Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Mini-Review Article

Bacoside A: A Promising Medication for Treatment of Various Disorders

Author(s): Keshav Bansal*, Vanshita Singh and Meenakshi Bajpai

Volume 10, Issue 6, 2024

Published on: 24 August, 2023

Article ID: e040823219421 Pages: 11

DOI: 10.2174/2215083810666230804095036

Price: $65

conference banner
Abstract

Bacoside A is a triterpenoid saponin and nootropic herb that can be extracted from Bacopa monnieri Linn., Scrophulariaceae. It is a glabrous and succulent herb used traditionally for centuries in treating various illnesses, mainly as a cardiotonic and nerve tonic, and has been considered an eminent Ayurvedic medicine. Various studies reported that the herb consists of a wide range of potentially bioactive, phytochemical constituents with synergistic effects. Bacoside A is a major constituent of B. monnieri, with diverse biological functions and significant therapeutic potential, as given by various researchers and preclinical studies. It possesses various biological activities such as hepatoprotective, anti-osteoporotic, anti-ulcerogenic, antiinflammatory, anti-tumor, wound healing, and neuroprotective effects. This review compiled the preclinical evidence-based studies and present knowledge of bacoside A's potential benefits and fruitful impact on human health, and we provided a comprehensive perspective of bacoside A in various disease treatments.

[1]
Seth B, Sahoo KK, Aravind KR, Sahu BB, Singh VR, Patra N. Statistical optimization of bacoside A biosynthesis in plant cell suspension cultures using response surface methodology. 3 Biotech 2020; 10(6): 264.
[2]
Dowell A, Davidson G, Ghosh D. Validation of quantitative HPLC method for bacosides in KeenMind. Evidence-Based Complement Alternat Med 2015; 2015: 696172.
[http://dx.doi.org/10.1155/2015/696172]
[3]
Bhardwaj P, Jain CK, Mishra P, Mathur A, Khas H. Comparative analysis of bacoside a yield in field acclimatized and in-vitro propagated Bacopa monnieri L. Int J Pharm Sci Rev Res 2017; 44: 168-75.
[4]
Bhardwaj P, Jain CK, Mathur A. Comparative evaluation of four triterpenoid glycoside saponins of bacoside A in alleviating sub-cellular oxidative stress of N2a neuroblastoma cells. J Pharm Pharmacol 2018; 70(11): 1531-40.
[http://dx.doi.org/10.1111/jphp.12993] [PMID: 30073654]
[5]
Sumathi T, Nongbri A. Hepatoprotective effect of Bacoside-A, a major constituent of Bacopa monniera Linn. Phytomedicine 2008; 15(10): 901-5.
[http://dx.doi.org/10.1016/j.phymed.2007.11.020] [PMID: 18222663]
[6]
Banerjee S, Anand U, Ghosh S, et al. Bacosides from Bacopa Monnieri extract: An overview of the effects on neurological disorders. Phytother Res 2021; 35(10): 5668-79.
[http://dx.doi.org/10.1002/ptr.7203] [PMID: 34254371]
[7]
Channa S, Dar A, Anjum S, Yaqoob M. Atta-ur-Rahman. Anti-inflammatory activity of Bacopa monniera in rodents. J Ethnopharmacol 2006; 104(1-2): 286-9.
[http://dx.doi.org/10.1016/j.jep.2005.10.009] [PMID: 16343831]
[8]
Ramesh T. Osteogenic differentiation potential of human bone marrow‐derived mesenchymal stem cells enhanced by Bacoside‐A. Cell Biochem Funct 2021; 39(1): 148-58.
[http://dx.doi.org/10.1002/cbf.3596] [PMID: 33137853]
[9]
Sairam K, Rao CV, Babu MD, Goel RK. Prophylactic and curative effects of in gastric ulcer models. Phytomedicine 2001; 8(6): 423-30.
[http://dx.doi.org/10.1078/S0944-7113(04)70060-4] [PMID: 11824516]
[10]
Sharath R, Harish BG, Krishna V, Sathyanarayana BN, Swamy HMK. Wound healing and protease inhibition activity of Bacoside-A, isolated from Bacopa monnieri wettest. Phytother Res 2010; 24(8): 1217-22.
[http://dx.doi.org/10.1002/ptr.3115] [PMID: 20213670]
[11]
Aithal MGS, Rajeswari N, Bacoside A. Bacoside a induced sub-G0 arrest and early apoptosis in human glioblastoma cell line U-87 MG through notch signaling pathway. Brain Tumor Res Treat 2019; 7(1): 25-32.
[http://dx.doi.org/10.14791/btrt.2019.7.e21] [PMID: 31062528]
[12]
Kishore L, Kaur N, Singh R. Renoprotective effect of Bacopa monnieri via inhibition of advanced glycation end products and oxidative stress in STZ-nicotinamide-induced diabetic nephropathy. Ren Fail 2016; 38(9): 1528-44.
[http://dx.doi.org/10.1080/0886022X.2016.1227920] [PMID: 27784187]
[13]
T MM. Anand T, Khanum F. Attenuation of cytotoxicity induced by tBHP in H9C2 cells by Bacopa monniera and Bacoside A. Pathophysiology 2018; 25(2): 143-9.
[http://dx.doi.org/10.1016/j.pathophys.2018.03.002] [PMID: 29678356]
[14]
Anand T, Naika M, Swamy MSL, Khanum F. Antioxidant And DNA Damage Preventive Properties of Bacopa Monniera (L) Wettst. Free Radic Antioxid 2011; 1(1): 84-90.
[http://dx.doi.org/10.5530/ax.2011.1.13]
[15]
Roy A, Bharadvaja N. A review on pharmaceutically important medical plant: Plumbago zeylanica. J Ayurved Herb Med 2017; 3(4): 225-8.
[http://dx.doi.org/10.31254/jahm.2017.3411]
[16]
Singh HK, Rastogi RP, Srimal RC, Dhawan BN. Effect of bacosides A and B on avoidance responses in rats. Phytother Res 1988; 2(2): 70-5.
[http://dx.doi.org/10.1002/ptr.2650020205]
[17]
Pal R, Sarin JPS. Quantitative determination of bacosides by UV-spectrophotometry. Indian J Pharm Sci 1992; 54: 17-8.
[18]
Deepak M, Amit A. The need for establishing identities of “bacoside A and B”, the putative major bioactive saponins of Indian medicinal plant Bacopa monnieri. Phytomedicine 2004; 11(2-3): 264-8.
[19]
Renukappa T, Roos G, Klaiber I, Vogler B, Kraus W. Application of high-performance liquid chromatography coupled to nuclear magnetic resonance spectrometry, mass spectrometry and bioassay for the determination of active saponins from Bacopa monniera Wettst. J Chromatogr A 1999; 847(1-2): 109-16.
[http://dx.doi.org/10.1016/S0021-9673(99)00018-7] [PMID: 10431354]
[20]
Ganzera M, Gampenrieder J, Pawar RS, Khan IA, Stuppner H. Separation of the major triterpenoid saponins in Bacopa monnieri by high-performance liquid chromatography. Anal Chim Acta 2004; 516(1-2): 149-54.
[http://dx.doi.org/10.1016/j.aca.2004.04.002]
[21]
Gnananath K, Nataraj KS, Rao BG. Quantitative determination of bacoside A by HPTLC in Bacopa monnieri collected from three different geographical sources in India. J Clin Exp. Pharmacol 2017; 2017: 7-2.
[22]
Rai K, Gupta N, Dharamdasani L, Nair P, Bodhankar P. Bacopa Monnieri: A Wonder Drug Changing Fortune of People. Int J Appl Sci Biotechnol 2017; 5(2): 127-32.
[http://dx.doi.org/10.3126/ijasbt.v5i2.16952]
[23]
Jyoti A, Sharma D. Neuroprotective role of Bacopa monniera extract against aluminium-induced oxidative stress in the hippocampus of rat brain. Neurotoxicology 2006; 27(4): 451-7.
[http://dx.doi.org/10.1016/j.neuro.2005.12.007] [PMID: 16500707]
[24]
Chaudhary B, Bist R. Protective manifestation of bacoside A and bromelain in terms of cholinesterases, gamma-amino butyric acid, serotonin level and stress proteins in the brain of dichlorvos-intoxicated mice. Cell Stress Chaperones 2017; 22(3): 371-6.
[http://dx.doi.org/10.1007/s12192-017-0773-1] [PMID: 28321764]
[25]
Agarwal S, Chaudhary B, Bist R. Protective propensity of bacoside A and bromelain on renal cholinesterases, γ-aminobutyric acid and serotonin level of Mus musculus intoxicated with dichlorvos. Chem Biol Interact 2017; 261: 139-44.
[http://dx.doi.org/10.1016/j.cbi.2016.11.027] [PMID: 27899289]
[26]
Jose S, Sowmya S, Cinu TA, Aleykutty NA, Thomas S, Souto EB. Surface modified PLGA nanoparticles for brain targeting of Bacoside-A. Eur J Pharm Sci 2014; 63: 29-35.
[http://dx.doi.org/10.1016/j.ejps.2014.06.024] [PMID: 25010261]
[27]
Sekhar VC, Viswanathan G, Baby S. Insights into the molecular aspects of neuroprotective bacoside A and Bacopaside I. Curr Neuropharmacol 2019; 17(5): 438-46.
[http://dx.doi.org/10.2174/1570159X16666180419123022] [PMID: 29676230]
[28]
Tilch R, Tabbal A, Zhu M, Decker F, Löhner R. Combination of body‐fitted and embedded grids for external vehicle aerodynamics. Eng Comput 2008; 25(1): 28-41.
[http://dx.doi.org/10.1108/02644400810841404]
[29]
Vani G, Anbarasi K, Shyamaladevi CS. Role in cigarette smoking induced changes in brain. Evid Based Complement Alternat Med 2015; 2015: 286137.
[30]
Ryan CJ, Aslam M, Courtney JM. Transference of hepatic coma to normal rats from galactosamine treated donors by reverse plasma exchange. Biomater Artif Cells Artif Organs 1990; 18(4): 477-82.
[http://dx.doi.org/10.3109/10731199009119621] [PMID: 2285809]
[31]
Suganthy N, Shunmugiahthevar KP, Kasi PD. Cholinesterase Inhibitors from Plants: Possible Treatment Strategy for Neurological Disorders-A Review. Int J Biomed Pharm Sci 2009; 3: 87-103.
[32]
von Bernhardi R, Tichauer JE, Eugenín J. Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J Neurochem 2010; 112(5): 1099-114.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06537.x] [PMID: 20002526]
[33]
Apetz N, Munch G, Govindaraghavan S, Gyengesi E. Natural compounds and plant extracts as therapeutics against chronic inflammation in Alzheimer’s disease--a translational perspective. CNS Neurol Disord Drug Targets 2014; 13(7): 1175-91.
[http://dx.doi.org/10.2174/1871527313666140917110635] [PMID: 25230232]
[34]
Uabundit N, Wattanathorn J, Mucimapura S, Ingkaninan K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmacol 2010; 127(1): 26-31.
[http://dx.doi.org/10.1016/j.jep.2009.09.056] [PMID: 19808086]
[35]
Dixit H, Selvaa Kumar C, Dasgupta D, Gadewal N. Molecular docking analysis of hyperphosphorylated tau protein with compounds derived from Bacopa monnieri and Withania somnifera. Bioinformation 2021; 17(9): 798-804.
[http://dx.doi.org/10.6026/97320630017798] [PMID: 35539884]
[36]
Malishev R, Shaham-Niv S, Nandi S, Kolusheva S, Gazit E, Jelinek R. Bacoside-A, an Indian traditional-medicine substance, inhibits β-amyloid cytotoxicity, fibrillation, and membrane interactions. ACS Chem Neurosci 2017; 8(4): 884-91.
[http://dx.doi.org/10.1021/acschemneuro.6b00438] [PMID: 28094495]
[37]
Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, Ojha SK. Plant Extracts and Phytochemicals Targeting α-Synuclein Aggregation in Parkinson’s Disease Models. Front Pharmacol 2019; 9: 1555.
[http://dx.doi.org/10.3389/fphar.2018.01555] [PMID: 30941047]
[38]
Jadiya P, Khan A, Sammi SR, Kaur S, Mir SS, Nazir A. Anti-Parkinsonian effects of Bacopa monnieri: Insights from transgenic and pharmacological caenorhabditis elegans models of Parkinson’s disease. Biochem Biophys Res Commun 2011; 413(4): 605-10.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.010] [PMID: 21925152]
[39]
Singh B, Pandey S, Rumman M, et al. Neuroprotective and neurorescue mode of action of Bacopa monnieri (L.) wettst in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinson’s disease: an in silico and in vivo study. Front Pharmacol 2021; 12: 616413.
[http://dx.doi.org/10.3389/fphar.2021.616413] [PMID: 33796021]
[40]
Goyal A, Gopika S, Kumar A, Garabadu D. A comprehensive review on preclinical evidence-based neuroprotective potential of Bacopa monnieri against parkinson’s disease. Curr Drug Targets 2022; 23(9): 889-901.
[http://dx.doi.org/10.2174/1389450123666220316091734] [PMID: 35297345]
[41]
Shrivastava A, Gupta JK, Goyal MK. Flavonoids and antiepileptic drugs: A comprehensive review on their neuroprotective potentials. J Med Pharmaceut Allied Sci 2022; 11(1): 4179-86.
[http://dx.doi.org/10.55522/jmpas.V11I1.2175]
[42]
Mathew J, Paul J, Nandhu MS, Paulose CS. Bacopa monnieri and Bacoside-A for ameliorating epilepsy associated behavioral deficits. Fitoterapia 2010; 81(5): 315-22.
[http://dx.doi.org/10.1016/j.fitote.2009.11.005] [PMID: 19944749]
[43]
Devinsky O, Vezzani A, O’Brien TJ, et al. Epilepsy. Nat Rev Dis Primers 2018; 4: 18024.
[44]
Mathew J, Gangadharan G, Kuruvilla KP, Paulose CS. Behavioral deficit and decreased GABA receptor functional regulation in the hippocampus of epileptic rats: Effect of Bacopa monnieri. Neurochem Res 2011; 36(1): 7-16.
[http://dx.doi.org/10.1007/s11064-010-0253-9] [PMID: 20821261]
[45]
Komali E, Venkataramaiah C, Rajendra W. Antiepileptic potential of Bacopa monnieri in the rat brain during PTZ-induced epilepsy with reference to cholinergic system and ATPases. J Tradit Complement Med 2021; 11(2): 137-43.
[http://dx.doi.org/10.1016/j.jtcme.2020.02.011] [PMID: 33728274]
[46]
Hébert J, Muccilli A, Wennberg RA, Tang-Wai DF. Autoimmune encephalitis and autoantibodies: A review of clinical implications. J Appl Lab Med 2022; 7(1): 81-98.
[http://dx.doi.org/10.1093/jalm/jfab102] [PMID: 34996085]
[47]
Madhu K. T P, S M. Bacoside-A inhibits inflammatory cytokines and chemokine in experimental autoimmune encephalomyelitis. Biomed Pharmacother 2019; 109: 1339-45.
[http://dx.doi.org/10.1016/j.biopha.2018.10.188] [PMID: 30551384]
[48]
Das KMS. Role of triterpenoid glycosides on axonal protection in multiple sclerosis and experimental autoimmune encephalomyelitis. Fifth International Conference on Drug Discovery India 2017 by SELECTBIO. Bengaluru, India. . 2017.
[49]
Goyal A, Semwal BC, Yadav HN. Abrogated cardioprotective effect of ischemic preconditioning in ovariectomized rat heart. Hum Exp Toxicol 2016; 35(6): 644-53.
[http://dx.doi.org/10.1177/0960327115597980] [PMID: 26264742]
[50]
Ramond A, Godin-Ribuot D, Ribuot C, et al. Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia. Fundam Clin Pharmacol 2013; 27(3): 252-61.
[http://dx.doi.org/10.1111/j.1472-8206.2011.01015.x] [PMID: 22145601]
[51]
Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 2006; 27(12): 639-45.
[http://dx.doi.org/10.1016/j.tips.2006.10.005] [PMID: 17056127]
[52]
Rigoulet M, Yoboue ED, Devin A. Mitochondrial ROS generation and its regulation: Mechanisms involved in H(2)O(2) signaling. Antioxid Redox Signal 2011; 14(3): 459-68.
[http://dx.doi.org/10.1089/ars.2010.3363] [PMID: 20649461]
[53]
Almadani YH, Vorstenbosch J, Davison PG, Murphy AM. Wound healing: A comprehensive review. Semin Plast Surg 2021; 35(3): 141-4.
[http://dx.doi.org/10.1055/s-0041-1731791] [PMID: 34526860]
[54]
Goyal A, Kushwah PS, Agrawal N. Therapeutic potential of plantamajoside. Rev Bras Farmacogn 2022; 32(3): 355-64.
[http://dx.doi.org/10.1007/s43450-022-00252-y]
[55]
Agarwal PK, Singh A, Gaurav K, Goel S, Khanna HD, Goel RK. Evaluation of wound healing activity of extracts of plantain banana (Musa sapientum var. paradisiaca) in rats. Indian J Exp Biol 2009; 47(1): 32-40.
[PMID: 19317349]
[56]
Gethin G. Understanding the inflammatory process in wound healing. Br J Community Nurs 2012; 2014(S17-8): S20-2.
[http://dx.doi.org/10.12968/bjcn.2012.17.Sup3.S17]
[57]
Murthy S, Gautam MK, Goel S, Purohit V, Sharma H, Goel RK. Evaluation of in vivo wound healing activity of Bacopa monniera on different wound model in rats. BioMed Res Int 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/972028] [PMID: 23984424]
[58]
Miller TA, Henagan JM. Indomethacin decreases resistance of gastric barrier to disruption by alcohol. Dig Dis Sci 1984; 29(2): 141-9.
[http://dx.doi.org/10.1007/BF01317055] [PMID: 6697854]
[59]
Okabe S, Roth JLA, Pfeiffer CJ. Differential healing periods of the acetic acid ulcer model in rats and cats. Experientia 1971; 27(2): 146-8.
[http://dx.doi.org/10.1007/BF02145860] [PMID: 5544720]
[60]
Goel RK, Sairam K, Dora Babu M, Tavares IA, Raman A. In vitro evaluation of Bacopa monniera on anti-Helicobacter pylori activity and accumulation of prostaglandins. Phytomedicine 2003; 10(6-7): 523-7.
[http://dx.doi.org/10.1078/094471103322331494] [PMID: 13678238]
[61]
Key TJ, Bradbury KE, Perez-Cornago A, Sinha R, Tsilidis KK, Tsugane S. Diet, nutrition, and cancer risk: What do we know and what is the way forward? BMJ 2020; 368: m511.
[http://dx.doi.org/10.1136/bmj.m511] [PMID: 32139373]
[62]
Axelson H. Notch signaling and cancer: Emerging complexity. Semin Cancer Biol 2004; 14(5): 317-9.
[http://dx.doi.org/10.1016/j.semcancer.2004.04.010] [PMID: 15288256]
[63]
Hansson EM, Lendahl U, Chapman G. Notch signaling in development and disease. Semin Cancer Biol 2004; 14(5): 320-8.
[http://dx.doi.org/10.1016/j.semcancer.2004.04.011] [PMID: 15288257]
[64]
John S, Sivakumar KC, Mishra R. Bacoside a induces tumor cell death in human glioblastoma cell lines through catastrophic macropinocytosis. Front Mol Neurosci 2017; 10: 171.
[http://dx.doi.org/10.3389/fnmol.2017.00171] [PMID: 28663722]
[65]
Feng Q, Zheng S, Zheng J. The emerging role of microRNAs in bone remodeling and its therapeutic implications for osteoporosis. Biosci Rep 2018; 38(3): BSR20180453.
[http://dx.doi.org/10.1042/BSR20180453] [PMID: 29848766]
[66]
Hill TP, Später D, Taketo MM, Birchmeier W, Hartmann C. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 2005; 8(5): 727-38.
[http://dx.doi.org/10.1016/j.devcel.2005.02.013] [PMID: 15866163]
[67]
Yang CW, Vlassara H, Peten EP, He CJ, Striker GE, Striker LJ. Advanced glycation end products up-regulate gene expression found in diabetic glomerular disease. Proc Natl Acad Sci USA 1994; 91(20): 9436-40.
[http://dx.doi.org/10.1073/pnas.91.20.9436] [PMID: 7937785]
[68]
Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005; 54(6): 1615-25.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[69]
Laveti D, Kumar M, Hemalatha R, et al. Anti-inflammatory treatments for chronic diseases: A review. Inflamm Allergy Drug Targets 2013; 12(5): 349-61.
[http://dx.doi.org/10.2174/18715281113129990053] [PMID: 23876224]
[70]
Cekici A, Kantarci A, Hasturk H, Van Dyke TE. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2014; 64(1): 57-80.
[http://dx.doi.org/10.1111/prd.12002] [PMID: 24320956]
[71]
Harirforoosh S, Asghar W, Jamali F. Adverse effects of nonsteroidal antiinflammatory drugs: An update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci 2014; 16(5): 821-47.
[http://dx.doi.org/10.18433/J3VW2F] [PMID: 24393558]
[72]
Kebir H, Kreymborg K, Ifergan I, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 2007; 13(10): 1173-5.
[http://dx.doi.org/10.1038/nm1651] [PMID: 17828272]
[73]
Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: Basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 2007; 292(1): R18-36.
[http://dx.doi.org/10.1152/ajpregu.00327.2006] [PMID: 16917020]
[74]
Chakraborty S, Bhattacharyya R, Banerjee D. Infections. Adv Clin Chem 2017; 80: 227-51.
[http://dx.doi.org/10.1016/bs.acc.2016.11.004] [PMID: 28431641]
[75]
Janani P, Sivakumari K, Parthasarathy C. Hepatoprotective activity of Bacoside A against n-nitrosodiethylamine-induced liver toxicity in adult rats. Cell Biol Toxicol 2009; 25(5): 425-34.
[http://dx.doi.org/10.1007/s10565-008-9096-4] [PMID: 18679812]
[76]
Janani P, Sivakumari K, Geetha A, Yuvaraj S, Parthasarathy C. Bacoside A downregulates matrix metalloproteinases 2 and 9 in DEN-induced hepatocellular carcinoma. Cell Biochem Funct 2010; 28(2): 164-9.
[http://dx.doi.org/10.1002/cbf.1638] [PMID: 20084675]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy