doi.org/10.4236/aad.2015.43008]
[134]
Lee, J.; Torosyan, N.; Silverman, D.H. Examining the impact of grape consumption on brain metabolism and cognitive function in patients with mild decline in cognition: A double-blinded placebo controlled pilot study. Exp. Gerontol., 2017, 87(Pt A), 121-128.
[http://dx.doi.org/10.1016/j.exger.2016.10.004] [PMID: 27856335]
[135]
Alaei, H.; Pilehvarian, A.A.; Siahmard, Z.; Reisi, P. The effect of red grape juice on Alzheimer′s disease in rats. Adv. Biomed. Res., 2012, 1(1), 63.
[http://dx.doi.org/10.4103/2277-9175.100188] [PMID: 23326794]
[136]
Najwa, F.R.; Azrina, A. Comparison of vitamin C content in citrus fruits by titration and high performance liquid chromatography (HPLC) methods. Int. Food Res. J., 2017, 24(2), 726.
[137]
Semwal, B.C.; Verma, M.; Murti, Y.; Yadav, H.N. Neuroprotective activity of Sesbania grandifolara seeds extract against celecoxib induced amnesia in mice. Pharmacogn. J., 2018, 10(4), 747-752.
[http://dx.doi.org/10.5530/pj.2018.4.125]
[138]
Abu Almaaty, A.H.; Mosaad, R.M.; Hassan, M.K.; Ali, E.H.A.; Mahmoud, G.A.; Ahmed, H.; Anber, N.; Alkahtani, S.; Abdel-Daim, M.M.; Aleya, L.; Hammad, S. Urtica dioica extracts abolish scopolamine-induced neuropathies in rats. Environ. Sci. Pollut. Res. Int., 2021, 28(14), 18134-18145.
[http://dx.doi.org/10.1007/s11356-020-12025-y] [PMID: 33405105]
[139]
Jayachitra, A.; Padma, P.R. Non-enzymic antioxidant activity of Clitoria ternatea leaf extracts in vitro. Biosci. Biotechnol. Res. Asia, 2016, 7(1), 209-218.
[140]
Damodaran, T.; Tan, B.W.L.; Liao, P.; Ramanathan, S.; Lim, G.K.; Hassan, Z. Clitoria ternatea L. root extract ameliorated the cognitive and hippocampal long-term potentiation deficits induced by chronic cerebral hypoperfusion in the rat. J. Ethnopharmacol., 2018, 224, 381-390.
[http://dx.doi.org/10.1016/j.jep.2018.06.020] [PMID: 29920356]
[141]
Tan, M.A.; Sharma, N.; An, S.S.A. Multi-target approach of Murraya koenigii leaves in treating neurodegenerative diseases. Pharmaceuticals (Basel), 2022, 15(2), 188.
[http://dx.doi.org/10.3390/ph15020188] [PMID: 35215300]
[142]
Valšíková, M.; Mezeyová, I.; Rehuš, M.; Šlosár, M. Changes of vitamin C content in celery and parsley herb after processing. Potravinárstvo, 2016.
[143]
Chonpathompikunlert, P.; Boonruamkaew, P.; Sukketsiri, W.; Hutamekalin, P.; Sroyraya, M. The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Complement. Altern. Med., 2018, 18(1), 103.
[http://dx.doi.org/10.1186/s12906-018-2166-0] [PMID: 29558946]
[144]
Ahmad, L.; Mujahid, M.; Mishra, A.; Rahman, M.A. Protective role of hydroalcoholic extract of Cajanus cajan Linn leaves against memory impairment in sleep deprived experimental rats. J. Ayurveda Integr. Med., 2020, 11(4), 471-477.
[http://dx.doi.org/10.1016/j.jaim.2018.08.003] [PMID: 30661946]
[145]
Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem., 2007, 103(4), 1380-1384.
[http://dx.doi.org/10.1016/j.foodchem.2006.10.054]
[146]
Kaewkaen, P.; Tong-un, T.; Wattanathorn, J.; Muchimapura, S.; Kaewrueng, W.; Wongcharoenwanakit, S. Mulberry fruit extract protects against memory impairment and hippocampal damage in animal model of vascular dementia. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-9.
[http://dx.doi.org/10.1155/2012/263520] [PMID: 22952555]
[147]
Sadeghi-Aliabadi, H.; Momtazi-borojeni, A.A.; Rabbani, M.; Ghannadi, A.; Abdollahi, E. Cognitive enhancing of pineapple extract and juice in scopolamine-induced amnesia in mice. Res. Pharm. Sci., 2017, 12(3), 257-264.
[http://dx.doi.org/10.4103/1735-5362.207198] [PMID: 28626484]
[148]
Sarkar, T.; Salauddin, M.; Hazra, S.K.; Chakraborty, R. The impact of raw and differently dried pineapple (Ananas comosus) fortification on the vitamins, organic acid and carotene profile of dairy rasgulla (sweetened cheese ball). Heliyon, 2020, 6(10), e05233.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05233] [PMID: 33102856]
[149]
Santana, L.F.; Inada, A.C.; Espirito Santo, B.L.S.; Filiú, W.F.O.; Pott, A.; Alves, F.M.; Guimarães, R.C.A.; Freitas, K.C.; Hiane, P.A. Nutraceutical potential of Carica papaya in metabolic syndrome. Nutrients, 2019, 11(7), 1608.
[http://dx.doi.org/10.3390/nu11071608] [PMID: 31315213]
[150]
Bindhu, K.H.; Vijayalakshmi, A. Neuroprotective effect of Carica papaya leaf extract against aluminium toxicity: An experimental study on cognitive dysfunction and biochemical alterations in rats. Indian J Pharmaceut Edu Res, 2019, 53(3s), s392-s398.
[http://dx.doi.org/10.5530/ijper.53.3s.111]
[151]
Chiteva, R.; Wairagu, N. Chemical and nutritional content of Opuntiaficus-indica (L.). Afr. J. Biotechnol., 2013, 12(21)
[152]
Han, E.H.; Lim, M.K.; Lee, S.; Lee, S.H.; Yun, S.M.; Yu, H.J.; Ryu, S.H.; Lim, Y.H. Efficacy of ethanolic extract of Opuntiaficus-indica var. saboten stems for improving cognitive function in elderly subjects 55–85 years of age: A randomized, double-blind, placebo-controlled study. J. Med. Food, 2020, 23(11), 1146-1154.
[http://dx.doi.org/10.1089/jmf.2019.4678] [PMID: 33006504]
[153]
Jang, H.; Srichayet, P.; Park, W.J.; Heo, H.J.; Kim, D.O.; Tongchitpakdee, S.; Kim, T.J.; Jung, S.H.; Lee, C.Y. Phyllanthus emblica L. (Indian gooseberry) extracts protect against retinal degeneration in a mouse model of amyloid beta-induced Alzheimer’s disease. J. Funct. Foods, 2017, 37, 330-338.
[http://dx.doi.org/10.1016/j.jff.2017.07.056]
[154]
Kandeda, A.K.; Nguedia, D.; Ayissi, E.R.; Kouamouo, J.; Dimo, T. Ziziphus jujuba (rhamnaceae) alleviates working memory impairment and restores neurochemical alterations in the prefrontal cortex of D-galactose-treated rats. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/6610864] [PMID: 34194520]
[155]
Otong, E.S.; Musa, S.A.; Danborno, B.; Sambo, S.J. Adansoniadigitata ameliorates lead-induced memory impairments in rats by reducing glutamate concentration and oxidative stress. Egypt J Basic Appl Sci., 2022, 9(1), 1-0.
[156]
Azevêdo, J.C.S.; Borges, K.C.; Genovese, M.I.; Correia, R.T.P.; Vattem, D.A. Neuroprotective effects of dried camu-camu (Myrciaria dubia HBK McVaugh) residue in C. elegans. Food Res. Int., 2015, 73, 135-141.
[http://dx.doi.org/10.1016/j.foodres.2015.02.015]
[157]
Li, H.; Lei, T.; Zhang, J.; Yan, Y.; Wang, N.; Song, C.; Li, C.; Sun, M.; Li, J.; Guo, Y.; Yang, J.; Kang, T. Longan (Dimocarpus longan Lour.) Aril ameliorates cognitive impairment in AD mice induced by combination of D-gal/AlCl3 and an irregular diet via RAS/MEK/ERK signaling pathway. J. Ethnopharmacol., 2021, 267, 113612.
[http://dx.doi.org/10.1016/j.jep.2020.113612] [PMID: 33249246]
[158]
Zhang, S.; Yu, Z.; Sun, L.; Ren, H.; Zheng, X.; Liang, S.; Qi, X. An overview of the nutritional value, health properties, and future challenges of Chinese bayberry. PeerJ, 2022, 10, e13070.
[http://dx.doi.org/10.7717/peerj.13070] [PMID: 35265403]
[159]
Cho, C.H.; Jung, Y.S.; Kim, J.M.; Nam, T.G.; Lee, S.H.; Cho, H.S.; Song, M.C.; Heo, H.J.; Kim, D.O. Neuroprotective effects of Actinidia eriantha cv. Bidan kiwifruit on amyloid beta-induced neuronal damages in PC-12 cells and ICR mice. J. Funct. Foods, 2021, 79, 104398.
[http://dx.doi.org/10.1016/j.jff.2021.104398]
[160]
Jones, J.R.; Lebar, M.D.; Jinwal, U.K.; Abisambra, J.F.; Koren, J., III; Blair, L.; O’Leary, J.C.; Davey, Z.; Trotter, J.; Johnson, A.G.; Weeber, E.; Eckman, C.B.; Baker, B.J.; Dickey, C.A. The diarylheptanoid (+)-aR,11S-myricanol and two flavones from bayberry (Myrica cerifera) destabilize the microtubule-associated protein tau. J. Nat. Prod., 2011, 74(1), 38-44.
[http://dx.doi.org/10.1021/np100572z] [PMID: 21141876]
[161]
Sato, A.; Tagai, N.; Ogino, Y.; Uozumi, H.; Kawakami, S.; Yamamoto, T.; Tanuma, S.; Maruki-Uchida, H.; Mori, S.; Morita, M. Passion fruit seed extract protects beta-amyloid-induced neuronal cell death in a differentiated human neuroblastoma SH‐SY5Y cell model. Food Sci. Nutr., 2022, 10(5), 1461-1468.
[http://dx.doi.org/10.1002/fsn3.2757] [PMID: 35592293]
[162]
Temviriyanukul, P.; Kittibunchakul, S.; Trisonthi, P.; Kunkeaw, T.; Inthachat, W.; Siriwan, D.; Suttisansanee, U. Mangifera indica ‘Namdokmai’ prevents neuronal cells from amyloid peptide toxicity and inhibits BACE-1 activities in a Drosophila model of Alzheimer’s amyloidosis. Pharmaceuticals (Basel), 2022, 15(5), 591.
[http://dx.doi.org/10.3390/ph15050591] [PMID: 35631418]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy