Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Herbal Remedies: An Emerging Alternative for the Treatment of Pandemic Diseases

Author(s): Neha T. Nistane, Mayur B. Kale, Renuka J. Das, Mohit D. Umare, Milind J. Umekar, Atul T. Hemke and Vishal R. Gajbhiye*

Volume 10, Issue 6, 2024

Published on: 31 August, 2023

Article ID: e030823219384 Pages: 14

DOI: 10.2174/2215083810666230803101424

Price: $65

Abstract

Pandemics are large-scale epidemics of infectious illness that may cause major economical, cultural, and political upheaval while also increasing illness and mortality across a huge geographic area. Evidence shows that pandemics have increased during the last century as a result of increasing international travel and connectivity, industrialization, agricultural expansion, and higher destruction of the natural environment. Over time, emerging pathogen strains cause pandemics that raise suffering, death, and instability in countries. Flu, plague, cholera, HIV, and the current COVID-19 pandemic caused by a novel coronavirus are just a few of the pathogen outbreaks. Unfortunately, given the lack of information and instruments to tackle the problem, managing new and developing infections is frequently challenging. Yet, the use of herbal remedies to treat new and developing infectious illnesses has received much interest. Until the invention of antibiotics, herbal plants, their preparations, and extracted phytoconstituents were reported to be efficient in reducing infectious diseases. Plants contain numerous complex metabolites, such as amino acids, alkaloids, tannins, flavonoids, terpenoids, and glycosides, that show different therapeutic activities. This review provides vital and useful information regarding herbal drugs and their effectiveness against various pathogens that cause major pandemics.

[1]
Piret J, Boivin G. Pandemics throughout history. Front Microbiol 2021; 11: 631736.
[http://dx.doi.org/10.3389/fmicb.2020.631736] [PMID: 33584597]
[2]
Rewar S, Mirdha D, Rewar P. Treatment and prevention of pandemic H1N1 influenza. Ann Glob Health 2016; 81(5): 645-53.
[http://dx.doi.org/10.1016/j.aogh.2015.08.014] [PMID: 27036721]
[3]
Garcia S. Pandemics and traditional plant-based remedies. A historical-botanical review in the era of COVID19. Front Plant Sci 2020; 11: 571042.
[http://dx.doi.org/10.3389/fpls.2020.571042] [PMID: 32983220]
[4]
Mousa HAL. Prevention and treatment of influenza, influenza-like illness, and common cold by herbal, complementary, and natural therapies. J Evid Based Complementary Altern Med 2017; 22(1): 166-74.
[http://dx.doi.org/10.1177/2156587216641831] [PMID: 27055821]
[5]
Neumann G, Kawaoka Y. Transmission of influenza A viruses. Virology 2015; 479-480: 234-46.
[http://dx.doi.org/10.1016/j.virol.2015.03.009] [PMID: 25812763]
[6]
Neumann G, Kawaoka Y. The first influenza pandemic of the new millennium. Influenza Other Respir Viruses 2011; 5(3): 157-66.
[http://dx.doi.org/10.1111/j.1750-2659.2011.00231.x] [PMID: 21477134]
[7]
Biggerstaff M, Cauchemez S, Reed C, Gambhir M, Finelli L. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: A systematic review of the literature. BMC Infect Dis 2014; 14(1): 480.
[http://dx.doi.org/10.1186/1471-2334-14-480] [PMID: 25186370]
[8]
Abascal K, Yarnell E. Herbal treatments for pandemic influenza: Learning from the eclectics’ experience. Altern Complement Ther 2006; 12(5): 214-21.
[http://dx.doi.org/10.1089/act.2006.12.214]
[9]
Upaganlawar A, Kale MB, Bajaj K, et al. Exercise and nutraceuticals: Eminent approach for diabetic neuropathy. Curr Mol Pharmacol 2021; 15(1): 108-28.
[http://dx.doi.org/10.2174/1874467214666210629123010] [PMID: 34191703]
[10]
Upaganlawar AB, Wankhede NL, Kale MB, et al. Interweaving epilepsy and neurodegeneration: Vitamin E as a treatment approach. Biomed Pharmacother 2021; 143: 112146.
[http://dx.doi.org/10.1016/j.biopha.2021.112146] [PMID: 34507113]
[11]
Shahrajabian MH, Sun W, Cheng Q. Traditional herbal medicine for the prevention and treatment of cold and flu in the autumn of 2020, overlapped with COVID-19. Nat Prod Commun 2020; 15(8): 1934578X2095143.
[http://dx.doi.org/10.1177/1934578X20951431]
[12]
Li SW, Yang TC, Lai CC, et al. Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation. Eur J Pharmacol 2014; 738: 125-32.
[http://dx.doi.org/10.1016/j.ejphar.2014.05.028] [PMID: 24877694]
[13]
Alsayari A, Muhsinah AB, Almaghaslah D, Annadurai S, Wahab S. Pharmacological efficacy of ginseng against respiratory tract infections. Molecules 2021; 26(13): 4095.
[http://dx.doi.org/10.3390/molecules26134095] [PMID: 34279434]
[14]
Umare MD, Wankhede NL, Bajaj KK, et al. Interweaving of reactive oxygen species and major neurological and psychiatric disorders. Ann Pharm Françaises 2021; 80(4): 409-25.
[15]
Utsunomiya T, Kobayashi M, Pollard RB, Suzuki F. Glycyrrhizin, an active component of licorice roots, reduces morbidity and mortality of mice infected with lethal doses of influenza virus. Antimicrob Agents Chemother 1997; 41(3): 551-6.
[http://dx.doi.org/10.1128/AAC.41.3.551] [PMID: 9055991]
[16]
Michaelis M, Geiler J, Naczk P, et al. Glycyrrhizin inhibits highly pathogenic H5N1 influenza A virus-induced pro-inflammatory cytokine and chemokine expression in human macrophages. Med Microbiol Immunol 2010; 199(4): 291-7.
[http://dx.doi.org/10.1007/s00430-010-0155-0] [PMID: 20386921]
[17]
Sriwilaijaroen N, Fukumoto S, Kumagai K, et al. Antiviral effects of Psidium guajava Linn. (guava) tea on the growth of clinical isolated H1N1 viruses: Its role in viral hemagglutination and neuraminidase inhibition. Antiviral Res 2012; 94(2): 139-46.
[http://dx.doi.org/10.1016/j.antiviral.2012.02.013] [PMID: 22453134]
[18]
Wang J, Prinz RA, Liu X, Xu X. In vitro and in vivo antiviral activity of gingerenone a on influenza a virus is mediated by targeting janus kinase 2. Viruses 2020; 12(10): 1141.
[http://dx.doi.org/10.3390/v12101141] [PMID: 33050000]
[19]
Chen DY, Shien JH, Tiley L, et al. Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chem 2010; 119(4): 1346-51.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.011]
[20]
Horváth G, Ács K. Essential oils in the treatment of respiratory tract diseases highlighting their role in bacterial infections and their anti-inflammatory action: A review. Flavour Fragrance J 2015; 30(5): 331-41.
[http://dx.doi.org/10.1002/ffj.3252] [PMID: 32313366]
[21]
Singh NA, Kumar P, Jyoti N, Kumar N. Spices and herbs: Potential antiviral preventives and immunity boosters during COVID ‐19. Phytother Res 2021; 35(5): 2745-57.
[http://dx.doi.org/10.1002/ptr.7019] [PMID: 33511704]
[22]
Adhikari B, Marasini BP, Rayamajhee B, et al. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID ‐19: A review. Phytother Res 2021; 35(3): 1298-312.
[http://dx.doi.org/10.1002/ptr.6893] [PMID: 33037698]
[23]
Haruyama T, Nagata K. Anti-influenza virus activity of Ginkgo biloba leaf extracts. J Nat Med 2013; 67(3): 636-42.
[http://dx.doi.org/10.1007/s11418-012-0725-0] [PMID: 23179317]
[24]
Choi HJ, Song JH, Park KS, Kwon DH. Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. Eur J Pharm Sci 2009; 37(3-4): 329-33.
[http://dx.doi.org/10.1016/j.ejps.2009.03.002] [PMID: 19491023]
[25]
Hayashi K, Kamiya M, Hayashi T. Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus, and HIV. Planta Med 1995; 61(3): 237-41.
[http://dx.doi.org/10.1055/s-2006-958063] [PMID: 7617766]
[26]
Devi AB, Sarala R. Substantial effect of phytochemical constituents against the pandemic disease influenza-a review. Future J Pharmaceut Sci 2021; 7(1): 120.
[http://dx.doi.org/10.1186/s43094-021-00269-5] [PMID: 34150912]
[27]
Sun H, He S, Shi M. Adjuvant-active fraction from Albizia julibrissin saponins improves immune responses by inducing cytokine and chemokine at the site of injection. Int Immunopharmacol 2014; 22(2): 346-55.
[http://dx.doi.org/10.1016/j.intimp.2014.07.021] [PMID: 25075718]
[28]
Sawamura R, Shimizu T, Sun Y, et al. In vitro and in vivo anti-influenza virus activity of diarylheptanoids isolated from Alpinia officinarum. Antivir Chem Chemother 2010; 21(1): 33-41.
[http://dx.doi.org/10.3851/IMP1676] [PMID: 21045258]
[29]
Sawamura R, Sun Y, Yasukawa K, Shimizu T, Watanabe W, Kurokawa M. Antiviral activities of diarylheptanoids against influenza virus in vitro. J Nat Med 2010; 64(1): 117-20.
[http://dx.doi.org/10.1007/s11418-009-0372-2] [PMID: 20091245]
[30]
Sun Y, Matsubara H, Kitanaka S, Yasukawa K. Diarylheptanoids from the Rhizomes of Alpinia officinarum. Helv Chim Acta 2008; 91(1): 118-23.
[http://dx.doi.org/10.1002/hlca.200890001]
[31]
Hayashi K, Imanishi N, Kashiwayama Y, et al. Inhibitory effect of cinnamaldehyde, derived from Cinnamomi cortex, on the growth of influenza A/PR/8 virus in vitro and in vivo. Antiviral Res 2007; 74(1): 1-8.
[http://dx.doi.org/10.1016/j.antiviral.2007.01.003] [PMID: 17303260]
[32]
Ryu YB, Kim JH, Park SJ, et al. Inhibition of neuraminidase activity by polyphenol compounds isolated from the roots of Glycyrrhiza uralensis. Bioorg Med Chem Lett 2010; 20(3): 971-4.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.106] [PMID: 20064716]
[33]
Haidari M, Ali M, Ward Casscells S III, Madjid M. Pomegranate (Punica granatum) purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine 2009; 16(12): 1127-36.
[http://dx.doi.org/10.1016/j.phymed.2009.06.002] [PMID: 19586764]
[34]
Patel B, Sharma S, Nair N, Majeed J, Goyal RK, Dhobi M. Therapeutic opportunities of edible antiviral plants for COVID-19. Mol Cell Biochem 2021; 476(6): 2345-64.
[http://dx.doi.org/10.1007/s11010-021-04084-7] [PMID: 33587232]
[35]
Abdel-Mageed WM, Bayoumi SAH, Chen C, et al. Benzophenone C-glucosides and gallotannins from mango tree stem bark with broad-spectrum anti-viral activity. Bioorg Med Chem 2014; 22(7): 2236-43.
[http://dx.doi.org/10.1016/j.bmc.2014.02.014] [PMID: 24613627]
[36]
Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: Promising natural compounds against viral infections. Arch Virol 2017; 162(9): 2539-51.
[http://dx.doi.org/10.1007/s00705-017-3417-y] [PMID: 28547385]
[37]
Arora R, Chawla R, Marwah R, et al. Potential of complementary and alternative medicine in preventive management of novel H1N1 flu (swine flu) pandemic: Thwarting potential disasters in the bud. Evid Based Complement Alternat Med 2011; 2011: 586506.
[http://dx.doi.org/10.1155/2011/586506] [PMID: 20976081]
[38]
Rajbhandari M, Wegner U, Schöpke T, Lindequist U, Mentel R. Inhibitory effect of Bergenia ligulata on influenza virus A. Pharmazie 2003; 58(4): 268-71.
[PMID: 12749411]
[39]
Lin LT, Hsu WC, Lin CC. Antiviral natural products and herbal medicines. J Tradit Complement Med 2014; 4(1): 24-35.
[http://dx.doi.org/10.4103/2225-4110.124335] [PMID: 24872930]
[40]
Rehman MF, Fariha C, Anwar A, et al. Novel coronavirus disease (COVID-19) pandemic: A recent mini review. Comput Struct Biotechnol J 2021; 19: 612-23.
[http://dx.doi.org/10.1016/j.csbj.2020.12.033] [PMID: 33398233]
[41]
Tahir AH, Javed MM, Hussain Z. Nutraceuticals and herbal extracts: A ray of hope for COVID 19 and related infections (Review). Int J Funct Nutr 2020; 1(2): 1.
[http://dx.doi.org/10.3892/ijfn.2020.6]
[42]
HammadiAwad F. Shaban AL-Ani M. Video over cellular mobile device based on hybrid technique. Int J Comput Appl 2013; 73(4): 31-6.
[http://dx.doi.org/10.5120/12730-9574]
[43]
Ang L, Song E, Lee HW, Lee MS. Herbal medicine for the treatment of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis of randomized controlled trials. J Clin Med 2020; 9(5): 1583.
[http://dx.doi.org/10.3390/jcm9051583] [PMID: 32456123]
[44]
Pandey P, Basnet A, Mali A. Quest for COVID-19 cure: Integrating traditional herbal medicines in the modern drug paradigm. Appl Sci Technol Annals 2020; 1(1): 63-71.
[http://dx.doi.org/10.3126/asta.v1i1.30275]
[45]
Aglawe MM, Kale MB, Rahangdale SR, Kotagale NR, Umekar MJ, Taksande BG. Agmatine improves the behavioral and cognitive impairments associated with chronic gestational ethanol exposure in rats. Brain Res Bull 2021; 167: 37-47.
[http://dx.doi.org/10.1016/j.brainresbull.2020.11.015] [PMID: 33242522]
[46]
Marde VS, Tiwari PL, Wankhede NL, et al. Neurodegenerative disorders associated with genes of mitochondria. Futur J Pharm Sci 2021; 71(7): 1-8.
[http://dx.doi.org/10.1186/s43094-021-00215-5]
[47]
John OO, Amarachi IS, Chinazom AP, et al. Phytotherapy: A promising approach for the treatment of Alzheimer’s disease. Pharmacol Res- Modern Chinese Med 2022; 2: 100030.
[48]
Shree P, Mishra P, Selvaraj C, et al. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study. J Biomol Struct Dyn 2020; 40(1): 190-203.
[http://dx.doi.org/10.1080/07391102.2020.1810778] [PMID: 32851919]
[49]
Nugraha RV, Ridwansyah H, Ghozali M, Khairani AF, Atik N. Traditional herbal medicine candidates as complementary treatments for COVID-19: A review of their mechanisms, pros and cons. Evid Based Complement Alternat Med 2020; 2020: 2560645.
[http://dx.doi.org/10.1155/2020/2560645]
[50]
Chojnacka K, Witek-Krowiak A, Skrzypczak D, Mikula K, Młynarz P. Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. J Funct Foods 2020; 73: 104146.
[http://dx.doi.org/10.1016/j.jff.2020.104146] [PMID: 32834835]
[51]
Alzaabi MM, Hamdy R, Ashmawy NS, et al. Flavonoids are promising safe therapy against COVID-19. Phytochem Rev 2021; 21(1): 291-312.
[http://dx.doi.org/10.1007/s11101-021-09759-z] [PMID: 34054380]
[52]
Awofeso N, Aldabk K. Cholera, migration, and global health-A critical review. Int J Travel Med Glob Health 2018; 6(3): 92-9.
[http://dx.doi.org/10.15171/ijtmgh.2018.19]
[53]
Harris JB, LaRocque RC, Qadri F, Ryan ET, Calderwood SB. Cholera. Lancet 2012; 379(9835): 2466-76.
[http://dx.doi.org/10.1016/S0140-6736(12)60436-X] [PMID: 22748592]
[54]
Perveen S, Chaudhary HS. Herbal compounds-an alternative for multi-drug resistant vibrio cholerae. Online J Biol Sci 2015; 15(4): 227-35.
[http://dx.doi.org/10.3844/ojbsci.2015.227.235]
[55]
Hamza YG, Danyaya AI, Lawal M. An in silico Analysis of Some Bioactive Compounds of Psidium guajava against Target Proteins of Vibrio cholerae. Asian J Biochem Genet Mol Biol 2020; 6(4): 14-24.
[http://dx.doi.org/10.9734/ajbgmb/2020/v6i430158]
[56]
Maroyi A. Treatment of diarrhoea using traditional medicines: Contemporary research in South Africa and Zimbabwe. Afr J Tradit Complement Altern Med 2016; 13(6): 5-10.
[http://dx.doi.org/10.21010/ajtcam.v13i6.2] [PMID: 28480353]
[57]
Umare M, Wankhede N, Taksande B, Aglawe M, Umekar M, Kale M. Nutraceuticals: As an alternative therapy for huntington’s disease. In: bioactive nutraceuticals for brain disorders. Nova Science Publishers, Inc. 2021.
[58]
Saha P, Das B, Chaudhuri K. Role of 6-gingerol in reduction of cholera toxin activity in vitro and in vivo. Antimicrob Agents Chemother 2013; 57(9): 4373-80.
[http://dx.doi.org/10.1128/AAC.00122-13] [PMID: 23817372]
[59]
Saha P, Katarkar A, Das B, Bhattacharyya A, Chaudhuri K. 6-gingerol inhibits Vibrio cholerae -induced proinflammatory cytokines in intestinal epithelial cells via modulation of NF-κB. Pharm Biol 2016; 54(9): 1606-15.
[http://dx.doi.org/10.3109/13880209.2015.1110598] [PMID: 26987371]
[60]
Labh A, Varghese S, Rajeshkumar S. A comparative antimicrobial activity of terminalia chebula mediated silver nanoparticles based mouthwash. J Compl Med Res 2021; 12(4): 98.
[http://dx.doi.org/10.5455/jcmr.2021.12.04.15]
[61]
Karim R, Begum MM, Jui Y, et al. In-vitro cytotoxic and anti-Vibrio cholerae activities of alcoholic extracts of desmodium triflorum (L.) whole plant and terminalia citrina (Roxb.) fruits. Clinical Phytosci 2021; 7(1): 36.
[http://dx.doi.org/10.1186/s40816-021-00272-6]
[62]
Acharyya S, Patra A, Bag PK. Evaluation of the antimicrobial activity of some medicinal plants against enteric bacteria with particular reference to multi-drug resistant vibrio cholerae. Trop J Pharm Res 2009; 8(3)
[http://dx.doi.org/10.4314/tjpr.v8i3.44538]
[63]
Sharma A, Patel V, Chaturvedi A. Vibriocidal activity of certain medicinal plants used in Indian folklore medicine by tribals of Mahakoshal region of central India. Indian J Pharmacol 2009; 41(3): 129-33.
[http://dx.doi.org/10.4103/0253-7613.55212] [PMID: 20442821]
[64]
Ahsan N, Paul N, Islam N, Akhand AA. Leaf extract of syzygium cumini shows anti-vibrio activity involving dna damage. Dhaka Uni J Pharmaceut Sci 2012; 11(1): 25-8.
[http://dx.doi.org/10.3329/dujps.v11i1.12483]
[65]
Sánchez E, García S, Heredia N. Extracts of edible and medicinal plants damage membranes of Vibrio cholerae. Appl Environ Microbiol 2010; 76(20): 6888-94.
[http://dx.doi.org/10.1128/AEM.03052-09] [PMID: 20802077]
[66]
Di Cesare M, Bentham J, Stevens GA, et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016; 387(10026): 1377-96.
[http://dx.doi.org/10.1016/S0140-6736(16)30054-X] [PMID: 27115820]
[67]
Pirbalouti AG. Inhibitory activity of Iranian endemic medicinal plants against Vibrio parahaemolyticus and Vibrio harveyi. J Med Plants Res 2011; 5(32)
[http://dx.doi.org/10.5897/JMPR11.1256]
[68]
Komiazyk M, Palczewska M, Sitkiewicz I, Pikula S, Groves P. Neutralization of cholera toxin by Rosaceae family plant extracts. BMC Complement Altern Med 2019; 19(1): 140.
[http://dx.doi.org/10.1186/s12906-019-2540-6] [PMID: 31221152]
[69]
Ghobadi Pour M, Mirazi N, Moradkhani S, Rafieian-kopaei M, Rahimi-Madiseh M. A comprehensive review on phytochemical, pharmacological and therapeutic properties of Agrimonia eupatoria L. J Herbmed Pharmacol 2020; 10(1): 14-30.
[http://dx.doi.org/10.34172/jhp.2021.02]
[70]
Kurapati KRV, Atluri VS, Samikkannu T, Garcia G, Nair MPN. Natural Products as anti-HIV agents and role in HIV-associated neurocognitive disorders (HAND): A brief overview. Front Microbiol 2016; 6: 1444.
[http://dx.doi.org/10.3389/fmicb.2015.01444] [PMID: 26793166]
[71]
Sharp PM, Hahn BH. Origins of HIV and the AIDS Pandemic. Cold Spring Harb Perspect Med 2011; 1(1): a006841-1.
[http://dx.doi.org/10.1101/cshperspect.a006841] [PMID: 22229120]
[72]
Cohen MS, Hellmann N, Levy JA, DeCock K, Lange J. The spread, treatment, and prevention of HIV-1: Evolution of a global pandemic. J Clin Invest 2008; 118(4): 1244-54.
[http://dx.doi.org/10.1172/JCI34706] [PMID: 18382737]
[73]
Hozumi T, Oyama H, Shiraki K, et al. Pharmaceutical preparation for the treatment of AIDS. Jpn Kokai Tokkyo Koho 1997.
[74]
Akram M, Tahir IM, Shah SMA, et al. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother Res 2018; 32(5): 811-22.
[http://dx.doi.org/10.1002/ptr.6024] [PMID: 29356205]
[75]
Mongalo NI, McGaw LJ, Segapelo TV, Finnie JF, Van Staden J. Ethnobotany, phytochemistry, toxicology and pharmacological properties of Terminalia sericea Burch. ex DC. (Combretaceae) - A review. J Ethnopharmacol 2016; 194: 789-802.
[http://dx.doi.org/10.1016/j.jep.2016.10.072] [PMID: 27989875]
[76]
Poltanov EA, Shikov AN, Dorman HJD, et al. Chemical and antioxidant evaluation of Indian gooseberry (emblica officinalis gaertn., syn. phyllanthus emblica L.) supplements. Phytother Res 2009; 23(9): 1309-15.
[http://dx.doi.org/10.1002/ptr.2775] [PMID: 19172666]
[77]
Kim HJ, Woo ER, Shin CG, Park H. A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. J Nat Prod 1998; 61(1): 145-8.
[http://dx.doi.org/10.1021/np970171q] [PMID: 9461665]
[78]
Uttekar MM, Das T, Pawar RS, et al. Anti-HIV activity of semisynthetic derivatives of andrographolide and computational study of HIV-1 gp120 protein binding. Eur J Med Chem 2012; 56: 368-74.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.030] [PMID: 22858223]
[79]
Costa Meneses L, Sá Ribeiro M, Anholeti MC, et al. Cytotoxic and antiviral activity of extracts and compounds isolated from clusia fluminensis planch. Transm 2015; 27: 73-8.
[http://dx.doi.org/10.5533/DST-2177-8264-2015273402]
[80]
Sun Z, Yu C, Wang W, et al. Aloe polysaccharides inhibit influenza a virus infection-A promising natural anti-flu drug. Front Microbiol 2018; 9: 2338.
[http://dx.doi.org/10.3389/fmicb.2018.02338] [PMID: 30319596]
[81]
Sornpet B, Potha T, Tragoolpua Y, Pringproa K. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pac J Trop Med 2017; 10(9): 871-6.
[http://dx.doi.org/10.1016/j.apjtm.2017.08.010] [PMID: 29080615]
[82]
A Boire N. Lessons learned from historic plague epidemics: The relevance of an ancient disease in modern times. J Ancient Diseases Prev Remedies 2014; 2: 2.
[http://dx.doi.org/10.4172/2329-8731.1000114]
[83]
Yang R. Plague: Recognition, treatment, and prevention. J Clin Microbiol 2018; 56(1): e01519-17.
[http://dx.doi.org/10.1128/JCM.01519-17] [PMID: 29070654]
[84]
Raoult D, Mouffok N, Bitam I, Piarroux R, Drancourt M. Plague: History and contemporary analysis. J Infect 2013; 66(1): 18-26.
[http://dx.doi.org/10.1016/j.jinf.2012.09.010] [PMID: 23041039]
[85]
Alvarez ML, Pinyerd HL, Crisantes JD, et al. Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice. Vaccine 2006; 24(14): 2477-90.
[http://dx.doi.org/10.1016/j.vaccine.2005.12.057] [PMID: 16442673]
[86]
Chen W, Vermaak I, Viljoen A. Camphor--a fumigant during the Black Death and a coveted fragrant wood in ancient Egypt and Babylon--a review. Molecules 2013; 18(5): 5434-54.
[http://dx.doi.org/10.3390/molecules18055434] [PMID: 23666009]
[87]
Prakash V, Rana S, Sagar A. Studies on antibacterial activity of leaf extracts of rhododendron arboreum and rhododendron campanulatum. Int J Curr Microbiol Appl Sci 2016; 5(4): 315-22.
[http://dx.doi.org/10.20546/ijcmas.2016.504.037]
[88]
Tariq A. Phytochemical analysis and in-vitro anti-bacterial and anti-fungal activity of verbascum arianthum (Benth). Pure Appl Biol 2021; 10(3)
[http://dx.doi.org/10.19045/bspab.2021.100082]
[89]
Maobe MAG, Gitu L, Gatebe E. Evaluation of antibacterial and antifungal activity of herbs used in treatment of diabetes, malaria and pneumonia in Kisii and Nyamira counties region, Kenya. J Tropical Pharma Chem 2021; 5(4): 330-7.
[http://dx.doi.org/10.25026/jtpc.v5i4.314]
[90]
Adnan M, Ali S, Sheikh K, Amber R. Review on antibacterial activity of Himalayan medicinal plants traditionally used to treat pneumonia and tuberculosis. J Pharm Pharmacol 2019; 71(11): 1599-625.
[http://dx.doi.org/10.1111/jphp.13156] [PMID: 31468525]
[91]
Kalyanasundaram R. Next Step Lymphatic Filariasis Eradication: Current Status in the Development of a Vaccine Against Lymphatic Filariasis: Epidemiology, Treatment and Prevention - The Indian Perspective. In: Lymphatic Filariasis. 2018; pp. 33-46.
[http://dx.doi.org/10.1007/978-981-13-1391-2_3]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy