Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

The Role of Monosodium Glutamate (MSG) in Epilepsy and other Neurodegenerative Diseases: Phytochemical-based Therapeutic Approa-ches and Mechanisms

Author(s): Mansi Singh and Siva Prasad Panda*

Volume 25, Issue 2, 2024

Published on: 09 August, 2023

Page: [213 - 229] Pages: 17

DOI: 10.2174/1389201024666230726161314

Price: $65

conference banner
Abstract

Epilepsy is a common neurological disease affecting 50 million individuals worldwide, and some forms of epilepsy do not respond to available treatments. Overactivation of the glutamate pathway and excessive entrance of calcium ions into neurons are proposed as the biochemical mechanisms behind epileptic seizures. However, the overactivation of neurons has also been associated with other neurodegenerative diseases (NDDs), such as Alzheimer's, Parkinson's, Huntington's, and multiple sclerosis. The most widely used food ingredient, monosodium glutamate (MSG), increases the level of free glutamate in the brain, putting humans at risk for NDDs and epilepsy. Glutamate is a key neurotransmitter that activates nerve cells. MSG acts on glutamate receptors, specifically NMDA and AMPA receptors, leading to an imbalance between excitatory glutamate and inhibitory GABA neurotransmission. This imbalance can cause hyperexcitability of neurons and lead to epileptic seizures. Overuse of MSG causes neuronal cells to become overexcited, which in turn leads to an increase in the flow of Ca2+ and Na+ ions, mutations, and upregulation in the enzymes superoxide dismutase 1 (SOD-1) and TDP43, all of which contribute to the development of NDDs. While TDP43 and SOD-1 protect cells from damage, a mutation in their genes makes the proteins unprotective and cause neurodegeneration. Yet to what extent mutant SOD1 and TDP43 aggregates contribute to neurotoxicity is generally unknown. This study is focused on neuroprotective herbal medications that can pass the blood-brain barrier and cure MSGinduced NDDs and the factors that influence MSG-induced glutaminergic, astrocyte, and GABAergic neuron abnormalities causing neurodegeneration.

Graphical Abstract

[1]
Zanfirescu, A.; Ungurianu, A.; Tsatsakis, A.M. Nițulescu, G.M.; Kouretas, D.; Veskoukis, A.; Tsoukalas, D.; Engin, A.B.; Aschner, M.; Margină D. A review of the alleged health hazards of monosodium glutamate. Compr. Rev. Food Sci. Food Saf., 2019, 18(4), 1111-1134.
[http://dx.doi.org/10.1111/1541-4337.12448] [PMID: 31920467]
[2]
Lau, A.; Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch., 2010, 460(2), 525-542.
[http://dx.doi.org/10.1007/s00424-010-0809-1] [PMID: 20229265]
[3]
Beyreuther, K.; Biesalski, H.K.; Fernstrom, J.D.; Grimm, P.; Hammes, W.P.; Heinemann, U.; Kempski, O.; Stehle, P.; Steinhart, H.; Walker, R. Consensus meeting: Monosodium glutamate - An update. Eur. J. Clin. Nutr., 2007, 61(3), 304-313.
[http://dx.doi.org/10.1038/sj.ejcn.1602526] [PMID: 16957679]
[4]
Magerowski, G.; Giacona, G.; Patriarca, L.; Papadopoulos, K.; Garza-Naveda, P.; Radziejowska, J.; Alonso-Alonso, M. Neurocognitive effects of umami: Association with eating behavior and food choice. Neuropsychopharmacology, 2018, 43(10), 2009-2016.
[http://dx.doi.org/10.1038/s41386-018-0044-6]
[5]
Armstrong, W.R.; Gafita, A.; Zhu, S.; Thin, P.; Nguyen, K.; Alano, R.; Lira, S.; Booker, K.; Gardner, L.; Grogan, T.; Elashoff, D.; Allen-Auerbach, M.; Dahlbom, M.; Czernin, J.; Calais, J. The impact of monosodium glutamate on 68 Ga-PSMA-11 biodistribution in men with prostate cancer: A prospective randomized, controlled imaging study. J. Nucl. Med., 2021, 62(9), 1244-1251.
[http://dx.doi.org/10.2967/jnumed.120.257931] [PMID: 33509974]
[6]
Ohgomori, T.; Yamasaki, R.; Takeuchi, H.; Kadomatsu, K.; Kira, J.; Jinno, S. Differential involvement of vesicular and glial glutamate transporters around spinal α-motoneurons in the pathogenesis of SOD1G93A mouse model of amyotrophic lateral sclerosis. Neuroscience, 2017, 356, 114-124.
[http://dx.doi.org/10.1016/j.neuroscience.2017.05.014] [PMID: 28526579]
[7]
Farhat, F.; Nofal, S.; Raafat, E.M.; Ali, A.; Ahmed, E. Monosodium glutamate safety, neurotoxicity and some recent studies. Al-Azhar. J. Pharm. Sci., 2021, 64(2), 222-243.
[http://dx.doi.org/10.21608/ajps.2021.187828]
[8]
Kazmi, Z.; Fatima, I.; Perveen, S.; Malik, S.S. Monosodium glutamate: Review on clinical reports. Int. J. Food Prop., 2017, 20(S2), 1807-1815.
[http://dx.doi.org/10.1080/10942912.2017.1295260]
[9]
Hajihasani, M.M.; Soheili, V.; Zirak, M.R.; Sahebkar, A.; Shakeri, A. Natural products as safeguards against monosodium glutamate-induced toxicity. Iran. J. Basic Med. Sci., 2020, 23(4), 416-430.
[http://dx.doi.org/10.22038/IJBMS.2020.43060.10123] [PMID: 32489556]
[10]
Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[11]
Kirchgessner, A. Glutamate in the enteric nervous system. Curr. Opin. Pharmacol., 2001, 1(6), 591-596.
[http://dx.doi.org/10.1016/S1471-4892(01)00101-1] [PMID: 11757814]
[12]
Gudiño-Cabrera, G.; Ureña-Guerrero, M.E.; Rivera-Cervantes, M.C.; Feria-Velasco, A.I.; Beas-Zárate, C. Excitotoxicity triggered by neonatal monosodium glutamate treatment and blood-brain barrier function. Arch. Med. Res., 2014, 45(8), 653-659.
[http://dx.doi.org/10.1016/j.arcmed.2014.11.014] [PMID: 25431840]
[13]
Chakraborty, S.P. Patho-physiological and toxicological aspects of monosodium glutamate. Toxicol. Mech. Methods, 2019, 29(6), 389-396.
[http://dx.doi.org/10.1080/15376516.2018.1528649] [PMID: 30273089]
[14]
Shi, Z.; Yuan, B.; Taylor, A.W.; Dai, Y.; Pan, X.; Gill, T.K.; Wittert, G.A. Monosodium glutamate is related to a higher increase in blood pressure over 5 years: Findings from the Jiangsu Nutrition Study of Chinese adults. J. Hypertens., 2011, 29(5), 846-853.
[http://dx.doi.org/10.1097/HJH.0b013e328344da8e] [PMID: 21372742]
[15]
Hawkins, R.A. The blood-brain barrier and glutamate. Am. J. Clin. Nutr., 2009, 90(3), 867S-874S.
[http://dx.doi.org/10.3945/ajcn.2009.27462BB] [PMID: 19571220]
[16]
Mostafa, R. E.; Hassan, A.; Salama, A. Thymol mitigates monosodium glutamate-induced neurotoxic cerebral and hippocampal injury in rats through overexpression of nuclear erythroid 2-related factor 2 signaling pathway as well as altering nuclear factor-kappa b and glial fibrillary acidic protein expression. Open Access Maced. J. Med. Sci., 2021, 9(A), 716-2.
[http://dx.doi.org/10.3889/oamjms.2021.6170]
[17]
Desoky, S.; Abdel-Fattah, A.-R.; Mazen, N. Study of the toxic effectsof monosodium glutamate on the central nervous system.
[18]
Bawaskar, H.; Bawaskar, P.; Bawaskar, P. Chinese restaurant syndrome. Indian J. Crit. Care Med., 2017, 21(1), 49-50.
[http://dx.doi.org/10.4103/0972-5229.198327] [PMID: 28197052]
[19]
Fernstrom, J.D. Monosodium glutamate in the diet does not raise brain glutamate concentrations or disrupt brain functions. Ann. Nutr. Metab., 2018, 73(S5), 43-52.
[http://dx.doi.org/10.1159/000494782]
[20]
Torrezan, R.; Malta, A.; Rodrigues, W.N.; dos Santos, A.A.A.; Miranda, R.A.; Moura, E.G.; Lisboa, P.C.; Mathias, P.C. Monosodium L -glutamate‐obesity onset is associated with disruption of central control of the hypothalamic-pituitary-adrenal axis and autonomic nervous system. J. Neuroendocrinol., 2019, 31(6), e12717.
[http://dx.doi.org/10.1111/jne.12717] [PMID: 30929305]
[21]
Onaolapo, A.Y.; Onaolapo, O.J. Dietary glutamate and the brain: In the footprints of a Jekyll and Hyde molecule. Neurotoxicology, 2020, 80, 93-104.
[http://dx.doi.org/10.1016/j.neuro.2020.07.001] [PMID: 32687843]
[22]
Miśkowiak, B.; Partyka, M. Neonatal treatment with monosodium glutamate (MSG): Structure of the TSH-immunoreactive pituitary cells. Histol. Histopathol., 2000, 15(2), 415-419.
[http://dx.doi.org/10.14670/HH-15.415] [PMID: 10809359]
[23]
Mattson, M.P. Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann. N. Y. Acad. Sci., 2008, 1144(1), 97-112.
[http://dx.doi.org/10.1196/annals.1418.005] [PMID: 19076369]
[24]
Soares, T.S.; Andreolla, A.P.; Miranda, C.A.; Klöppel, E.; Rodrigues, L.S.; Moraes-Souza, R.Q.; Damasceno, D.C.; Volpato, G.T.; Campos, K.E. Effect of the induction of transgenerational obesity on maternal-fetal parameters. Syst Biol Reprod Med, 2018, 64(1), 51-59.
[http://dx.doi.org/10.1080/19396368.2017.1410866] [PMID: 29227690]
[25]
Martínez-Contreras, A.; Huerta, M.; Lopez-Perez, S.; García-Estrada, J.; Luquín, S.; Beas Zárate, C. Astrocytic and microglia cells reactivity induced by neonatal administration of glutamate in cerebral cortex of the adult rats. J. Neurosci. Res., 2002, 67(2), 200-210.
[http://dx.doi.org/10.1002/jnr.10093] [PMID: 11782964]
[26]
Jenner, P.; Dexter, D.T.; Sian, J.; Schapira, A.H.V.; Marsden, C.D. Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental lewy body disease. Ann. Neurol., 1992, 32(S1), S82-S87.
[http://dx.doi.org/10.1002/ana.410320714] [PMID: 1510385]
[27]
Andersen, J.V.; Markussen, K.H.; Jakobsen, E.; Schousboe, A.; Waagepetersen, H.S.; Rosenberg, P.A.; Aldana, B.I. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology, 2021, 196, 108719.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108719] [PMID: 34273389]
[28]
He, K.; Zhao, L.; Daviglus, M.L.; Dyer, A.R.; Van Horn, L.; Garside, D.; Zhu, L.; Guo, D.; Wu, Y.; Zhou, B.; Stamler, J. Association of monosodium glutamate intake with overweight in Chinese adults: The INTERMAP Study. Obesity, 2008, 16(8), 1875-1880.
[http://dx.doi.org/10.1038/oby.2008.274] [PMID: 18497735]
[29]
Farombi, E.O.; Onyema, O.O. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: Modulatory role of vitamin C, vitamin E and quercetin. Hum. Exp. Toxicol., 2006, 25(5), 251-259.
[http://dx.doi.org/10.1191/0960327106ht621oa] [PMID: 16758767]
[30]
Ureña-Guerrero, M.E.; Orozco-Suárez, S.; López-Pérez, S.J.; Flores-Soto, M.E.; Beas-Zárate, C. Excitotoxic neonatal damage induced by monosodium glutamate reduces several GABAergic markers in the cerebral cortex and hippocampus in adulthood. Int. J. Dev. Neurosci., 2009, 27(8), 845-855.
[http://dx.doi.org/10.1016/j.ijdevneu.2009.07.011] [PMID: 19733649]
[31]
Rosa, S.G.; Quines, C.B.; Stangherlin, E.C.; Nogueira, C.W. Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters. Physiol. Behav., 2016, 155, 1-8.
[http://dx.doi.org/10.1016/j.physbeh.2015.11.038] [PMID: 26657020]
[32]
Bolaños, J.P.; Almeida, A.; Stewart, V.; Peuchen, S.; Land, J.M.; Clark, J.B.; Heales, S.J.R. Nitric oxide-mediated mitochondrial damage in the brain: Mechanisms and implications for neurodegenerative diseases. J. Neurochem., 1997, 68(6), 2227-2240.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68062227.x] [PMID: 9166714]
[33]
Benbow, T.; Ekbatan, M.R.; Wang, G.H.Y.; Teja, F.; Exposto, F.G.; Svensson, P.; Cairns, B.E. Systemic administration of monosodium glutamate induces sexually dimorphic headache- and nausea-like behaviours in rats. Pain, 2022, 163(9), 1838-1853.
[http://dx.doi.org/10.1097/j.pain.0000000000002592] [PMID: 35404557]
[34]
Kumar, P.; Kraal, A.Z.; Prawdzik, A.M.; Ringold, A.E.; Ellingrod, V. Dietary glutamic acid, obesity, and depressive symptoms in patients with schizophrenia. Front. Psychiatry, 2021, 11, 620097.
[http://dx.doi.org/10.3389/fpsyt.2020.620097] [PMID: 33551881]
[35]
Vitor-de-Lima, S.M.; Medeiros, L.B.; Benevides, R.D.L.; dos Santos, C.N.; Lima da Silva, N.O.; Guedes, R.C.A. Monosodium glutamate and treadmill exercise: Anxiety-like behavior and spreading depression features in young adult rats. Nutr. Neurosci., 2019, 22(6), 435-443.
[http://dx.doi.org/10.1080/1028415X.2017.1398301] [PMID: 29125056]
[36]
Biney, R.P.; Djankpa, F.T.; Osei, S.A.; Egbenya, D.L.; Aboagye, B.; Karikari, A.A.; Ussif, A.; Wiafe, G.A.; Nuertey, D. Effects of in utero exposure to monosodium glutamate on locomotion, anxiety, depression, memory and KCC2 expression in offspring. Int. J. Dev. Neurosci., 2022, 82(1), 50-62.
[http://dx.doi.org/10.1002/jdn.10158] [PMID: 34755371]
[37]
Bahadoran, Z.; Mirmiran, P.; Ghasemi, A. Monosodium glutamate (MSG)-Induced animal model of Type 2 diabetes. Methods Mol. Biol., 2019, 1916, 49-65.
[http://dx.doi.org/10.1007/978-1-4939-8994-2_3]
[38]
Fuchsberger, T.; Yuste, R.; Martinez-Bellver, S.; Blanco-Gandia, M.C.; Torres-Cuevas, I.; Blasco-Serra, A.; Arango, R.; Miñarro, J.; Rodríguez-Arias, M.; Teruel-Marti, V.; Lloret, A.; Viña, J. Oral monosodium glutamate administration causes early onset of alzheimer’s disease-like pathophysiology in APP/PS1 mice. J. Alzheimers Dis., 2019, 72(3), 957-975.
[http://dx.doi.org/10.3233/JAD-190274] [PMID: 31658055]
[39]
Demirkapu, M.J. Yananlı H.R.; Akşahin, E.; Karabiber, C.; Günay, P.; Kekilli, A.; Topkara, B. The effect of oral administration of monosodium glutamate on epileptogenesis in infant rats. Epileptic Disord., 2020, 22(2), 195-201.
[http://dx.doi.org/10.1684/epd.2020.1156] [PMID: 32310135]
[40]
Kumar, M.; Kumar, A.; Sindhu, R.K.; Kushwah, A.S. Arbutin attenuates monosodium L-glutamate induced neurotoxicity and cognitive dysfunction in rats. Neurochem. Int., 2021, 151, 105217.
[http://dx.doi.org/10.1016/j.neuint.2021.105217] [PMID: 34710534]
[41]
Gürgen, S.G. Sayın, O.; Çeti̇n, F.; Sarsmaz, H.Y.; Yazıcı G.N.; Umur, N.; Yücel, A.T. The effect of monosodium glutamate on neuronal signaling molecules in the hippocampus and the neuroprotective effects of omega-3 fatty acids. ACS Chem. Neurosci., 2021, 12(16), 3028-3037.
[http://dx.doi.org/10.1021/acschemneuro.1c00308] [PMID: 34328736]
[42]
ATEF. H.; EL-MORSI, D.A.; EL-SHAFEY, M.; AL-MONIEM SAEED, A.A. Monosodium glutamate induced hepatotoxicity and oxidative stress: pathophysiological, biochemical and electron microscopic study. Med. J. Cairo Univ., 2019, 87(March), 397-406.
[http://dx.doi.org/10.21608/mjcu.2019.52361]
[43]
Bölükbaş F.; Öznurlu, Y. Determining the effects of in ovo administration of monosodium glutamate on the embryonic development of brain in chickens. Neurotoxicology, 2023, 94, 87-97.
[http://dx.doi.org/10.1016/j.neuro.2022.11.009] [PMID: 36400230]
[44]
Kraal, A.Z.; Arvanitis, N.R.; Jaeger, A.P.; Ellingrod, V.L. Could dietary glutamate play a role in psychiatric distress? Neuropsychobiology, 2020, 79(1), 13-19.
[http://dx.doi.org/10.1159/000496294] [PMID: 30699435]
[45]
Suthar, S.K.; Lee, S.Y. The role of superoxide dismutase 1 in amyotrophic lateral sclerosis: Identification of signaling pathways, regulators, molecular interaction networks, and biological functions through bioinformatics. Brain Sci., 2023, 13(1), 151.
[http://dx.doi.org/10.3390/brainsci13010151] [PMID: 36672132]
[46]
Liao, R.; Wood, T.R.; Nance, E. Superoxide dismutase reduces monosodium glutamate-induced injury in an organotypic whole hemisphere brain slice model of excitotoxicity. J. Biol. Eng., 2020, 14(1), 3.
[http://dx.doi.org/10.1186/s13036-020-0226-8] [PMID: 32042309]
[47]
Zhao, S.; Chen, F.; Yin, Q.; Wang, D.; Han, W.; Zhang, Y. Reactive oxygen species interact with NLRP3 inflammasomes and are involved in the inflammation of sepsis: From mechanism to treatment of progression. Front. Physiol., 2020, 11, 571810.
[http://dx.doi.org/10.3389/fphys.2020.571810] [PMID: 33324236]
[48]
Pirie, E.; Oh, C.; Zhang, X.; Han, X.; Cieplak, P.; Scott, H.R.; Deal, A.K.; Ghatak, S.; Martinez, F.J.; Yeo, G.W.; Yates, J.R., III; Nakamura, T.; Lipton, S.A. S-nitrosylated TDP-43 triggers aggregation, cell-to-cell spread, and neurotoxicity in hiPSCs and in vivo models of ALS/FTD. Proc. Natl. Acad. Sci., 2021, 118(11), e2021368118.
[http://dx.doi.org/10.1073/pnas.2021368118] [PMID: 33692125]
[49]
Trist, B.G.; Hilton, J.B.; Hare, D.J.; Crouch, P.J.; Double, K.L. Superoxide dismutase 1 in health and disease: How a frontline antioxidant becomes neurotoxic. Angew. Chem. Int. Ed., 2021, 60(17), 9215-9246.
[http://dx.doi.org/10.1002/anie.202000451] [PMID: 32144830]
[50]
Kabashi, E.; Valdmanis, P.N.; Dion, P.; Rouleau, G.A. Oxidized/misfolded superoxide dismutase-1: The cause of all amyotrophic lateral sclerosis? Ann. Neurol., 2007, 62(6), 553-559.
[http://dx.doi.org/10.1002/ana.21319] [PMID: 18074357]
[51]
Meneses, A.; Koga, S.; O’Leary, J.; Dickson, D.W.; Bu, G.; Zhao, N. TDP-43 pathology in alzheimer’s disease. Mol. Neurodegener., 2021, 16(1), 84.
[http://dx.doi.org/10.1186/s13024-021-00503-x] [PMID: 34930382]
[52]
Chen, S.; Xu, D.; Fan, L.; Fang, Z.; Wang, X.; Li, M. Roles of N-Methyl-D-Aspartate Receptors (NMDARs) in Epilepsy. Front. Mol. Neurosci., 2022, 14, 797253.
[http://dx.doi.org/10.3389/fnmol.2021.797253] [PMID: 35069111]
[53]
Jo, M.; Lee, S.; Jeon, Y.M.; Kim, S.; Kwon, Y.; Kim, H.J. The role of TDP-43 propagation in neurodegenerative diseases: Integrating insights from clinical and experimental studies. Exp. Mol. Med., 2020, 52(10), 1652-1662.
[http://dx.doi.org/10.1038/s12276-020-00513-7] [PMID: 33051572]
[54]
Sarlo, G.L.; Holton, K.F. Brain concentrations of glutamate and GABA in human epilepsy: A review. Seizure, 2021, 91, 213-227.
[http://dx.doi.org/10.1016/j.seizure.2021.06.028] [PMID: 34233236]
[55]
Davis, K.A.; Nanga, R.P.R.; Das, S.; Chen, S.H.; Hadar, P.N.; Pollard, J.R.; Lucas, T.H.; Shinohara, R.T.; Litt, B.; Hariharan, H.; Elliott, M.A.; Detre, J.A.; Reddy, R. Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy. Sci. Transl. Med., 2015, 7(309), 309ra161.
[http://dx.doi.org/10.1126/scitranslmed.aaa7095] [PMID: 26468323]
[56]
Barker-Haliski, M.; White, H.S. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb. Perspect. Med., 2015, 5(8), a022863.
[http://dx.doi.org/10.1101/cshperspect.a022863] [PMID: 26101204]
[57]
Yuen, T.I.; Morokoff, A.P.; Bjorksten, A.; D’Abaco, G.; Paradiso, L.; Finch, S.; Wong, D.; Reid, C.A.; Powell, K.L.; Drummond, K.J.; Rosenthal, M.A.; Kaye, A.H.; O’Brien, T.J. Glutamate is associated with a higher risk of seizures in patients with gliomas. Neurology, 2012, 79(9), 883-889.
[http://dx.doi.org/10.1212/WNL.0b013e318266fa89] [PMID: 22843268]
[58]
Ranpariya, V.L.; Parmar, S.K.; Sheth, N.R.; Chandrashekhar, V.M. Neuroprotective activity of Matricaria recutita against fluoride-induced stress in rats. Pharm. Biol., 2011, 49(7), 696-701.
[http://dx.doi.org/10.3109/13880209.2010.540249] [PMID: 21599496]
[59]
Prasansuklab, A.; Tencomnao, T. Acanthus ebracteatus leaf extract provides neuronal cell protection against oxidative stress injury induced by glutamate. BMC Complement. Altern. Med., 2018, 18(1), 278.
[http://dx.doi.org/10.1186/s12906-018-2340-4] [PMID: 30326896]
[60]
Friedli, M.J.; Inestrosa, N.C. Huperzine a and its neuroprotective molecular signaling in alzheimer’s disease. Molecules, 2021, 26(21), 6531.
[http://dx.doi.org/10.3390/molecules26216531] [PMID: 34770940]
[61]
Shoaib, A.; Siddiqui, H.H.; Dixit, R.K.; Siddiqui, S.; Deen, B.; Khan, A.; Alrokayan, S.H.; Khan, H.A.; Ahmad, P. Neuroprotective effects of dried tubers of aconitum napellus. Plants, 2020, 9(3), 356.
[http://dx.doi.org/10.3390/plants9030356] [PMID: 32168878]
[62]
Prasansuklab, A.; Meemon, K.; Sobhon, P.; Tencomnao, T. Ethanolic extract of Streblus asper leaves protects against glutamate-induced toxicity in HT22 hippocampal neuronal cells and extends lifespan of Caenorhabditis elegans. BMC Complement. Altern. Med., 2017, 17(1), 551.
[http://dx.doi.org/10.1186/s12906-017-2050-3] [PMID: 29282044]
[63]
Pan, Y.; Wu, D.; Liang, H.; Tang, G.; Fan, C.; Shi, L.; Ye, W.; Li, M. Total saponins of panax notoginseng activate Akt/mTOR pathway and exhibit neuroprotection in vitro and in vivo against ischemic damage. Chin. J. Integr. Med., 2022, 28(5), 410-418.
[http://dx.doi.org/10.1007/s11655-021-3454-y] [PMID: 34581940]
[64]
Yang, W.; Ip, S.P.; Liu, L.; Xian, Y.F.; Lin, Z.X. Uncaria rhynchophylla and its major constituents on central nervous system: A review on their pharmacological actions. Curr. Vasc. Pharmacol., 2020, 18(4), 346-357.
[http://dx.doi.org/10.2174/1570161117666190704092841] [PMID: 31272356]
[65]
Li, M.; Zhang, X.; Cui, L.; Yang, R.; Wang, L.; Liu, L.; Du, W. The neuroprotection of oxymatrine in cerebral ischemia/reperfusion is related to nuclear factor erythroid 2-related factor 2 (nrf2)-mediated antioxidant response: Role of nrf2 and hemeoxygenase-1 expression. Biol. Pharm. Bull., 2011, 34(5), 595-601.
[http://dx.doi.org/10.1248/bpb.34.595] [PMID: 21532144]
[66]
Subedi, L.; Gaire, B.P. Tanshinone IIA: A phytochemical as a promising drug candidate for neurodegenerative diseases. Pharmacol. Res., 2021, 169, 105661.
[http://dx.doi.org/10.1016/j.phrs.2021.105661] [PMID: 33971269]
[67]
Sukprasansap, M.; Chanvorachote, P.; Tencomnao, T. Cleistocalyx nervosum var. paniala berry fruit protects neurotoxicity against endoplasmic reticulum stress-induced apoptosis. Food Chem. Toxicol., 2017, 103, 279-288.
[http://dx.doi.org/10.1016/j.fct.2017.03.025] [PMID: 28315776]
[68]
Luine, V.N. Estradiol and cognitive function: Past, present and future. Horm. Behav., 2014, 66(4), 602-618.
[http://dx.doi.org/10.1016/j.yhbeh.2014.08.011] [PMID: 25205317]
[69]
Chuang, K.A.; Li, M.H.; Lin, N.H.; Chang, C.H.; Lu, I.H.; Pan, I.H.; Takahashi, T.; Perng, M.D.; Wen, S.F. Rhinacanthin C alleviates amyloid- β fibrils’ toxicity on neurons and attenuates neuroinflammation triggered by LPS, amyloid- β and interferon- γ in glial cells. Oxid. Med. Cell. Longev., 2017, 2017, 1-18.
[http://dx.doi.org/10.1155/2017/5414297] [PMID: 29181126]
[70]
Brimson, J.M.; Prasanth, M.I.; Plaingam, W.; Tencomnao, T. Bacopa monnieri (L.) wettst. Extract protects against glutamate toxicity and increases the longevity of Caenorhabditis elegans. J. Tradit. Complement. Med., 2020, 10(5), 460-470.
[http://dx.doi.org/10.1016/j.jtcme.2019.10.001] [PMID: 32953562]
[71]
Li, S.; Wu, C.; Zhu, L.; Gao, J.; Fang, J.; Li, D.; Fu, M.; Liang, R.; Wang, L.; Cheng, M.; Yang, H. By improving regional cortical blood flow, attenuating mitochondrial dysfunction and sequential apoptosis galangin acts as a potential neuroprotective agent after acute ischemic stroke. Molecules, 2012, 17(11), 13403-13423.
[http://dx.doi.org/10.3390/molecules171113403] [PMID: 23143152]
[72]
Lin, Y.E.; Lin, C.H.; Ho, E.P.; Ke, Y.C.; Petridi, S.; Elliott, C.J.H.; Sheen, L.Y.; Chien, C.T. Glial Nrf2 signaling mediates the neuroprotection exerted by Gastrodia elata Blume in Lrrk2-G2019S Parkinson’s disease. eLife, 2021, 10, e73753.
[http://dx.doi.org/10.7554/eLife.73753] [PMID: 34779396]
[73]
Lee, S.E.; Kim, J.H.; Lim, C.; Cho, S. Neuroprotective effect of Angelica gigas root in a mouse model of ischemic brain injury through MAPK signaling pathway regulation. Chin. Med., 2020, 15(1), 101.
[http://dx.doi.org/10.1186/s13020-020-00383-1] [PMID: 32983252]
[74]
Liu, J.; Liu, S.; Hao, L.; Liu, F.; Mu, S.; Wang, T. Uncovering the mechanism of Radix Paeoniae Alba in the treatment of restless legs syndrome based on network pharmacology and molecular docking. Medicine, 2022, 101(46), e31791.
[http://dx.doi.org/10.1097/MD.0000000000031791] [PMID: 36401463]
[75]
Nayak, S.; Nayanatara, A.K.; Hegde, A.; Kini, D. R.; Blossom, V.; Poojary, R. Neuroprotective role of Allium cepa and Allium sativum on Hippocampus, striatum and Cerebral cortex in Wistar rats. Res. J. Pharma. Technol., 2021, (May), 2406-2411.
[http://dx.doi.org/10.52711/0974-360X.2021.00424]
[76]
Chethana, G.S.; Venkatesh, H.; Gopinath, S.M. Review on clerodendrum inerme. J. Pharmaceut. Scie. Innov., 2013, 2(2), 38-40.
[http://dx.doi.org/10.7897/2277-4572.02220]
[77]
Ban, J.Y.; Cho, S.O.; Choi, S.H.; Ju, H.S.; Kim, J.Y.; Bae, K.; Song, K.S.; Seong, Y.H. Neuroprotective effect of Smilacis chinae rhizome on NMDA-induced neurotoxicity in vitro and focal cerebral ischemia in vivo. J. Pharmacol. Sci., 2008, 106(1), 68-77.
[http://dx.doi.org/10.1254/jphs.FP0071206] [PMID: 18202548]
[78]
Xu, J.; Wang, F.; Guo, J.; Xu, C.; Cao, Y.; Fang, Z.; Wang, Q. Pharmacological mechanisms underlying the neuroprotective effects of Alpinia oxyphylla Miq. on Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(6), 2071.
[http://dx.doi.org/10.3390/ijms21062071] [PMID: 32197305]
[79]
Lima Pereira, É.P.; Santos Souza, C.; Amparo, J.; Short Ferreira, R.; Nuñez-Figueredo, Y.; Gonzaga Fernandez, L.; Ribeiro, P.R.; Braga-de-Souza, S.; Amaral da Silva, V.D.; Lima Costa, S. Amburana cearensis seed extract protects brain mitochondria from oxidative stress and cerebellar cells from excitotoxicity induced by glutamate. J. Ethnopharmacol., 2017, 209, 157-166.
[http://dx.doi.org/10.1016/j.jep.2017.07.017] [PMID: 28712890]
[80]
Ren, Y.; Frank, T.; Meyer, G.; Lei, J.; Grebenc, J.R.; Slaughter, R.; Gao, Y.G.; Kinghorn, A.D. Potential benefits of black chokeberry (aronia melanocarpa) fruits and their constituents in Improving Human Health. Molecules, 2022, 27(22), 7823.
[http://dx.doi.org/10.3390/molecules27227823] [PMID: 36431924]
[81]
Gomaa, A.A.; Makboul, R.M.; Al-Mokhtar, M.A.; Nicola, M.A. Polyphenol-rich Boswellia serrata gum prevents cognitive impairment and insulin resistance of diabetic rats through inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines. Biomed. Pharmacother., 2019, 109, 281-292.
[http://dx.doi.org/10.1016/j.biopha.2018.10.056] [PMID: 30396086]
[82]
Komaki, A.; Moradkhani, S.; Salehi, I.; Abdolmaleki, S. Effect of Calendula officinalis hydroalcoholic extract on passive avoidance learning and memory in streptozotocin-induced diabetic rats. Anc. Sci. Life, 2015, 34(3), 156-161.
[http://dx.doi.org/10.4103/0257-7941.157160] [PMID: 26120230]
[83]
Zhang, Y.L.; Liu, Y.; Kang, X.P.; Dou, C.Y.; Zhuo, R.G.; Huang, S.Q.; Peng, L.; Wen, L. Ginsenoside Rb1 confers neuroprotection via promotion of glutamate transporters in a mouse model of Parkinson’s disease. Neuropharmacology, 2018, 131, 223-237.
[http://dx.doi.org/10.1016/j.neuropharm.2017.12.012] [PMID: 29241654]
[84]
Kim, H.N.; Jang, J.Y.; Choi, B.T. A single fraction from Uncaria sinensis exerts neuroprotective effects against glutamate-induced neurotoxicity in primary cultured cortical neurons. Anat. Cell Biol., 2015, 48(2), 95-103.
[http://dx.doi.org/10.5115/acb.2015.48.2.95] [PMID: 26140220]
[85]
Jang, J.H.; Son, Y.; Kang, S.S.; Bae, C.S.; Kim, J.C.; Kim, S.H.; Shin, T.; Moon, C. Neuropharmacological potential of gastrodia elata blume and its components. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-14.
[http://dx.doi.org/10.1155/2015/309261] [PMID: 26543487]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy